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TESTS FOR THE INDEPENDENCE BETWEEN TWO SEEMINGLY
UNRELATED REGRESSION EQUATIONS.!

By TAKEAKI KARIYA

Hitotsubashi University

When the error terms in two different regression equations are correlated,
Zellner proposed an alternative estimator for the coefficients of each equation
based on an estimated covariance matrix between the two error terms.
However, since an estimated covariance matrix is used, the OLSE seems
better than Zellner’s estimator when the correlation of the two equations is
close enough to zero. This paper considers the problem of testing the inde-
pendence between two regression equations and derives a locally best invariant
test for a one-sided alternative hypothesis and a locally best unbiased and
invariant test for a two-sided alternative.

1. Introduction and summary. Let two different regression equations be
(1-1) yl=Xzﬁz+ u, i= ]., 2,

where X,:n X p, is a fixed matrix with rank(X,) = p, and w, = (w1, w2, - - -, W)’ is an error
term with mean E (x,) = 0 and covariance matrix E (z,u!) = o;I, and cross-covariance
E (uiu3z) = 6121,(i = 1, 2). The relation (1.1) can be rewritten as a form of a multivariate
regression model with prior information on the structure of the coefficient matrix:

(1.2) Y=XB+ U,
where Y = [y, y2], X = [ X1, Xo], U = [u1, uz] and

_ (B 0.

By letting y = (¥4, %), B = (B1, B%),

— XIO .
X—(O X2>.2nx(p1+p2)

and u = (u’, ub)’, it can be also rewritten as
(1.3) y=XB+u.

We assume the joint normality for the error term u; u ~ N(0, = ® I,), where = = [o,]:2
X 2 is a covariance matrix of u;, and ug,(t = 1, ---, n) and = ® I, denotes the Kronecker
product of 2 and I.. From the normality of u, 612 = 0 means the independence of the two
equations. '

Zellner (1962) has shown that, when 6,2 # 0 and when = is known, the GLSE (generalized
least squares estimator)

(1.4) BA(E) = (X’[E@I]—IX)_IX’[E®I]_I)'
is more efficient than the OLSE (ordinary LSE) obtained from (1.1), provided X; # X..
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However, since X is in general unknown, using the OLS residuals in (1.1), Zellner replaced
2 in (14) by £ = (d;) with ¢;; = ele;j/n(i,j = 1, 2), where

(1.5) e, = N,y and N;=1I,—- X;(X:X)'X! i=1,2

On the other hand, when the LS method is applied to (1.2) without using the prior
information on the structure of the coefficient matrix in (1.2), another estimate for X is
obtained from the multivariate LS residual matrix;

(1.6) S=Y[I-X(XX)*X'1Y/n

where ()Z ’X)* is the Penrose inverse of X’X. The estimators 8 (ﬁ) and ,BA (S) are known as
the ZLSE (Zellner’s LSE). When XX, = 0, Zellner (1963) examined the gain in efficiency
of the ZLSE over the OLSE and showed that the ZLSE is more efficient than the OLSE
except when the correlation between the two equations

(1.7) p = 012/ (011032) "2

is low and/or the sample size is small. For the case X|X; 7 0, Kmenta and Gilbert (1968)
obtained a similar result through a numerical method, and Revankar verified it analytically
for a special case (see Section 3 below). Recently Mehta and Swamy (1976) verified it in
the general case (see also Kunitomo (1977)). These results imply that when p is close
enough to zero, the OLSE is more efficient than the ZLSE. Especially when it is zero, the
OLSE will be preferred.

Motivated by these facts, we consider the problem of testing whether the correlation
between the two equations is zero:

(1.8) H:p=0 or equivalently a2 = 0.

For testing H versus the one-sided alternative K;: p > 0, an LBI (locally best invariant)
test is derived, and for testing H versus the two-sided alternative K,: p # 0, an LBIU
(locally best invariant and unbiased) test is derived. Since there exists no uniformly most
powerful invariant test (see Section 2), the local sensitivity of these tests near p = 0 is
relevant to the problem of choice between the OLSE and the ZLSE. The null distribution
of the LBI test statistic is also considered, but for that of the LBIU test statistic, a special
case is only treated because of its difficulty. . .

Finally it is noted that a necessary and sufficient condition for which 8(A) = B(I) for
any given positive matrix A: 2 X 2 is N; = N, as Proposition 1 below shows. Hence
throughout the paper, N; # N, is assumed since in case of N; = N, the above problems
become uninteresting.

_ PROPOSITION 1. Let b, = (X!X)) X!y = 1, 2) and B(Z) = (B:(Z), B=(S)) where
Bi(Z): p. X 1 (i = 1, 2). Suppose 612 # 0. Then a necessary and sufficient condition for
B:(Z) = by is Xo(X 5X2) ' X5X, = X,, and a necessary and sufficient condition for B(Z) =
B is XI(X/IXI)—IXII = Xz(Xéxz)_IX/Z or Ny = Na.

