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STOCHASTIC APPROXIMATION OF AN IMPLICITLY DEFINED
FUNCTION'

By Davip RUPPERT

University of North Carolina, Chapel Hill

Let S be a set, R the real line, and M a real function on R X S. Assume
there exists a real function, £, on S such that (x — f(s))M(x, s) = 0 for all x and
s. Initially neither M nor f are known. The goal is to estimate f. At time n, s,
(a value in S) is observed, x. (a real number) is chosen, and an unbiased
estimator of M(x,, s,) is observed. This problem has applications, for example,
to process control. In a previous paper the author proposed estimation of f by
a generalization of the Robbins-Monro procedure. Here that procedure is
generalized and asymptotic distributions are studied.

1. Introduction. This paper considers the following mathematical model for control
of a physical process. The process is influenced by two variables, x which is real valued
and s which takes values in an abstract space S. At time n, the value s, of s can be
measured but not controlled by the experimenter, and after measuring s,, the value x, of
x can be chosen by him. The output of the process has conditional expectation, given the
past, M(x,, s»), where M is a real valued function. In applications, s represents exogenous
variables which influence the process. For example, a patient’s response to a drug may
depend on his age and weight, as well as the dosage. Then, s, can be the age and weight of
the nth patient, and x, can be the dosage administered to him. In this case, M(x,, s.)
would be the expected dose-response.

We also assume that the experimenter wants to choose x, so that the expected output
is held equal to a constant, which for convenience may be assumed to be 0. Suppose there
exists a function f such that M(f(s), s) = 0 for all s. Then, it would be sufficient to choose
x, = f(s»). However, initially both M and f are unknown. We will be concerned with
estimation of f.

To make the problem tractable, we will restrict attention to only a certain class of
estimators. Let U be a (known) function from S to R*. We will consider only estimators in
the class

%= {g:g(s) =y U(s) forsome yE€E R},

and we will investigate both the case where f itself is in ¢ and when f can only be
approximated by an element of %.

The author (Ruppert, 1979) has investigated a slightly different formulation of this
problem. In that paper, U takes values in an inner product space (# (-, - )), not necessarily
finite dimensional, and ¥ = {g:g(s) = (v, U(s)) for some y € #*}. Also it is assumed that
fE€ %, sothat f(s) = (B, U(s)) for some B in # With 5 infinite dimensional, the restriction
that fbe in ¢ is not unreasonable, since ¥ will be a rich class for # appropriately chosen.
The following method of estimating 8 was proposed. An initial estimate B, of 8 is selected.
At time n, B8, is the current estimate of 8 and the choice x, = 8, U(s,) is made. The output,
Y., is measured and a new estimate is formed:
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556 DAVID RUPPERT

(Ll) Bn+1 = Bn - anYnU(sn)y

where a, is a suitably chosen positive number.
The Robbins-Monro (1951) process is a special case of (1.1). To see this, suppose S is a
singleton, S = {so}, say and let

(1.2) M(x) = M(x, so).
Then the Rokbins-Monro procedure for estimating the solution of
M(x) =0,

that is, estimation of f(so), coincides with (1.1) if we take £ = 1, U(so) = 1, and B = f(so).
When {s,}7-1 is a deterministic sequence, Ruppert (1979) showed that under weak
conditions

(1.3) n 'Y | xi — f(s:) | = 0 almost surély,

and argued that for process control (1.3) is a valuable property. Conditions sufficient for
Xxn, — f(s») — 0 almost surely were also given. When {s,} - is a stochastic sequence, then
X, — f(sr) = 0 almost surely under conditions given in Ruppert’s (1979) Theorem 4.5.
Rates of convergence were also investigated there.

In this paper, it is assumed that {s.}>-: is an independent, identically distributed
sequence. With this assumption it is possible to find the asymptotic distribution of 8, when

(1.4) a, =an* forsome a>0 and “<a=1.

