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ESTIMATION OF THE SPECTRAL PARAMETERS OF A
STATIONARY POINT PROCESS.

By Puam DiNnaH TuaN

Mathématique Appliquées

This paper considers the two approaches for estimating the parameters
specifying the spectral density of the counting process of a stationary point
process, namely the frequency domain and the time domain approaches. The
relation between the two is clarified; consistency and asymptotic normality of
the estimates are established. Finally the special case of a rational spectral
density is considered in some detail.

N

1. Introduction. Let N(¢) be the counting process of a stationary point process, that
is N(t) denotes the number of point events occurring in [0, £]. Suppose we assume a finite
parameter model for N(¢), then it is usually possible to write down the spectral density of
this process and as far as its second order properties are concerned, only those parameters
involved in the spectral density are of interest. Examples of models we have in mind are
the simple self exciting processes introduced in Hawkes (1972) which can be characterized
by

limaro P{N(t + At) — N(¢) = 1| N(u), u < t} + At
(11) ]
=a +j A(t — s) dN(s)

for which the rate and the spectral density are respectively

I3
2r | 1—a(d) | %’

43
p= a(O)’f(}‘) =

1-—

where
a(\) =f e™MA(t) dt.
1)

Thus we are led to consider point processes with spectral density of the form
(n/2m)gs(-) where u > 0 is the rate of the process and § € © C R™ is an unknown parameter,
such that g¢(\) — 1 as A > + o, The last condition is no great restriction since the spectral
density, being the Fourier transform of a measure with mass p at the origin (Cox & Lewis,
1968, page 74), tends to u/27 at infinity in most cases.

Another reason for considering the above model is the prediction of point processes
from the past. If we are interested in linear least squares prediction, all we need is to know
the rate and the spectral density f of the process (Jowett and Vere-Jones, 1972). Now in
the absence of any a priori information, one might try to approximate f by some member
of a parametric family {ugs, p > 0, 8 € 6}, sufficiently rich. An important example is the
family of rational functions with numerators and denominators having some prescribed
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616 PHAM DINH TUAN

degree. From this point of view, f need not belong to the above family and our purpose is
to construct an estimate of the value p* > 0 and 6* € O such that p*gs comes closest to
f in some sense to be made precise, hoping that u*gs would be a good approximation to

f.

This estimation problem has been considered by Brillinger (1975b), who suggested a
procedure based on the periodogram and derived the asymptotic distribution of the
estimate. His proof is however somewhat rapid and he has overlooked the effect of
estimating u on the distribution of the estimate of 6. Here, we shall consider two modified
versions of the above and a procedure in the time domain approach similar to that of the
Box and Jenkins (1970) method of estimation of parameters in time series models. The
relation between frequency and time domain approaches is clarified and the asymptotic
distribution of the estimate is obtained. Finally, we consider the special case of a rational
spectral density and derive an iterative procedure to compute the time domain estimates.

The motivation for the above procedures is quite standard. In the frequency domain
approach, let

T
1 .
IO\ =— | dTN)|% dT(\) = | e dN(),
27T 0

where [0, T'] is the interval of observation. Then we observe that (Brillinger, 1972, 1975b),
under regularity conditions, the periodogram ordinates I7(27s/T),s =1, - - -, M are jointly
asymptotically independent exponential variates with means f(2#s/T), s =1, ---, M.
Thus, let

f=T{N(T) — N©0)} = T d"(0)

by the consistent estimate of . The random variables (27/i)I"(27s/T) are jointly asymp-
totically independent exponential variates with means (27/u)f(27s/T'), which suggests
writing down the “pseudo” log likelihood function

_ 1 oy 27s _1f 2ms\2m T2ls
o) (PP

and estimating by maximizing this expression.