ProOF. Let oY denote the (i, j) element of =! and let A = (¢'%)?*/¢® and P, =
X.(X:X,)"'X!(i = 1, 2). Then from (1.4)

1L9) Az = [6"X' X, = AX1 P2 X)) [0 X1 y1 — AX1 Peys + 6 °X'1(1 — Pa)y:).

Since b, does not depend on y, it is easy to see that 62X (I — Py)ys = 0 is necessary for
B1(Z) = b,. Hence P,X; = X, is obtained. Sufficiency is clear. For the second part, 8.(Z)
= b,z = 1, 2) imply P;X; = X; and P1X; = X,, which are equivalent to P; = P,. This
proves the proposition. R

Revankar (1973) pointed out that when X is a subset of X, i.e., Xo = [ X1, X3], B1(Z)
= b,. This is a special case of Proposition 1.
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2. LBI and LBIU tests. The problems stated in Section 1 are analyzed through
invariance. Let A, = {x € R|x > 0} and G; = R”(i = 1, 2). We consider the group G = A,
X As X G X Gz, which leaves the problem invariant with the action;

(2.1) yi— aiy, + X.g,
(2.2) B.— apfi+g, and o,— a.q0y ,j=1,2,

where a; € A; and g; € G.. Let ¢, = n — p;(i = 1, 2). Here we state the main results but the
proofs are deferred to the end of this paper.

THEOREM 1. For testing H: p = 0 versus K;: p > 0, an LBI test is given by the critical
region
(2.3) W1 = [ele/(eeieren)?] > ky,

where e,’s are given by (1.5). For the alternative K': p <0, the inequality is reversed.

THEOREM 2. For testing H: p = 0 versus K,: p # 0, an LBIU test is given by the
critical region

(2.4) W, = qi1q:2 W% - ql[e’lNzel/e’lel] - Q2[e’2N1e2/e’2e2] > ko,
where W, is defined by (2.3).

By an intuitive or constructive approach, the test statistic W; in Theorem 1 can be
obtained since W, is nothing but the correlation between the two LS residuals e;(i = 1, 2).
In this sense, Theorem 1 shows that the test based on this correlation is LBI. On the other
hand, it seems difficult not only to obtain the test statistic W in (2.4) through an intuitive
approach but also to interpret it. One may propose for the alternative K, the critical region

(2.5) Wi > k.

Since the second term and the third term in (2.4) do not simultaneously become constant
unless N1 = N,, which is excluded by assumption, the test defined by (2.5) is different
from the test in (2.4). Further we can think of a third test based on S in (1.6);

(2.6) W; = [S%z/snszz] > ky

where s, is the (i, j) element of S. As is easily shown, this is equivalent to the LRT
(likelihood ratio test) for testing H versus K in the case that the prior information on the
coefficient matrix B in (1.2) is not available. In this case the LRT is uniformly most
powerful invariant (e.g., see Giri (1977) pages 194-195). However, in our problem where
prior information is available, as asserted in Theorem 2, the test (2.4) locally dominates
the LRT in power. On the other hand, the null distribution of [(n — p; — p, — 1) W3/(1 —
Ws)]is F (1, n — p; — p» — 1), F-distribution with degrees of freedom 1 and n — p; — p; —
1, while the distribution of W, is difficult to derive (see Section 3). Hence it will be
interesting to compare these three tests by a'numerical method and to see whether the
test (2.4) is well approximated by the test (2.5) or the test (2.6). This work is left open in
this paper.

Finally we remark that there exist no uniformly most powerful invariant tests in our
problems. For a most powerful invariant test for testing p = 0 versus p = po (fixed) is given
by the critical region fr(¢(z)|po)/fr(¢t(z)|0) > %k where fr is the density of a maximal
invariant given in (4.14), but this most powerful test cannot be free from the fixed po.