Instead of considering only procedures of the form (1.1), we treat a wider class, because
this class contains procedures which are often more efficient (in a natural sense, to be
discussed later) than procedures of the form (1.1). Specifically, let ¥ be the class of
sequences satisfying

(1.5) ,Bn+1 = ,Bn — n"%h(sn) YnDU(Sn),

where £ is a positive function and D is a symmetric, positive definite matrix.

In Section 3 the properties of the class ¥ are studied. The asymptotic distributions of
sequences B, satisfying (1.5) are found (cf. Theorem 3.1). In %, the optimal (in a sense to
be made more specific later) choice is found (cf. Theorem 3.4). Recall that the motivation
for estimating B is to allow x, to be chosen to keep M(x,, s.) at, or close to, zero. Theorem
3.5 gives the asymptotic distribution of M(x,, s,) under this optimal choice.

To the best of the author’s knowledge, there has been no previous work on the
estimation problem posed at the beginning of this introduction. However, in order to
compare our procedures with a familiar one, one may restrict M to be of a special form,
M(x, s) = F(s)(x.— B’U(s)) where F is a known positive function. Then S can be estimated
by least squares. We show that the asymptotic distribution of the optimal procedure in ¥
is the same as the asymptotic distribution of least squares (cf. remarks following Theorem
3.4).

2. Assumptions, definitions, and notation. Let R™" be the set of all m X n real
matrices. Let tr A denote the trace of the square matrix A and let prime denote
transposition. Let A®? be the i, jth entry of the matrix A, and let x = x™ if x is m X 1.

Define the inner product [4, B] = tr A’B for A, B in R™", and define || A || = [4, A]"2

If A € R™™ is symmetric, then A(A) and A(4) denote the minimum and maximum
eigenvalues of A. We say that A is p.d. (p.s.d.) if A is symmetric and A(A) is positive
(nonnegative). If A is p.s.d., then A? is the unique p.s.d. matrix B satisfying B = A. A
function from R™" to R™" is C" if it has a continuous total derivative.

All random variables are defined on a probability space (2, %, P). All relations between
random variables are meant to hold with probability 1. If A is a set, then , A is the indicator
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of A. Let x, and y. be sequences of random variables. Then we write x, = O(y,) if there
is a random g satisfying | x.| < g| y» | for all n. N(p, S) will denote a normal random vector
with mean p and variance S, and —4 denotes convergence in distribution.

A sequence of random variables £, has a property eventually if, for every w in a set with
probability 1, £,.(w) has the property for all n greater than some no(w).

Let (S, % ) be a probability space, and denote the Borel ¢-algebra on R™ by #™; %’
= 4.

Let M, h, and U be measurable tranformations from (R X S, # X &) to (R, #), from
(S, &) to (R, #), and from (S, &) to (R*, #*), respectively.

ASSUMPTIONS.

Al. (i) Assume for y in R* that

H(y) = f h(s)M(y'U(s), s)U(s) du(s)
B X

exists and has finite entries, and that there exists 8 in R* such that (i) H(8) = 0, and (iii)
for each ¢ > 0, inf£<||7_,;“<e_- (‘Y — ﬁ)/H(‘Y) > 0.
A2. Assume that for some K,

j [2(s)M(y'U(s), )U(s) |” du(s) = K |ly — B*
S .

A3. Assume that for some K5
(y =B Hk) = Ks| vy — B>
A4. Assume that for some 0 < £ < 1 and K,

j |2 (s)M(~y' U(s), s)U(s) ||* du(s) < Ks ||y — B*.
s

ReEMARKs. Conditions implying Al1(ii) and Al(iii) are given in Lemmas 3.1 and 3.2.
Our main theorem requires that A3 or A4 holds, and under the conditions of either lemma,
it is easy to find assumptions on M, A, and U which insure that either A3 or A4 holds, and
that A2 holds.

A5. Suppose that
9
F(s) = 5; M(x, s) |x=B’U(s)

exists for all s in S, and [s (h* + F?) || U||* du < .
Define

B= j AFUU’ dpu
S
and

Cc= f RUU’ dp.
S

A6. Assume that B and C are p.d. Also assume that B is the total derivative of H(y) at
vy = B, i.e., H(y) can be differentiated under the integral sign at S.

