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A DENSITY-QUANTILE FUNCTIONAPPROACH TO OPTIMAL
SPACING SELECTION"

By R. L. EuBANK
Southern Methodist University

In this paper design techniques for continuous parameter time series
regression analysis are employed to develop a general approach to optimal
spacing selection for the linear estimation of location and scale parameters by
sample quantiles from uncensored or censored samples. The spacings derived
from this approach are asymptotically optimal in the sense that they result in
near optimal asymptotic relative efficiencies for large values of k, the number
of spacing elements. A comparison with the optimum efficiencies for several
distribution types indicates that the asymptotically optimum spacings perform
well for 2 = 7. The regression framework is also utilized to develop sufficient
conditions for optimal spacing unicity and to obtain asymptotically optimal
spacings for quantile estimation.

1. Introduction. In the location and scale parameter model it is assumed that the
distribution function (df) for the elements of a random sample, X, - - -, X;,, has the form

(1.1) Flx) = F0<x ; “)

where Fj is a known distributional form and u and ¢ are respectively location and scale
parameters. Usually, u and/or o require estimation from the data. This paper explores the
properties of a particular variety of location and scale parameter estimators, the asymp-
totically best linear unbiased estimators based on sample quantiles.

It will be assumed that F is absolutely continuous with probability density function
(pdf) f. The quantile function is defined to be @Q(z) = F~'(u), 0 < u < 1. As a consequence
of (1.1), f and @ have the forms

(1.2) fly =1 m(" — ")
o o

and

(1.3) Qu) = u + oQo(u)

where fo and @, are the pdf and quantile function corresponding to F,. The density-
quantile function for F,, denoted d, is the composition of fo and @, i.e., do(u) = fo(Qo(w)),
O=su=1l

Using the sample order statistics, X1 < X < --- < X(n), define the sample quantile

function, @, by

(1.4) Q) = X, _{_;_1<usi, j=1, -0
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A spacing for the sample quantiles is a k-tuple, T = {u;, - - -, uz}, whose elements satisfy
0<us <us < --- <u< 1. Let D* denote the set of all spacings.

Given T € D* the corresponding sample quantiles, under certain restrictions, have been
shown by Mosteller [15] to have a normal limiting distribution with means Q(u.), i = 1,
..., k, and covariances

of w— uwy

—— O<wu=uj<l, ,j=1---, k.
n do(u:)do(u;) 7 J

(1.5) Cov{Q(w), Qu))} =

Thus generalized least squares may be utilized to obtain asymptotically best linear
unbiased estimators (ABLUE’s), u*(T') and 0*(T'), of i and 6. Formulas for these estimators
and their asymptotic relative efficiencies (ARE’s) have been derived by Ogawa [16].

Suppose T = {uy, -+, ur} € D* and let uo = 0, up+1 = 1. Assuming that do(0) = do(1)
= dy(0)Qo(0) = do(1)Qo(1) = 0, define A(T') as the 2 X 2 matrix with elements

1 [do(w) — do(ui-1)J?

(1.6) au(T) =Y
Ui — Uji-1
L7 () = an(T) = Zf:ll [do(u:) — do(Ui—l)][dol(tl:iinz(_l:i) — do(ti—1) Qo(u:-1)]
and :
1.8) an(T) = Zf: [do(u:) Qolu:) — dO(ui—l)QO(ui—l)]2 )

Ui — Ui—1

The usual intrinsic accuracy matrix will be denoted by A and has elements

[ (FeOV
(1‘9) a; = E[(-f—(‘x—-)-) :I
, 2
(110) Q2 = Ag1 = E[X(%) :I
and
_ el (x0T
(111) Qg2 = E|:<XW) ] 1.

Using this notation, the ARE’s, given by Ogawa [16], for the various estimation situations

are as follows:
(i) When o is known the ARE of p*(T') is

(1.12) ARE {u*(T)) = 20)
an
(ii)) When p is known the ARE of ¢*(T) is
(1.13) ARE {¢*(T)} = anl(T)
Qg2

(iii) When both u and ¢ are unknown the ARE of (u*(T'), 6*(T')) is
|A(T) |

(1.14) ARE{p*(T), o*(T)} = Al

where | . | denotes the matrix determinant.
To obtain estimators with maximum efficiency, T is chosen to maximize one of (1.12)-
(1.14) or equivalently ai:(T'), as(T) or |A(T)|. A spacing which results in a maximum
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value for one of these quantities will be termed an optimal spacing. The problem of finding
optimal spacings will be termed the optimal spacing problem.