Now, it is desirable that M should be large in order to make full use of the available
information. However the above sum is not convergent as M — oo, so we modify it by
subtracting a term independent of 8 to get

1 2 2 2 2
o s el5) o (5) ) ()

Since I7(-) is bounded for fixed T, if go(A) — 1 sufficiently fast as A — *oo, then Az(6)
converges almost surely to Ar(d) say, as M — . To obtain estimates of §, one might try
to maximize Ar(6) or Az, (0) where My — oo with a prescribed rate, as T'— . One might
also consider the continuous version of Az:

- “T1 . C1p
(1.3) Ar(f) =— f [—2-7; log go(\) + {g7'(\) — 1} lITO\)] dA
0
where I7()\) is the mean-corrected periodogram defined by

T
iT(A)=ﬁ, | dTN% dT) = f e™{dN(t) — 4 dt}.
0

Note that I7(2ns/T) = IT(2ns/T) for s # 0 and I7(0) = 0.
In the time domain approach, consider the problem of linear least squares prediction of
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dN(t) by the past up to time ¢. This is equivalent to constructing a random measure dm(t)
with m(t) — m(s), t > s belonging to the closure in mean square of the linear space spanned
by N(u) — N(v), v < u < t, such that e€(t) = N(t) — m(¢) is a process of orthogonal
increments. In general, dm(t) = ¢(t) dt + u dt, where

(1.4) o(t) = f A(t — 8){dN(s) — p(ds)}

with A being determined by £ as follows. Let f(x) = (x/27) | A(A)|? be the factorization of
f (Doob, 1953, page 586) and suppose that A — 1 is square integrable. Then from the
spectral representation of N(¢) (Doob, 1953, page 552)

*® ei)\t -1
N =f oY h(A) dZ(N) + pt,

where Z(A) is of orthogonal increments, we get N(¢) = [§ ¢(s) ds + €(¢) + ut where
o) = f eM{h(\) — 1} dZ(\)

and e(¢) is of orthogonal increments. Let @ = 1 — A" be the Fourier transform of some A,
then, noting that A(¢) = 0 for £ < 0 because of the analyticity of a, it can be shown that ¢(¢)
is also given by (1.4). Note that for the self-exciting process, A is precisely the one involved
in (1.2).

We will write hqg, ag, Ay, ¢, instead of A, a, A, ¢ to indicate their dependence on 4, u. By
analogy with the least squares method, we estimate 6§, u by minimizing the formal “sum of
squares of the residuals”

T
T f {dN/dt — p — $ou(0)}* dt
0

where

(1.5) boult) = j Ay(t — s){dN(s) — p ds}
0

is an approximation to ¢g,(t) involving only values of N(s) on [0, T']. This is justified if
Ay(t) — 0 sufficiently fast as t — . The above sum of squares is divergent but by ignoring
the constant term [ (dN/dt)® dt, we get

2 (" 1 ("
(1.6) Sr(0, u) = — T f {Pou(t) + u} dN(t) + T f {ou(t) + p}? dt.
0 0

The integrals are understood as integrals along sample paths and, to avoid ambiguities
when ¢, () has discontinuities at the points of increase of N(¢), and to be consistent with
the fact that ¢,(¢) depends only on N(x) — N(v), u < v < t, we suppose that ¢,(¢) has left
continuous sample paths.

Now, S7(6, p) is quadratic in u and hence can be easily minimized with respect to u. We
shall see in Section 2 that under some regularity conditions, the value of u achieving this
minimum differs very little from fi. Thus one can estimate y by j and § by minimizing

T

2 (7. 1 (7.
1.7) Sr(0) = Sr(8, i) — i® = — 7‘] ¢6,2(8){dN(2) — i dt} +7,J $5.a(0) dt.
0 0

The main results of the paper are summarized in Section 2 where we establish the
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asymptotic equivalence between frequency and time domain approaches and obtain the
consistency and asymptotic normality of the estimates. Because of length and of techni-
calities involved, the proofs are deferred to Section 4. Section 3 is devoted to the case of a
rational spectral density.

2. Main results. We first show that A7(#) differs very little from —Sr(8)/(2t) which
shows the connection between time and frequency domain approaches. We shall need the

assumptions:

Al. The function A, has no zero in the closed upper half plane and @y = 1 — Ay’ is
continuous there and admits the asymptotic expansion

(2.1) a¢(2) = ic(0)z™' + O(272), | 2| = .
A2. For any compact C of ©, Ay(¢) is bounded in C X R* and satisfies
f t{supgec | Ao(t)|} dt < +o0.
0
A3. The function A4(¢) admits continuous first and second derivatives with respect to

6, satisfying the same condition as A(t) as stated in Al.