REMARK. Usually 2 would have the same sign as F. Then B is p.d. under reasonable
conditions on U and p.

A7. Suppose k< a=1;set§ =1or0accordingasa=1lora<1.
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A8. Let D in R*** be symmetric and p.d., and let P be an orthogonal matrix such that
P'B:DBYP = A

where A is diagonal.
A9. Assume A(A) > % ifa=1.
A10. Assume that for some K-

f||U||kduSK7 for k=12, 3, and 4.
s

All. Let %, and &%, be sub-s-algebras of & such that %, C #% C %,1.

REMARKS. In terms of the practical situation of the introduction, %, is the o-algebra
of the past and %% is the o-algebra of the past and the determination of s,. In the following
assumption, we formalize the procedure discussed in the introduction. The procedure
depends upon 4 and D. In practice these would be chosen by the statistician. We discuss
the choice of 2 and D later.

A12. Suppose s, is a measurable transformation from (2, #%) to (S, &), s. is p-
distributed and independent of %, Y, is an %,.,-measurable random variable, 8, is a
random vector in R*, and B, is % measurable. Suppose that with Var® Y, = o2, 62 —
02> 0and E (6% — 6%?— 0. Set U, = U(sy), x» =8 U, and

0%n = E(Y, — E*Y,)? {(Yn — EZ"Y,)? = rn)

for r > 0.
A13. Suppose that (i) E || 81 [|* < ; (i) Bas1 = Bn — 1 *h(sn) Yo DU,; and (iii) that with
M, = M(x,, s,), E”"Y, = M,,.

Al4. Suppose that for all » > 0
lim, . 6%, =0, or a=1 and lim,.n'Y},0%;=0.

REMARKS. The assumption that {s.}5-1 be an iid. sequence is realistic in some
applications, e.g., the dose-response example of the introduction if the patients arrive for
treatment randomly. Clearly, though, the procedure would have wider applications if it
applied to dependent and/or nonidentically distributed s,.

If f(s) = B'U(s), i.e., if f is in & then Theorem 4.5 of Ruppert (1979) shows that 8, —
B and sup, n°E || B, — B||* < « under fairly weak conditions. However, the techniques used
in the present paper to derive asymptotic distributions when {s,} are i.i.d. appear to be
inadequate under appreciably weaker conditions on {s,}.

3. Asymptotic properties of estimates.
THEOREM 3.1. Suppose Al, A2, A5-Al4, and either A3 or A4 hold. Then
n**(B8, — B) -9 N(0, 6’ B V2P.4P’'B~/?)

where 4 = (P'B**DCDB?P)*)(A™ + AV — )1,
For the proof we will need some preliminary results which will be stated as theorems.

THEOREM 3.2 (Robbins and Siegmund, 1971, Theorem 1). Let F, be a nondecreasing
sequence of sub-g-algebras of #. Let zy, Bn, &, and §, be F,-measurable random variables
such that z,, (& =0 and Ef 2,41 < 2,(1 + Br) + &, — . Then lim,_.» 2, exists and is finite
and 7§ < ®on (X7 | Bn| < o, X7 || < }.
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REMARK. Robbins and Siegmund assumed B,, & = 0, but since z.(1 + 8,) + & — {»
=< 2,(1+ |Br]) + | & | — & Theorem 3.2 is an immediate consequence of their result.