The classical approach to the optimal spacing problem hinges upon obtaining solutions
to a simultaneous equation system which results from the differentiation of the ARE
expression being considered with respect to Qo(u;), for i = 1, - - -, k. The solutions provide
a set of optimal spacing candidates and frequently must be found through numerical
methods. This type of approach (with some modifications) has been utilized by Bloch [1],
Chan [2], Eisenberger and Posner [3], Gupta and Gnanadesikan [7], Hassanein [8, 9, 10,
11, 12, 13], Kulldorf and Vinnman [14], and Ogawa [16] to obtain optimal or near-optimal
spacings for various choices of Fy.

The principal objective of this paper is to develop a computationally simple approach
to spacing selection that results in spacings nearly as efficient as those of optimal character.
In Section 2 an asymptotic (as £ — ) solution to the optimal spacing problem, applicable
to both censored and uncensored samples, is seen to provide the desired procedure. Section
4 contains further applications of the techniques developed in Section 2 to the solution of
other “optimal spacing” problems.

2. Asymptotically optimal spacings. Estimating location and scale parameters
given a (possibly) censored set of order statistics, Xiup), « -+, Xng), can be formulated as
using the sample quantile function over the interval [ p, g] C [0, 1]. Using this fact, Parzen
[19] has shown that for large samples the linear estimation of u and ¢ by sample quantiles
can be considered as a regression problem for continuous parameter time series through
use of the model

(2.1) do(u) Q(u) = pdo(u) + odo(u) Qo(v) + opB(u), u€lp g}
where B(-) is a Brownian bridge process on [ p, ¢] with covariance kernel
(2.2) K(ui, ug) = uy — uis, Pp=sums=u=gq,

and 6 = o/ Vn. Estimators of v and o, denoted fi, , and §,4, based on the entire sample are
then derived through use of the reproducing kernel Hilbert space (RKHS) techniques
developed by Parzen [17, 18].

In this section an approach to order statistic selection for location and scale parameter
estimation will be developed through the use of model (2.1) and regression design
techniques. Much of the work which follows is motivated by the RKHS approach to
regression design for continuous parameter time series used by Sacks and Ylvisaker [20,
21]. To adapt their techniques for use with model (2.1) some preliminaries are needed.

The RKHS generated by K, H(K), is known to consist of L? differentiable functions (cf.
Parzen [19]). The inner product of two functions, f and g, in H(K) is

f(p)g(p) +f(q)g(q)
1—-q °

q

(2.3) (f, 8)pa= f f'(s)g’(s) ds +
P

The norm of f€ H(K) is denoted || f|| »q- If f is twice differentiable, integration by parts
and use of the reproducing property in (2.3) shows that

q
flw) = —j f"(s)K(u, s) ds
(2.4) P
1 1
+ K(u,P)[;f(P) - f’(P):I + K(u, q)[i-_—q flg) + f’((I):| .
Given observations obtained from model (2.1) by sampling at a set of noncoincident

points, T'= {u, -+, us}, in [ p, ¢], p and o may be estimated by generalized least squares.
These estimators will be denoted p}(T') and op4(T).
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Let Pr denote the H(K) projection operator for the subspace generated by
{K(-, u):u € T'}. It can be shown that when dy and the product of dy and Qo, do- o, are
in H(K) the variance-covariance matrix for (u},(T), o} ,(T)) is 0 A, ,(T)™* where

| Prdo || .4 (Prdo, Prdo-Qo)p.q
2. = .
@5) 4ealT) [ (Prdo, Prdo-@o)ng || Prdo- Qo3
The variance-covariance matrix for (fi, 4, 65,)" is 63 AL where
" do lllzzq {(do, dO'QO)p,q
2.6 Apg = ’ .
(2.6) Pe [ (dOy do- QO )p,q " do- QO " lzi,q

Using (2.3) and the reproducing property it follows that functions in H(K) vanish at 0
and 1. This fact along with consideration of the explicit form of A,,(T) lead to the
conclusion that observations taken at 0 and 1 provide no information. Consequently, these
values will not be considered as design points. Since design points can be taken arbitrarily
close to 0 and 1 this convention does not preclude the use of extreme order statistics in
estimation. The preceeding discussion suggests the following definition.