The above assumptions A1-A3 are not very restrictive. They can be verified, for
example, in the case where 4, is a rational function with coefficients being twice continu-
ously differentiable functions of 6.

THEOREM 1. Let iy realize the minimum of St(0, ), given by (1.6), for fixed 0. Then
under A2

Bo=p+OT™),  Sr@, i) = Sr(8, i) + O(T?),

where the error terms are uniform in the L' norm in any compact C of ©. If A3 also holds
then these two error terms admit derivatives with respect to 8 up to second order,
respectively O(T™') and O(T2) in L norm, uniformly in C.

THEOREM 2. Let Az, St, ¢ be given by (1.3), (1.7), (1.5), then under Al
Ar(0) = - 1 S ((,v)+l & (2) dt
(@) = o T T ), Do .

If moreover A2 holds, then the last term of the above expression is O(T™"') in L' norm,
uniformly in any compact C of ©, and if A3 also holds then this term admits first and
second derivatives with respect to 8, with the same properties as above.

We now turn to the consistency and asymptotic normality of the estimate. Following
Brillinger (1972), we shall make the assumption

A4. The N(t) process admits cumulant measures of order % for all %, satisfying
J’ A+ |w|)| dCP@, - -, uer) | <400, 1=sj<k, k=2

Recall that the cumulant measure C* is defined by
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cum {J hi(t) dN(), j=1,---, k}
= f hi(Yha(t + wr) -+« Bt + up—1) dC®(wy, - - -, Up—1)

where A, ---, b, are bounded measurable functions with compact support. The Fourier
transform of dC” is the k-cumulant spectral density f*. For k = 2, we omit the superscript

k.
From A4, we can obtain a result similar to that of Brillinger (1975a, page 168) which is
of independent interest and is essential for our Theorem 5.

THEOREM 3. Let py, ---, pm be complex valued functions on R, such that for some
8>1, 1+ |A]|®pi(A), A €R are bounded. Let

27s 2ms

2 ~
I (pj) = '%‘T Yis|si=My Dy (_T-)IT<T>

ir
J(py) = f pi(NIT(A) dA.
_[T
Then as T — o, M7/T — o or My = %, lp — o or Ir = © we have
27 27s 27s _
EJ"(pj) = 7 Lisisi=dty Dy (7> f(T) +0(T™)

ir
EJ"(p)) = f BN fN) dX + O(T™)

_[T

and the random variables ji — p, J7(p;) — EJ"(p;), j=1, - - -, n are jointly asymptotically
normal with zero mean and covariance structure

limr—... T Var(g) = 27£(0)

limr... T Cov{y, J"(p;)} = 27 Jpj(a)f(a)(O, a) da
limr. T Cov{J (p;), J"(pa)} = 27 [f jp,—(a)pk(ﬁ)f“’(a, B, — a) da dB

+ f {pj(—a) pe(a) + pj(@)pr(a) } f*(a) da}
and similar results hold when J"(p;) are replaced by J7(p;).

To obtain the consistency and asymptotic normality of our estimate, we shall use the
following result, which is also of independent interest.

THEOREM 4. 1. Let Lt be a random function on © C R™, satisfying

(i) Lr(8) — L(8) in probability as T — o, with L being upper semicontinuous,
admitting a unique maximum at 6*

(ii) for every compact C of © and € > 0

lim infr. P{ | L7(6) —L1(8") | <¢, VO0'EC, [|6—6"| =1/n)>1

as n — . Then any Or realizing the maximum of Lt in © and satisfying P[fr€ C] - 1
for some compact C of ©, tends to 6* in probability as T — .
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2. Suppose that 0* is an interior point of © and Lt admits continuous first and second
derivatives with respect to 6 in a neighborhood of 8*, denoted by the vector L{" and the
matrix Li?, satisfying:

(iti) L¥(8*) — 0 and LY (0*) > —(J + H) in probability, as T — », and L{¥(8*) is
asymptotically normal with zero mean and covariance matrix T~ (J + K)

(iv) for everye>0

lim infr_.. P{||L?(8) — L?(0*)||>¢, VOEC, ||6—0*%||<1/n}
tends to 1 as n — . Then Or is asymptotically normal with mean 0* and covariance
matrix T™J + H)™(J + K)(J + H)™\. Moreover if 0r is T'? consistent, that is the

distributions of VT(0r —0*) are tight, then 07 — {87 — L{? (01) 'L+ (8r) — 0 in probability
as T — oo,

REMARK. Our theorem is similar to that of Brillinger. However, he has used a weaker
condition than our condition (ii), namely that for every € > 0

lim inf7 ... P{L7(0’) — L1(0) <, Ve'e V(6)} - 1

as the neighborhood V(8) of 6 shrinks to 6. This condition is inadequate for his proof since
when one tries to cover the compact C of © by a finite number of the V(6), one does not
know in advance how many of them are needed. Therefore the stronger condition (ii) is
needed. The proof of our Theorem is rather standard and similar to that of Brillinger, so
we omit it.

To apply Theorem 4, we have to check its conditions. This is done in

THEOREM 5. 1. Suppose that g3 is of bounded variation on finite intervals, jointly
continuous in (6, \) and for some § > 1, | A | *{gs'(\) — 1} > 0 as (6, \) = (§’, ) for
any §’. Then as T— oo, Mr/T — o or My = ®, A1,u,(0) and Ar(8) converge in probability
to

AG) = —f [— log () + {g7'(\) — l}lflf()\)] dA
0

and they satisfy condition (ii) of Theorem 4.

2. Suppose moreover that g5 (\) admits first and second derivatives with respect to
0, continuous in (6, ) such that for some 6 > 1,|X|%(3/36;)g5"(A) and | X |°(6%/36,00:,) g5 (N)
tend to 0 as (6, \) — (8’, ) for any 0'. Then Ar satisfies conditions (iii), (iv) of Theorem
4 with:

1 [ (" 2 ?
ij=%[£ {30 loggo(A) loggo()\)}{gil()\)%f(?\)} dA]

. \
Hy= —21 [ f i gg(x)}g?o\){l —g' N = fm} dA
AN N

6=0*

36,30,

0 2 2
- f log () 22- loggo<x>}{1—g;1(x)—”f<x>} dx]
L 196 [

=6

o=z U f {ae o) —-go‘w)}f“"(a, B, —a) der dB
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1|0 a
+ 1 {6—0, c(6) Eﬂ—k 0(0)}f(0)

_12 e [ g o
260jc(0)J; {aokg" (A)}f (0, A) dA

_li mi ~1 3)
3 %, 0(0)f0 %; {ga"(M}f(0, ) d)\]

=0+

where c(0) is given by (2.1). The same result holds for Ar,u,(-) provided that the functions
‘] 2

B =— {log 8\ + —WgE‘()\)f()\)}

4 b .

are of bounded variation on (0, ©) and

(2.2) JT f Bi(A)dA—>0, T .
2aM /T

REMARK. Using the fact that log x < x — 1 with equality if and only if x = 1, it can be
shown that if f = (u/27)gs and g not equal to gy a.e., V8 # 6*, then §* is the unique
maximum of A(#). In this case H = 0 and J, K can be simplified. In general g. is near
(27/p) f so that H can be neglected.

3. Case of rational spectral density. In the case where gy(]) is a rational function
of A, then (Doob, 1953, page 452),

P(A)
3.1 =
3.1) 8o(A) 2GN)
where p(z) = 2"+ @;2" '+ -+ + Gn,q(2) =2"+ b2" '+ ... + b,. Here = (ay, - - -, an,
b1, -+, b,) is the unknown parameter. We shall suppose that p, ¢ have no zeroes in

common and no zeroes in the closed right half plane. The motivation for using model (3.1)
is that it allows a simple expression for the linear predictor and thus makes the computation
of the time domain estimates feasible. Also the family of functions (u/2m)gs of (3.1) is quite
rich so it is hoped that for a well chosen 7, this family contains the true spectral density or
at least an element very close to it.