THEOREM 3.3 (Fabian, 1968, Theorem 2.2). Suppose F, is a nondecreasing sequence
of sub-o-algebras of F Suppose U,, V,, T, are random vectors in R*, T € R*, T, and ®,
are random elements of R®*, 2, T, ®, P € R®* T'is p.d., P is orthogonal, and P'TP =
A diagonal. Suppose T, ®,1, Vo1 are F,-measurable, o, B € R and

I.-Ie,-9,717,—-0 or E|T,—T|—0,E™"V,=0,
and
3.1) |EFV,V,—Z|—0 and Et'(E%V,V,—Z)t—0

for all t € R".
Suppose with o}, = Ex(|| V;||* = rn} | V;

lim; . 07, =0  forevery r,
or
a=1andlim,.en Y105, =0  forevery r.
Suppose that, with A = A(A), B+ =B ifa=1,B:=0if a#1,
0<a=1, 0\5,8, B+ < 2A,
and
Uni1 = (I = n~°TR) U, + n~02@,V, + n~«#2T,.

Then n®2(U, — (T' = (B+/2)I)"'T) —¢ N(0, P4 P’) where #/ = (P'®Z®'P) (A +
AV — gL

REMARK. Fabian stated the theorem with (3.1) replaced by the stronger hypothesis

C>|E"V,V, =3 ||—>0

for some constant C. However, his proof goes through with only (3.1).

ProoF oF THEOREM 3.1. Let 2, = (8, — 8)’D*(B. — B). Then since %, C#}, we have
by A13(ii),

E%zps1 = 25 — 20 °E"(Bn — B) Unh(s)) My, + N EZ(M?} + 03)(h(s,))*UnDU,.
By Al(iii),
(3:2) E7(Bn — B) Uph(sx) M, = (B — B)Y'H(Br) = 0,
since s, is p-distributed. By A2, A5, and A12, for some Ks and Ko,
EZ(M + 07) (h(:))*UrDUy < Ks([| B2 — BII* + 1) = Ks(A(D)2. + 1),

and by (3.2), for some Ko > 0,
3.3) E% i1 < 22(1 + Kion™®) — 2n7%(B, — B)'H(B») + Kon™™.

Therefore, by Theorem 3.2, 2, converges to a finite limit and
(3.4) 2T n(Br — B)YH(Br) < .

If lim z, > 0, then lim inf || 8, — 8] > 0 and by A1(iii), lim inf(8. — )’ H(B,) > 0. Since
a < 1 we obtain a contradiction to (3.4). Therefore z, — 0 and || 8. — 8| — 0.
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By (3.2) and (3.3), if EZ, < o then EZ,., < ». Therefore, by A13(i), EZ, < o for all n.
Taking expectation in (3.3) and applying Theorem 3.2 again, we obtain
(3.5) lim Ez, exists and is finite and
(3.6) X E(B, — BYH(B,) < .

Now (3.5) implies lim sup E || 8, — 8 |* < «, whence for 0 < £ < 1, || 8, — 8 ||* is uniformly
integrable. Therefore E || B, — B ||* — 0. If A3 holds, then (8, — B)H(B,) = K;||8. — B8|°
and then (3.6) implies E || 8, — (> — 0. In summary, so far we have shown that || 8, —
Bll—0and E|| B, — B||*— 0, or A4 holds and E || 8. — 8]|* — 0. By A13(ii),

(Brer = B) = (Bn — B) + n™*[—E " (h(s)) M. DU,)
(3.7) + (E7(h(s,)M,DU,) — h(s,)M,DU,)
+(h(sn) (M, — Y,)DU,)]
=(Bn—B) +n[—rin+ ro.+rs.], say.

We now have

(3.8) ri,» = DH(B;) = DB.(B. — B),
where B, — B by A6. Let V,, = ri,, + ry,. Then by (3.7) and (3.8),
(3.9 B"*(Bne1 — B) = (I — BY*DB,B })B"*(B8, — B) + n™*(B'*V,,).

Note that E”™ry, = E”r;, = E”(r2,)(r3,) = 0. Also AN2)E”||r.|*> = E™
R (s))MZ%| U, ||? so for some Kz, E || 72,0 || < Ki2E || 8. — B ||* if A4 holds and E || ry. || <
K :E| 8. — B|® if A4 doesn’t hold. Therefore,

E|r:.|?— 0.
Since E rs ,r4,, = D(E"62h*(s,) U,UL)D,
(3.10) lim, .o E”V,V}, = limp e E”*r3,1%, = 6°DCD,
and for ¢ € R*,
(3.11) E|t'(E™V.V, —o’DCD)t|
= E|rex|?t|? + t’D(E"62h*(s,) U, Uy — 62C)Dt — 0.