3. The null distributions of the test statistics. Under H, the distribution of W, is
first considered. Let L; be an n X ¢; matrix such that

(3.1) L.L;=1I, - X.(X' X)X} and LiL;=1I, 1=12,
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and let z, = Liy;(i = 1, 2). In terms of L; and z;, W, = 2iL1Ly2, /(212125222 Let 2, =
LiLyzs and let

(3.2) Vi =212%/(2121222,)"*  and V. =[23%/252:]"2

Then W, = V, V. Since under H, z,’s are independently distributed as N(0, 0,;1;)(i = 1, 2),
conditional on 23, 212> ~ N(0, 611252,) and so 2122(Z52:) "> ~ N(0, o11) unconditionally.
Hence V; is independent of V,and (g: — 1)'/2V, /(1 — V)2 ~ t(g, — 1) where t(a) denotes
the ¢-distribution with df a. This implies V? ~ B (%, (g1 — 1)/2), where B (a, b) denotes the
beta distribution with df @ and b. Since the distribution of V; is symmetric about zero and
since V; > 0, the distribution of W, is symmetric about zero under H. Hence P(W; >
ki|H) = %P(W} > k}| H) and so it suffices to consider the distribution of W? under H.
While VI ~ B(%, (q: — 1)/2) above, V3 = 25Myz5/252, with M, = L5L,L’ L, is of the
same form as test statistics for serial correlation and its distribution is not easy to treat.
Press (1969) reviews this problem. Here, as is often done (see, e.g., Press (1969) and Bloch
and Watson (1967)), we approximate the distribution of V% by a beta distribution. From
Press (1969) page 195,

(3.3) V3%/d, ~ B(a, b) approximately,

where d, is the largest latent root of M, and

(3.4) a=[E(V})/d](E(VE)/Var(Vi))(di — E(V}) — 1],
and

(3.5) b=[1-E(V})/d](E(V/Var(V3)(d — E(V3)) — 1].

Since 252, is a sufficient and complete statistic for oy, and since V'} is independent of o5,
V% is independent of 252z, (Lehemann (1959) page 162). Hence

(3.6) E(V3) = E(25M;25)/E(2522) = trM3/qs = trN1N2/qs,
and
(3.7  Var(V3) = [E(25M222)*/E(2525)*] — [E(V)T? = 2[qs trM3 — (trM2)?]/q3(qe + 2).

Substituting these into (3.4) and (3.5), we obtain the approximation (3.3).
Hence for 0 < x = d;,

P(Wi<x|H)=P(ViVi=ux, Vi=x|H) + P(ViVi<x Vi>x|H)
(3.8) =P(V3/di = x/d\|H) + P(ViV}/d, < x/d:, V}/d, > x/d: | H)

1
=I(a, b:x/d;) + f I(%, (q1 —1)/2:x/tdy)b(¢t:a, b) dt,

x/dy

where I(a, 8:2) = [§ b(t:a, B) dt and b(¢: a, B) denotes the density of beta distribution with
df « and 8. The second term in the last equation above is

: Lo -0\ 5. (@=-3/2\_.,,
L[ 2] e (5

.1 x w12 1\ jrrsp (.

(3.9) (j+§) (31)] (?>j bitia. o) dt
a1 a-1 Te (@ =372 (a—j-3/2
= [Be(§,T)Be(a, b)] 2;2} ( ] i
N 1 -1 x J+1/2 2\
v (regoea] (7)) (1-3)
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where Be(a, b) denotes the beta function. In the above computation, we transformed ¢ into
1 — ¢t and expanded (1 — ¢)*7~*2 Hence we obtain the approximation:

(3.10) P(Wi=x|H) = I(a, b:x/d)) + (3.7).

For a given significance level a, the approximate significant point can be obtained from
(3.10). We remark that various types of approximations to the distributions of such
statistics as V3 are also surveyed in Durbin and Watson (1971). Next we consider the two
special cases; (1) X1X, = 0, and (2) N1 N, = N,. For the case (1), it is easy to see that V'}
~ B((n — p1 — p2)/2, q2/2), while the distribution of V? remains the same. Hence in the
case of (1), (3.10) holds exactly with a = (n — p; — p2)/2, b = q2/2 and d; = 1. In the case
(2), V3 =1 and hence W? = V2 ~ B(1/2, (g1 — 1)/2) under H. In the case (1), Zellner
(1963) considered the relative efficiency of his estimator over the OLSE. On the other
hand, when X is a subset of X,, i.e., X; = [X;, X3], in which the case (2) holds, Revankar
(1974), 1976) analyzed the same problem. In Revankar (1974), an example in which X, =
[ X1, X3] holds is indicated.

The distribution of the test statistic W, in (2.5) is more difficult to treat. Here we
consider it only for the case N1 N, = N,. As is shown above, in this case V3 = [ejNie:/
eze;] = 1. Since [e1Nqe1/elei] = [21M,2,/2)2:] where M; = L{L,L}L,, W, in (2.5) can be
written as

(3.11) Wy = Q1{Z'1[Q2Mo - M1]21/Z'121} — Q2

- M1]21/2121 Since M s are idempotent under N;N; = No(i = 0, 1) and since MIMO =
M,, there exists an orthogonal matrix @:g; X ¢; such that
Q[q2M0 - Ml]Q, = diag{(qz - 1), - 1, cee, — ]., 0,;0},
ql—q2

where diag{ai, --, a.} denotes the diagonal matrix with diagonal elements a;, - -, a,.
Note that NN, = N, implies g1 = ¢» and that g; = ¢» and N;N; = N, imply N; = N,.
Hence our assumption N; # N, implies q; > q2. Further we assume ¢, > 1. Now with v
=Qz1,l=(q2— %) and ¢, = %(g2 — 1),