DEFINITION 1. When 0 < p < g <1 a k-point design for model (2.1) is a k-tuple, {u,,
-+, Uz}, whose elements satisfy

(2.7) P=um<uw<-:-.-<uy=gq.

In the event p = 0 (¢ = 1) the left-hand (right-hand) inequality in (2.7) is taken to be a
strict inequality. The set of all k-point designs on [ p, q] is denoted by D% .

In the uncensored case, p = 0, ¢ = 1, it is readily verified that u§(7") = u*(T), 08:1(T)
= o*(T), Ao:(T) = A(T), Ao = A, and D¢, = D*. Thus, the optimal spacing problem is
identical to the problem of optimal design selection, in the minimum variance (maximum
information) sense, for model (2.1).

The term spacing and optimal spacing will now be used as being synonymous with the
designs and optimal designs in D%,. Thus, for instance, a spacing, T* € D%, would be
optimal for the estimation of u when ¢ is known if

| Pr+do |15, = suprens, | Prdo || 5.q-

To develop a general solution to the spacing selection problem an asymptotic (as
k — o) version of spacing optimality will be used.

DEFINITION 2. A spacing sequence {T:}5-1, T € D%, is asymptotically optimal for
the estimation of p when o is known if

28)  lime.a(ldollZe = supres, | Prdsl| )l doll3 — | Prdoll30)™ = 1.

A scale parameter version of Definition 2 is obtained by replacing do with dy- Qo in (2.8).
For simultaneous parameter estimation the following definition will be used.

DEFINITION 3. A spacing sequence {T%}i-1, Tx € D%, is asymptotically optimal for
the simultaneous estimation of u and o if

(29) Limpse( I AP:‘II — Suprept, ‘AP,Q(T) |)(|Ap,q| - |Ap,q(Tk) ])_1 =1.

The use of the determinant in (2.9) is motivated by the classical approach to optimal
spacing selection. From a regression design point of view other criteria might be considered.
This topic is amenable to analysis along the lines of Theorem 1 but will not be pursued

here.
Spacing sequences may be constructed through the use of density functions. Let A be
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a continuous density on [ p, ¢] with corresponding df H. The kth element in the spacing
sequence generated by h is composed of the design points

H_l(li:ll)’ i=1 .-,k when O<p<g<l]l,
010 H‘1<7i->, i=0,---,k—1, when O0<p<g=1,
2.10 U= 3

H'l(é), i=1,.--,k when 0=p<gqg<]1,

H'l(k—_f_—l), i=1, .-,k when p=0, ¢g=1.

To solve (asymptotically) the problem of optimal spacing selection it suffices to
construct an optimal density, i.e., a density which generates an asymptotically optimal
design sequence. Optimal densities for the various estimation situations are provided by
Theorem 1.

THEOREM 1. Under the assumption that the regression function or functions under
consideration admit a representation of the form (2.4), the following conclusions hold:
(i) The density

(2.11) h*(w) = [do(w)"1°/A,,

where A, = [[do(s)" ] ds, generates a spacing sequence, {T})}, which is asymptotically
optimal for the estimation of u. when o is known and satisfies

(2.12)  limiswk®( dollpq — | Pridoll5.q) = limauwk® (|| do 3.4 — suprens, | Prdo|34) = A2.
(ii) The density
(2.13) h*(u) = [{do(u) Qo(w)}" T*/As,

where A, = [ [{do(s)Qo(s)}"]** ds, generates a spacing sequence, {T}}, which is
asymptotically optimal for the estimation of ¢ when p is known and satisfies

lim o 2([| do- Qoll5.a — | Pz do- Qol5.0)
= lim .. k(|| do- @ol|3. — supreny, || Prdo- Qoll3q) = A3
(ili) Let Y(u) = ([do(w)]”, [do(u)Qo(u.]”)". The density
(2.15) h*(u) = [Y(w) Ay ()] /A e,

where N\, = [ [¥(s)'Apq¥(5)]/° ds, generates a spacing sequence, {T%}, that is asymp-
totically optimal for the simultaneous estimation of u and o and satisfies

(216)  limpok®(|Apq| — | Apg(TE)|) = limp o k2(| Apg| — supreps, | Apqo(T)|) = Al,.