Define for r > 0, p?, = E || V. ||> x{ | V2 ||> = rn°}. Then since V,, = ry, + rs,

rn®
(3.12) prn < 2E || ronll® + 2E || 730 || x{ lrsnll = ‘2—}

By Al4 we can choose a sequence 0 < k, 1 o such that with d;, =k E(Y; — M;)* , ((Y, —
M)* = rn"2""(Ks|| D | k)*},d — Oora=1and n' Y, d;— 0. Then

rn“ .
(3.13) E|rsal? { 7 l? = 7} S E(ral* Ul = &} + K[| D|* d..
X

The first term on the right-hand side of (3.13) goes to 0 so

(3.14) prn—0, or a=1 and n'Y},p.,— 0.

Then by (3.9) to (3.14) and Theorem 3.3, n~*/2B'/*(8, — 8) — N(0, 6>P.# P’) and Theorem
3.1 follows. 0O

The following two lemmas deal with Assumption Al; see Remarks after A4 in Section
2.
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LEMMA 3.1 Assume that for a function f, (x — f(s))M(x, s) = 0, that M(f(s), s) =0 for
all s, and that for some B in R*, f(s) = B’ U(s). Also, assume that for each ¢ >0

0(e) = infsjx—pon=et | M(x, f(s))| > 0,
that inf,cs h(s) > 0, and that for some T > 0,
(3.15) infrers (T x| = |2’ UG =T 7Y x|)=T.
Then A1(i) implies A1(ii) and (iii).

! we have

ProoF. Al(ii) is trivial. Now fix ¢ > 0. Then whenever e < ||y — 8| <&
(y — B)'H(y) = &(inf A(s))8(I") >0
Iy —BlI=|(y=B'Us)|=T'iy-gl O
REMARK. If [s UU’ dpis p.d., then (3.15) holds (Ruppert (1979), Section 4.6). Also, A6
implies that [s UU’ du is p.d.

LEMMA 3.2 Suppose that M(x, s) is a strictly increasing function of x for each s, and
h is a positive function on S. Assume there exists f such that

(3.16) M(f(s),s) =0 foralls
for some o,
3.17) f h(s)(y6U(s) — f(s))* dpu(s) <
S
for some K > 0,
(3.18) | M(x, s)| = K|x— f(s)| for all x and s,
(3.19) u{s:y'U(s) #0} >0

for all y in R* — {0}, and
(3.20) f h(s) || Us) ||? duls) < oo.
S

Then A1l holds.

Proor. By (3.17), (3.18), and (3.20), A1(i) holds. Define

G(x,8) = h(s) | M(y,s) dy.
f(s)
For fixed s, M(x, s) is strictly increasing in x, and therefore G(x, s) is a strictly convex
function of x (Roberts and Varberg, 1973, Theorem A, page 9).
Now define

Qly) = f G(y'U(s), s) du(s).
S

By (3.17) and (3.18), @(y) < « for all y. Since G(x, s) is strictly convex for each s, (3.19)
implies that @ is strictly convex on R* Now fix v, and y: in R”, y; # 0. Since M(x, s) is
strictly increasing in x,

iy G((y1 + ty2)' U(s), 8) = +
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and then (3.19) and Fatou’s lemma imply

limyy e @(y1 + ty2) = +o0.
Therefore, for any real a, the convex set

L.={yER* Q(y)=a)

has no directions of recession (see Rockafellar, 1970, page 61) for a definition of direction
of recession). By Theorem 27.1f of Rockafellar, the function @ has no directions of
recession. Therefore by part d of the same theorem, the set of minimum points of @ is
nonempty. Then since @ is strictly convex, @ has a unique minimum point, say 8, by
Theorem A, page 123, of Roberts and Varberg (1973). Therefore Al(ii) holds.