The estimating procedure consists of minimizing the sum of the squares S7(8) given by
(1.7). We might replace the upper bound T of the last integral in (1.7) by %, which amounts
to replacing Sr by a negative multiple of Ar (see Theorem 2). Now, to minimize Sr one
usually solves the equations-

T
i} 2 d - . .
aTOj Sr(0) = — Tfo (Tﬂ,-w'"(t) {dN(2) — jp dt — ¢p,2(2) dt} =0,
for j =1, 2, ---, 2n. Since a closed form solution does not exist, one has to solve these

equations numerically, using for example a Newton-Rhapson algorithm:
Orns1 = Orn — {SP(07,,)} 'S (Or,)

where S/ and S * are the vector and the matrix of first and second derivatives of Sr(-).
By Theorem 4, if the initial estimate 87, is T"/*-consistent then the one step estimate 67,
is asymptotically as good as the least squares estimate, the one that minimizes Sr. Now
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& 2 (T &
6,08, ) = JO 36,06, ——- G0,a(t) {AN(t) — o(t) dt — b dt}
) T
_TJ; aa,"”"m ¢0M(t) dt,

where the first term can be neglected. Indeed by the same argument as in the proof of
Theorem 2, this term can be shown to be

f [{1 — @)} aZuN) + {1 = a(=N}a@(=NUT(A) dA

2

8 2 [~
69 Y c(@)p + TJ;‘ {80 96, ¢0 M(t)}¢0 a(t) dt

where a(),(A\) = (8°/86;00,)as(\). The same argument in the first part of the proof of
Theorem 1 shows that the above second term is the limit as |z| — o of za}f}k(z) and

hence of zho(z)a}fj’- 1+(2); therefore the first two terms above can be rewritten as
f [he* N aBuN) + ki (~Naf(— A)]{ITO\) ga(?\)}

which, when 8 is replaced by a consistent estimate of 8*, converges as T — o to [ Y(A) { f(A)
— (n/2m)ge(A)} dA, where 4 is a certain function (see Theorem 3, the proof of Theorem 5
and condition (ii) of Theorem 4). Since f should be very close to (u/2m)gs*, the last integral

is negligible.
Thus we shall replace S7 by the simpler expressions
T
2 9
_TJ ¢g,,(t) ¢9M(t) dt ],k 1,..-,2n.
0

To compute ¢4,4(t) and its derivatives, let yo(t) be the solution of
(3.2) dy§ V(@) + Y1 @y () = 1, m(8) {dN(2) — i dt)

with initial conditions y¥’(0) = 0,7 =1, - - -, n — 1. The term dN(¢) has the effect of adding
a jump of magnitude 1 to y§* () at each point event occurring in [0, T']. Otherwise (3.2)
is an ordinary differential equation. One can then check that

boa(t) = X1 (@ — b)y5" (@)
dAN(t) = ¢o;(t) dt — i dt = dy§ ™ () + 71 byy ™ (¢) dt

¢0 n(t) _])(t)
4’0 at) = Y@ + Yi-1 (ar — bk) yl—k)(t)

But from (3.2), (3/8a,) ys(t) is the solution of the differential equation p(d/dt){8ys(t)/da;}
= —y§(t), with initial conditions (8/da,;)y$’(0) =0, 2 =0, ---, n — 1, and hence it is
equal to —w§* (t) where wy(¢) is the solution of p(d/dt)ws(t) = y,(t) with initial condition
wP0)=0,k=0, ---,n— 1. Thus

i‘. = d =) (4} = 5 )
aaj¢0,n(t)—q< dt) &) =2z7(t)

where 24(t) = q(d/dt)ws(t) can be seen to be the solution of
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dzi V) + Y1 42 e) dt = dy 0 () = 31 byi .