(24)

PrOOF. For the case 0 < p < g < 1 conclusions (i)-(iii) are an immediate consequence
of the form of RKHS and results obtained by Sacks and Ylvisaker (see Theorem 3.1 and
Remarks 3.3 and 3.5 of [20] as well as Theorem 4.2 and Remark 2.1 of [21]). For the other
cases the spacing sequences are obtained by taking the (% + 1)th or (¢ + 2)th element of
the spacing sequences generated by (2.11), (2.13), and (2.15) when 0 < p < ¢ < 1 and
deleting design points at 0 and/or 1. Results (i)-(iii) now follow from this fact and the
discussion preceeding Definition 1.
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3. Comparison and discussion. Theorem 1 provides an asymptotic solution to the
optimal spacing problem. An indication of how well the asymptotically optimal spacings
perform for finite & can be obtained, for p = 0, ¢ = 1, through comparison with the optimal
or near-optimal spacings found by other authors. Although the asymptotically optimal
spacings usually have lower ARE’s than those of optimal character, their ARE’s will
usually be quite similar for £ = 7. This is illustrated in Table 1 where the ratio of the ARE
of the asymptotically optimal spacing to that of the optimal (or nearly optimal) spacing,
denoted ARE(asymp. opt.)/ARE(opt.), is given for 2 = 7 and several choices of Fy. In fact,
for the logistic, when ¢ is known, and the Pareto, when u is known and », the shape
parameter, is one, the asymptotically optimal spacings agree with the optimal spacings
given by Gupta and Gnanadesikan [7] and Kulldorf and Vannman [14] respectively.

Table 1 also provides examples of explicit solutions for H**, Evaluation of H*™* will
usually require interpolation in a tabulation of H* obtained through numeric integration.
However, given a tabulation of H* or H*™', spacings are easily computed for any value of
k. This is in contrast to the classical approach where complicated spacing calculations are
often required for each value of 4.

Some of the H*™! functions in Table 1 have been derived by Sirndal [22] and Chernoff
[3] through the use of variational methods. The techniques utilized here dispense with
certain difficulties in Sdrndal’s approach associated with zeros for A*.

4. Other related results. Consider first the problem of optimal spacing selection
for estimation of the rth population quantile, Q(r), 7 € [p, q]. In view of (1.3), this is a
special instance of optimal spacing selection for the estimation of liju + I, where I =
(1, I)* is a fixed known vector. Since, for T € D¥,

V{Lpto(T) + Lojo(T)) = ok tr{A,(T) U}

an equivalent problem is the selection of a T which minimizes tr{A,,(7T")""l‘}. Using
results given by Sacks and Ylvisaker [21] it follows that

(4.1) h*(u) = (Y(w)' Ay ' As b (W)} /A,

where A = [7 {Y(s)'A,4ll'A;(s))'? ds, generates an asymptotically optimal spacing
sequence for the estimation of iu + lo. Taking I = {1, @o(7)}‘ provides an optimal density
for the estimation of Q(7).

Another problem in optimal spacing selection stems from the possible nonuniqueness
of optimal solutions. Conditions which imply optimal spacing unicity can be obtained

TABLE 1
The H*™! functions and spacing efficiency comparisons for selected distributions and parametric
assumptions.
C . o Parametric ARE(Asymp. opt.)/
Distribution ™ (w) assumptions ARE(opt.)*
Normal (F; = @) ®(V3 07! (u)) o known .998
Exponential 1-(1-nu)’ © known .988
Pareto 1—(1—u)®2+r « known, v=5y, .999
known, »=2 999
Extreme value u? o known .998
Cauchy numeric 1 known 991
tabulation
Logistic numeric 1 and o unknown 1.01
tabulation

* The optimal or near optimal spacings and ARE’s used in the calculations for rows 1-6 of the table
may be found in references [16 or 22], [22], [14], [8], [2], and [10] respectively.
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through an application of Theorem 2.1 of Eubank, Smith, and Smith [6]. Thus if g
represents either do or do-Qo, then g € C*[a, b] with g” > 0 on [p, ¢] and log g” concave
on (p, q) suffices to insure that for each integer % there exists unique optimal spacings.
Examples of distributions satisfying these hypotheses are the logistic (when ¢ is known)
and the Pareto (when p is known and » < 1).