Using the mean value theorem, the dominated convergence theorem, and (3.16), (3.18),
and (3.20), one can show that

VJ G(y' U(s), s)h(s) dp(s) = f VG U(s), s)h(s) dpls),

i.e., VQ(y) = H(y). Therefore, by Theorem A, page 98, of Roberts and Varberg (1973),
Q(B) — Qy) > (B — y)'H(y),

which proves A1(iii) since 8 is the unique minimum point of @ and Q is a finite valued and
convex, whence continuous, function so that for all ¢ > 0

SUP.<jy-gi=t @(B) — @(y) < 0.

REMARKS. Under the assumptions of Lemma 3.2, 8 depends upon 4. Let i be a strictly
decreasing function on (—, 0] and a strictly increasing function on [0, ), and assume
there exists a minimum point, 8o, of

j Y(M(BoU(s), s) dufs).
S

By the nature of i, 86U(s) is a reasonable approximation to f(s). Then assuming M’(x, s)
= M(x, s) exists, ' exists, and differentiation under the integral sign is permissible,

Bo satisfies

j h(s)M(BoU(s), s)U(s) dp(s)
S

where
h(s) =Y (M(BoU(s), s)yM'(BsU(s), s)/M(BsU(s), s)

(let 0/0 be 0). Then, in principle, if we can only approximate f, we can choose i to serve as
a criterion for approximation and then select the appropriate A. Of course, in practice there
would not be enough information to evaluate 4 initially, though adaptive procedures which
estimate A may be feasible.

The Optimal Choice of D and h. The choice a = 1 maximizes the rate of convergence,
but choosing ~ and D is less straightforward. Since the bias (8’ U(s) — f(s)) does not tend
to 0 as n increases, while the variance does tend to 0, the choice of A (which determines
B) is of paramount importance, at least for large n. Suppose, however, that 8 does not
depend on A, as is true when B’ U(s) = f(s) for some 8 (see Lemma 1). Then the choice A
= Fand D = A7 is optimal in the following sense.
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THEOREM 3.4. Under the conditions of Theorem 3.1, (B™'?P.#4P'B™** — A™) isp.s.d.
Ifh=Fand D= A"", then B"'?’P#4/P'B™ /2= A",

Proor. Since A = P’BY2DB'?P, we have P’BY*(DCD)B?P = A(P'B~2CB™?P)A.
Therefore

'//l(ijb = A(uDA(jj)(A(ii) + A(jj) _“1)-1(P/B—1/2CB—1/2P)(zjb.

Fix x € R*. Examination of the partial derivatives of Y%, Y%, .# “x;x;, with respect to
A" subject to A¥) > %, i=1, ..., k, shows that x'(.# — P’ B~'/2CB~"/?P)x is nonnegative.
Therefore (# — P’B~/2CB™'/?P) is p.s.d. and it follows that (B~?P.# P’B~'/> — B"'CB™)
is p.s.d. Since

f (A(5)B™ = F(5A™)U(s)U'(s) (h(s)B™* — F()A™) dils)
S
=B'CB™' + A7AA™ - 2(A7'BB™) = B'CB! - 4™

is p.s.d., it follows that B™Y2P.# P'B™"* — A™!is p.s.d.
Finally, if 2 = Fand D = A™?, then A = B = C = D! and consequently B>DBY? = I
and we can take P = I. It then follows that # = I and B""?P#P'B™/?= A~

REMARKS. Suppose that M(x, s) = F(s)(x — B’'U(s)) and F is known. Then Y, —
F(s))x, = (—F(s,)UsB + (Y, — E®Y,). Let 2, = Y, — F($2)%n, Z1, = (21, ..., 24), Wp =
—F(s)Up, W, = (w1, ..., w), e.=Y,—E®*Y,, andE, = (ei,...,e,). ThenZ, = W,
+ E., Z, and W, are known, and the least squares estimate of B is 8, =
(W W)W, Z,((W,W,)™ exists eventually). The covariance of n'*(8, — B) is
no*(W;W,) ™' - 6247}, the same asymptotic covariance as our procedure with the optimal
choice, = Fand D= A"