REMARK. In computing the estimate by Newton-Rhapson algorithm, we need an initial
estimate, preferably T'/2-consistent. So far we do not know a simple procedure for
constructing one such. However one can proceed as follows. Consider the mapping w —
Xo 78(w/2) with inverse A — e® = (1 + iA/Ao)/(1 — iA/Ao). Then the function
f: flw) — f(\) is rational in e’ and hence is the spectral density of an autoregressive
moving average process. Now if the covariance of this process

L4 o . k
c(k)=f e F(w) d)\=f <1+L)\/>\o) N dA /o

1—1iA Ao 1+ A%/A3

of lag k = 1, ---, 2n are known, then the corresponding autoregressive-moving average
coefficients a1, -+, an, B1, « - -, Bn, say, can be computed (Hannan, 1970; Box & Jenkins,
1970). We do not know the c¢(%), but we can estimate them by

o 2T 2ns\" (. 2ms\ "\ pf2ms 2ns\" 1™
C(k) = ‘7—., Zs=1 2 Re{(l + XO—T—‘) (1 -XT)—T—‘) I T 1+ T

which are T"?-consistent if Mr/T — o sufficiently fast (Theorem 3). From these, we
obtain T'"?-consistent estimates of d;, b; of the a,, b; by the relations:

2"+ T N 2" = (14 85 (176 L+ 2" + B (1L + 2"+ 2)
2"+ Y A Bz = {1+ S(=1)B ) ML+ 2)" + T Bi(L + 2)" V(1 + 2)

The choice of A is arbitrary. One might choose Ao small so that the factor (1 + A*/A*) ™"
tends to zero rapidly, but this would imply that the polynomials 2" + Y a,z"" and 2" +
3 Biz"7 have zeroes near —1 which can cause difficulty in factoring f.

4. Proofs of theorems.
ProoF oF THEOREM 1. From (1.5) and (1.6), we get

1 T
Sr(0, p) — Sr(0, i) = T W ﬁ)zf {1 — a(t))* dt
0

T
- ; (p— R f {1 — as(8)}[AN() — (bo,c(¢) + i} dt]
0

where

T t
ap(t) = f Ayt —s) ds = f Ay(s) ds.
0 0

Hence

T -1 T
flo=p+ [J {1 — as(®)} dt] f {1 — au()}[AN(2) — {$aat) + 1} dt],
o o

T
N R 1 . R
Sr(8, fis) = Sr(@, i) = T (B — .“«)2J {1 — a(t)}* dt.
(1]
Now, we observe that as(t) — @4(0) as ¢ —> «, and by Al:

f Ay(s) ds

0

j Supyec | @s(0) — as(t) | dt = j Supeec
0

0

dt

= f t Supoecle(t) | dt < +oo,
0
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t

Supgec| as(t) | = J Supgec| As(s) | ds = O(1),

0

E{Supsec| $oi(t) |} < E f (supsec | Aot — )|} (dN(s) + i ds}
(1]

= f {supsec| As(t — s) | }2u ds = O(1).
)

So, using this result, as T'—

T T
f {1 — ap(t)}* dt = {1 — as(0)}*T + 0(1),J {1 — as()}[AN(t) + {o,2(t) + i} dt]
0 0
T T .
= {as(0) — 1} J [ f Aqlt — s) {dN(s) — i ds}] dt + 0(1)
0 0

T
= {ay(0) — 1} f as(T — s) {dN(s) — pp ds} + O(1)
0

= {a5(0) — 1}as(0){N(T) — iT} + O(1) = O(1)

with the O(1) terms being uniform in any compvact C of O, and in the sense of L' norm
when they are random. The result follows. The case when A2 holds is proved similarly.

ProoF oF THEOREM 2. We begin by showing the following results

4.1) c(@) = % f {as(\) + ag(=N)} dA

(4.2) f log{gs(\)} dA = 2mc(8).

We observe that the function as(A) + as(— M) is integrable and as(z) is analytic in the
upper half plane, so by (2.1)

f {as(A) + as(—A)} dA =1lim, ., — 2 f as(pe™)p d(e™)
—0 [

= —2ic(0)im = 2mc(@).