Acknowledgment. The author wishes to express his gratitude to Professor Emanuel
Parzen for his many helpful suggestions in the preparation of this manuscript. This
manuscript was prepared while the author was at Arizona State University.

REFERENCES

[1] BrocH, D. (1966). A note on the estimation of the location paramater of the Cauchy distribution.
J. Amer. Statist. Assoc. 61 852-855.
[2] CHaN, L. K. (1970). Linear estimation of the location and scale parameter of the Cauchy
distribution based on sample quantiles. JJ. Amer. Statist. Assoc. 65 851-859.
[3] CHERNOFF, H. (1971). A note on optimal spacings for systematic statistics. Stanford Univ.
Technical Report No. 70.
[4] EISENBERGER, . AND POSNER, E. C. (1965). Systematic statistics used for data compression in
space telementry. J. Amer. Statist. Assoc. 60 97-133. :
[5] EUBANK, R. L. (1979). A density quantile function approach to the selection of order statistics
for location and scale parameter estimation. Texas A & M Univ. Technical Report No.
Al0.
[6] EuBaNK, R. L., SmiTH, P. L. AND SMmiTH, P. W. (1981). Uniqueness and eventual uniqueness of
optimal designs in some time series models. Ann. Statist. 9 486-493.
[7] GupTa, S. S. AND GNANADESIKAN, M. (1966). Estimation of the parameters of the logistic
distribution. Biometrika 53, 565-570.
[8] HassaNEIN, K. M. (1968). Analysis of extreme value data by sample quantiles. J. Amer. Statist.
Assoc. 63 877-888.
[9] HassaNEIN, K. M. (1969a). Estimation of the parameters of the extreme value distribution by
use of two or three order statistics. Biometrika 56 429-436.
[10] HassaNEIN, K. M. (1969b). Estimation of the parameters of the logistic distribution by sample
quantiles. Biometrika 56 684-687.
[11] HassaNEIN, K. M. (1971). Percentile estimators for the parameters of the Weibull distribution.
Biometrika 58 673-676.
[12] HassaNEIN, K. M. (1972). Simultaneous estimation of the parameters of the extreme value
distribution by sample quantiles. Technometrics 14 63-70.
[13] HassaNEN, K. M. (1977). Simultaneous estimation of the location and scale parameter of the
gamma distribution by linear functions of order statistics. Scandinavian Actuarial J. 60
88-93.
[14] KULLDORF, G. AND VANNMAN, K. (1973). Estimation of the location and scale parameters of the
Pareto distribution by linear functions of order statistics. JJ. Amer. Statist, Assoc. 68 218-
2217.
[15] MOSTELLER, F: (1946). On some useful inefficient statistics. Ann. Math. Statist. 17 175-213.
[16] OGawa, J. (1951). Contributions to the theory of systematic statistics, I. Osaka Math. J. 3 131~
142.
[17] PaRzEN, E. (1961a). An approach to time series analysis. Ann. Math. Statist. 32 951-989.
[18] ParzEN, E. (1961b). Regression analysis of continuous parameter time series. In Proc. 4th
Berkeley Symp. Math. Statist. Prob. 1 469-489.
[19] PaRzEN, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist. Assoc. 74 105~
121.
[20] Sacks, J. AND YLVISAKER, D. (1966). Designs for regression problems with correlated errors.
Ann. Math. Statist. 37 66-89.
[21] Sacks, J. AND YLVISAKER, D. (1968). Designs for regression problems with correlated errors;
many parameters. Ann. Math. Statist. 39 40-69.
[22] SARNDAL, C. (1962). Information From Censored Samples. Almqvist and Wiksell, Stockholm.

DEPARTMENT OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS, TEXAS 75275