In Ruppert (1978), an adaptive procedure which estimates A and D is proposed.
However, this procedure, which is a generalization of one due to Venter (1967), requires
that at time n, unbiased estimates of M(x, s,) can be observed at two distinct values of x.
Obtaining two estimates would be feasible, for example, in the dose-response example of
the introduction if the drug was administered several times to each patient and the
expected dose-response did not vary during the course of treatment. However, procedures
which require only one estimate at a time would be preferable, and perhaps these can be
developed by generalizing the work of Anbar (1978) and Lai and Robbins (1978, 1979).

Since our goal is to keep M, = M(x,, s.) as close to 0 as possible, and M(8' U(s,), s.) is
our approximation to M(f(s.), s.) = 0, we now calculate the asymptotic distribution of
{Mn - M(B/U(sn)’ sn)}'

THEOREM 3.5. Suppose the assumptions of Theorem 3.1 hold, h = F, and D = A™.
Let Z be distributed N(0, 6?A™") and let s, be u-distributed and independent of Z. Then

(3.21) (n"*(Bn = B), 81) =2 (Z, %),

(3.22) n2(My — M(B'U(sn), $n)) =0 F(s0)(Z'U(s0)),

and the asymptotic variance of n*’*(M, — M(B'U(s,), s.)) is ko®.
Proor. The independence of B, and s, yields (3.21). By A5,

(M(xn, sn) — M(B'U(sn), 8n)) = F(s:)(B. — 8)'U(sx) + 0o((8 — B8)'U(s.))
which implies (3.22). Finally, since Z and s, are independent,
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E(F(s0)Z'U(s0))* = E(Z'(EF*(s0) U(s0)U(s0))Z) = EZ'AZ = tr AEZZ' = ko”. 0

4. Monte-Carlo Results. Small sample behavior was investigated by simulation,
where

M(x, s) = (3/2 + s)"*(x — f(s)),

k=3,U(s)=(1,s,s), f(s) =B, U(s) +As® where 8, = (1, 4, 2)", S = [—%, %], and n is the
uniform distribution. For all u, the error, Y, — M(x,, s.), is the sum of 12 independent
random variables, each uniformly distributed on (—%, %). When A = 0, Lemma 3.1 is
applicable. The assumptions of Lemma 3.2 hold for all A. Since for s fixed, M is linear in x,

F(s) = (3/2 + s)'/?

and

7/50 0 —14/15 15 0 -10
A'=75/7| . 4/5 -8/15 |=| . 8571 —5714
. . 104/9 123.8

regardless of 2 and 8. By Lemma 3.2, Al holds with

1/2 .
4.1 (B—B,)=A"" j As*U(s) ds = (A\/100)(—.36, 14.8, 4.42)".

-1/2

In all simulations, A(s) = F(s) and D = A™! were used. The following conclusions emerge
from Table 1, which summarizes the results of four simulations.

(1). Comparing Simulations I and II, we see that the only major effect of having A =
—1 rather than A = 0 is that EBY is reduced by approximately 0.14. This result agrees
with the asymptotics given by Lemma 3.2 and Equation (4.1). In particular, when A = —1,
the Monte-Carlo estimate of EM,, is not significantly different from 0, and the variance of
M, is virtually the same as when A = 0. Of course, as |A| is increased, f(s) will be
approximated less successfully by a quadratic polynomial and EM?2 will increase.

(2). The effect of the starting value, B, is very large and persists even when n = 200.
For example, when n = 200, no?(M,,) is 3.76 and 6.65, respectively, when 8; = (1, 4, 2)’ and

1 = (0, 0, 0) (Simulations I and III).