Result (4.2) can be proved similarly, noting that log gs(A\) is the real part of
—2 log {1 — a¢A)} which is analytic in the upper half plane and equals
2ic(@)A" + OA%) as |A| = o,

Now, g¢'(A) — 1 = —as(—A) — ag(=A) + | ag() |% therefore

f (&5’ - 1IN d = —J {@o(=N) + ao(=N}T(\) dr
4.3 - -

+j | as(A) |2I7(A) dA.

By the Fubini Theorem, the first integral in the above right hand side equals

T T ro
—1— J J f {as(\) + asg(—A)}e™ ™ dA{dN(t) — i dt}{dN(s) — ji ds}
27T o Jo Je
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T T
= %f J' {Ay(t — 5) + Ag(s — £)} {dN(¢t) — i dt}{dN(s) — i ds}.
0 0

Note that Ag(¢) + As(—¢t) is continuous since it is the Fourier transform of an integrable
function. Since A(t)= 0 for t < 0, we take A4(0) = 0 to make ¢,(t) left continuous. Let 7,
be the points of increase of N(¢) in [0, T'], and observe that the function A4(t) + As(—t)
takes value c(6) at ¢ = 0 by (4.1), the last double integral is

c(O)N(T) + 2 ¥<r, Ag(7; — )

T T
+ f (Aot — s) + Ao(s — £)}i{ii dt ds — dN(¢) ds — dN(s) dt}
0

0

T T
=c(@)iT + 2 f f Ag(t — sSdN(t) — 1t dt}{dN(s) — i ds}.
o Jo

Therefore the first term in the right side of (4.3) equals
T

—fic(8) = % j doi(t) {dN(t) — i dt).

0

Now observe that the function as(-) d”(-) is the Fourier transform of ¢,(-). This can
be seen by considering a sequence A, — A, pointwise and in mean squares for which the
Fubini Theorem is applicable, yielding

0 T 0
J [ J An(t — s){dN(s) — i ds}}e’“ dt= { f An(u)e™ du} d"().
—o 0 —o

Thus the second term of (4.3) equals [ $3,(¢) dt. The first part of the theorem then follows

from (1.3), (1.7), (4.2).
To prove the second part of the theorem, note that
T

supsec | doa(t) | = J supsec| As(t — s) | {dN(s) + fi ds}

0

(4.4)
T
= j k(t — s){dN(s) + i ds}, say.
0

Denote by || - || the L norm, from the triangular inequality the L* norm of the above left
hand side is bounded by

T T
fk(t—s){dN(s)—uds} +||u—ﬁ||2j k(t—s)ds.
0 2 0

By Al, % is square integrable. Let 21, be the Fourier transform of the function s — 1po, 71(s)
k(t — s), then

T 2
E[ f k(t—s){dN(t)—pdt}] - j |z |2 FON) dA
0

T
st |ET,5(A)|2dA=2wKJ kXt — 5) ds
0

where K = Sup f(A). Hence the L? norm of the left hand side of (4.4) is bounded when
t=Thy

00

00 1/2 0 1/2
Kl{ f E*(s) ds} + K> f k(s) ds= Ks{ f k(s) ds}
t-T t=T =T
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where K, K, K; are constants. Thus, using Al

E{supgecf & 2(t) dt} = j E {supsec| do,2(t) | )2 dt

T T

= K%f { f k(s) ds} dt = K§Jr sk(s) ds.
T t—T 0

The last part of the theorem is proved similarly.
PROOF OF THEOREM 3. We first replace I7(A), I7(\) by

T
o = —|dT<A) 5 d™n = f eM{dN(t) — p dt).
0

Since I7(2ws/T) = IT(2ns/T), s # 0, JT(p,) will be unchanged whereas J7(p;) will
become:

JNp) =Jd7(p) — T fPJO\) | AT() [21(0) dA

1 . . -
+ 572 J DiN{ATAET(=N) + AT(=NdT(A\)}dT(0) dA
where AT(A\) = [§ e™ dt. Now from Brillinger’s (1972) result
Cum{dT(A1), -+, dTAk) = AT\  + -+« + A )P Ay, -+, A1) + 0O(1)

it can be checked that EJ7(p;) = EJT(p;) + O(T™"') and deduce the expressions for
EJT(P;), EJ"(p;) as in the theorem.

To establish the asymptotic normality of the y, J7(p;), we first suppose that the p; have
compact support; then, as in Brillinger (1975a, page 547) the various joint cumulants of
these random variables can be shown to converge to the appropriate limits, as 7' — oo.
Now, from the above results, it can be seen that

2
Var{J"(p;) — J"(p;)} =< const T'Z{ |AT() | d)\} =0((T" log T)%).

Thus to obtain the asymptotic normality of J7(p,) we need only to show that Var{J”(p,)
— J7(p;)} = o(T™) or equivalently Var{J”(p;), Var{J"(p;)}, Cov{J"(}), J (p;)} differ
from each other by a term o(T"). This can be obtained from

Cov{I"(a), IT(,B)} =T7(|AT(a = B) |* + | AT(a + B) |} f*(a)
+20T7'f (@, B, — a) + {AT(a — B) + AT(a + B) + 1}O(T ).

In case the p; do not have compact support, we use Berstein’s lemma (Hannan, 1970,
page 242). Write

l
J(p) = J' i NIT(N) dX + ery, 1>0.

-
All we need is to show that T Var(er;) — 0 as [ — oo, uniformly in 7, using the above
expression for Cov{I7(a), I7(8)}. A similar argument applies for the J”(p;).

PRrOOF OF THEOREM 5. The first result of part 1 of the theorem follows directly from
Theorem 3 and the assumptions on gy. To obtain the second result, we shall show that
JT(ps) and J7(py) satisfy the condition (ii) of Theorem 4 if py(A) is jointly continuous in
(6, \) and for some 8 > 1, | A |°pe(A) — 0 as (6, \) — (6’, o) for any 8'.

Let p > 0, ' € ©, \’ € R, by assumption there exist Ao = Ao(¢’) and neighborhoods
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V(8'), V(8'; X') of 8’ and U(X') = U(X; 8’) of N such that
BE VO),A>No: (1+|A]D)|ps(N) | < n/2
B VEO;N), A€ UN): (1 +|\[%|pe) —peN) <7

The set {A = Ao}, being compact, can be covered by U(A,), --., U(\:) for some
A1, +++, Ax. Let W(8’) be the intersection of V(') and V(#’, \;),i=1, .., k. Then

@+ A% |peN) —psA) [<m, VA

Cover the compact set C by W(6,), ---, W(6,). One can assume they are open sets, so
for € C, vj(0) = inf{|| ¢’ — 6|, ' &€ W(6;)} > O for some j. Hence max y, admits a
minimum y >0 on C. Now || 8" — || <, §, 8’ € C implies 8, §’ both belong to some W(6;),
hence | ps(A) — po(A) | = 20/(1 + | A|®). We deduce that | JT(ps) — J (ps) | =R, | I (pe)
— J"(ps) | = nRr where ER7, ER7 are bounded. The result follows.

Clearly, the above results also show that A 7 and L satisfy the condition (iv) of theorem
4. To show that Ar satisfies the condition (iii) of this theorem with «J, H, K as given in
Theorem 5, we write (3/30;)Ar in the form

00

3 1(7a R 1 1\ ("o
—AO) -=| —gi'd-frdr+(-==) | —&i'ldA,
20, ) e =D <M ;i) AL

where the variable A is omitted. The result then follows from Theorem 3, noting that the
derivatives of A vanish at 8* and hence when 6 = 6*

00

9 _ b : __umé
aojgafd}\— 277J; aojloggad)\— 260,-0(0)

0

by (4.2). The same argument applies for Ar, x,, provided
1 i} 27s 27 27s 27s
VT | =M =] =)+ Z g =) 5
TZs_laaj 0g &\~ L&\ T f\= *—>0

=0

as t — oo. Since the function following the summation sign, B; say, is of bounded variation,
the above expression differs from (2.2) by a term VT O(T™) (Brillinger, 1975a, page 415).
The result follows.
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