(3). Although choosing a < 1 will reduce the rate of convergence, for finite n, a = .875
can be superior to « = 1. Comparing Simulations III and IV, where only « differs between
the two, one sees that « = .875 has lower variances of 85, 32, 8, and M, for all finite
n reported (n = 25, 50, 200). (The situation is the same for n = 100, but not for n = 10.)

For further evidence of the effect of using a < 1, see Table 2 where no*(M,) (possibly
the most important characteristic for comparison purposes) is shown for n = 10, 25, 50,
100, and 200 and a = .5, .75, .875, and 1. Note that throughout A(s) = F(s) and D = A™.. If,
for example, 2 was changed by multiplication by a positive constant, then the relative
performance of the different o might change. Unfortunately, there is very little known
about the finite sample behavior of stochastic approximation methods, even in simpler
situations than that studied in this paper. I am only aware of a minimax result of Dvoretzky
(1956), which, under some restrictions, applies to the one-dimensional Robbins-Monro
method. Therefore, there would be little available as a guide in an attempt here to improve
the small sample efficiency of asymptotically optimal procedures.

ACKNOWLEDGEMENT. I wish to thank the referee for his suggestions which led to
several significant improvements in an earlier draft of this paper.



sample size results are based upon 1000 Monte-Carlo trials.

STOCHASTIC APPROXIMATION

TABLE 1
A comparison of Monte-Carlo and asymptotic means, variances, and covariances. All finite

565

Simulation 1

Simulation II

Bi=(1,4,2) Bi=1(1,4,2)
a=1 A=0 a =1, =-1
n=25 50 200 o 25 50 200 S
E@BY -1) —.011 —.007 .000 0 —.0082 —.0037 0035 0036
E(B? — 4) 005 011 011 0 —.143 —.137 -137 -.148
EB® —2) 216 .089 038 0 174 0497  —.0057  .0442
no(BY) 2.44 1.92 1.63 15 2.41 1.91 1.63 15
ne?(B2) 19.35 14.82 9.86 8.57 19.1 14.7 9.84 8.57
na?(B) 357 244 161 124 348 240 161 1238
ne(BYL, B) —.673 —.244 —.269 0 —.562 —.204 —.264 0
no (B, BY) —22.0 —-15.4 —11.7 -10 —21.5 —-15.1 -11.7 -10
no(B?, BY —4.37 —-8.62 —555  —5.71 —5.64 —8.77 —552  —5.71
EM, —.00273  —.00469  —.00496 0 | —.00560  —.00656 .00408 0
no’(my) 7.27 5.25 3.76 3 7.14 5.25 3.75 3
Simulation 111 Simulation IV
Bi1=(0,0,0) Bi=(0,0,0)
a=1 A=0 a =.875, A=0
25 50 200 o 25 50 200 o
E@BY —1) .004 .003 002 0 0052 0025 0028 0
E(B? — 4) 040 —.018 005 0 —.0329 —.0040 0075 0
E(B® -2) 017 —.062 .008 0 —.0469 —.0669 0065 0
na*(BY) 7.85 4.75 2.30 15 5.33 2.58 2.00 o
ne®(B?) 81.2 44.4 18.7 8.57 56.6 21.4 11.4 o
ne?(B) 1882 1010 375 123.8 1123 388 181 o
no (B, B2) —9.92 —4.51 —1.54 0 —4.91 —.98 —29 0
no(BL, BY) -99.1 —52.7 —21.7 -10 —60.2 —225 -142 ©
no(B2, B 163 68.2 20.8 —5.71 57.9 6.27 —5.48 )
EM, 0435 00726 00409 0 0168  —.00331 00559 0
ne’(M,) 32.3 35.3 6.65 3 19.4 189 4.26 o
TABLE 2

no(M,) for A =0, 8 = (0, 0, 0), aﬁd selected values of a and n. All values are based upon 1000

Monte-Carlo trials.

n 1 .875 .75 5
10 113 113 109 527
25 32.3 19.4 12.2 37.1
50 35.2 189 14.7 17.9
100 9.63 5.10 6.92 22.7
200 6.65 4.26 6.58 22.2
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