(3.12) Wi = (vi/v'v) = [(V] + -+ + vZ) /0'0]

where v = (v, +--, v,)'. Since v ~ N(0, 01,1), the distribution of (T}, T:) = (v/v'v, (v} +

+ vZ,)/v'v) is a Dirichlet distribution D(%, c¢2; c¢s) with density d(ti, t) =
Ct1"%t27 (1 — t; — t,)" where ¢3 = %(g:1 — q2) and C = I'(g1/2)/[T'(%)T(c2)T'(cs)] (see
Wilks (1962) pages 172-182). Further since given Ts, T, /(1 — T2) ~ B(%, cs) (Wilks (1962)
page 180) and T: ~ B(cz, ¢35 + %),

, _ T1 x+T2 _ 1 . x+T2 _
(3.13) P(Wi=«x|H) _P(l — TZS T T2> = E[I(E’ ca'm>lT2] = F(x).

We evaluate this. For x = [, F'(x) = 1 since (x‘+ T3)/l(1 — T2) > 1. For I>x =0,

(I—x)/(1+1)
1 + ¢
F(x)=J; I( :T_;z)b(tz,(}z,c;;'f' ) dtg

For0>x=-1,

(I—x)/(1+1)
F(x) = 1(3 L M)b to: 02,03+ db.
x (1—1t)

And for —1 > x, F(x) = 0. From these we can tabulate F(x) through a numerical method.
We remark on an approximation to the distribution of W, in the general case. Since W,
is bounded, let the interval (x;, x2) be the support of the distribution of W5. It is noted
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that the bounds x; and x, depend on the matrices L; and L, instead of the latent roots of
NiN,. Let W, = (W, — x1)/(x2 — x1) so that the support of Wy is (0, 1). The null
distribution of W, may be approximated by a Jaccobi polynomial. That is, the density of
W> may be expanded as the series b(t:a, b)[1 + =j=1¢G;(t)] where Gj(t)’s are Jaccobi
polynomials (see, e.g., Durbin and Watson (1951) page 172 for the forms of G/’s and such
an application) Here the ¢; = [§G;(t)f(t) dt/ [§G}»b(t:a, b) dt, where [(t) is the density of
W>, and so ¢’s are computed from the moments of W, or W,. Setting €; = €2 = 0 is
equivalent to equating the first two moments with those of B(a, b). A difficulty in this
approximation is that it is not easy to find the bounds x; and x,.

Let us take an example from Theil (1971) pages 295-302. There Zellner’s method is
applied to the estimation of investment functions of two corporations, General Electric
and Westinghouse. From the nature of the problem, one-sided testing problem H: p = 0
versus K;: p > 0 seems reasonable. From (1.10) in Theil (1971) page 295, W? = 0.5314. On
the other hand, d; = 1, tr N, N, = 16.8036 and tr(NN;N,)?> = 16.6312 are obtained from the
data in Theil (1971) page 296. Hence from (3.8) and (3.9), a = 82.567 and b = 0.965 are
obtained where g, = ¢: = 17. The following Table shows approximately that K, is
significant at level 0.1%. Therefore the ZLSE will be more effective than the OLSE’s
obtained from each equation. Here it is well to note that tr N; N» = 16.8036 is close enough
to 17 = q, = q». Since q; = g2 and trN; N, = g, imply N; = N;, Proposition 1 suggests that
the ZLSE may not be so changed as we expect, compared to the OLSE’s. This is not so in
Theil’s example (see (1.4) on page 295 and (1.13) on page 300).

4. PrRoOFs oF THEOREMS. The notation used in the preceding sections is effective in
this section. For invariance, the readers are referred to Chapters 5 and 6 in Lehmann
(1959).

LemMA 1. Under the group G defined in Section 2, a maximal invariant is (z1/| z1 |,
22/ || 22||)) and a maximal invariant parameter is p = 012/ (011022) "%, where || z: || = (2;2.)"2

Proor. Invariance is clear. For maximality, suppose Liy;/|L.y:| = Liy*/|| Liy¥|.-
Then with a, = ||Liy:||/||Liy¥|l, L:y. = a.L.y}, from which y; = a;y* + X.g, can be
obtained for a certain g;. Similarly for the maximal invariant parameter.

By Lemma 1, the distribution or density of a maximal invariant is free from the
parameter 8 and it depends on = = (o;;) only through p = 615/(011022) 2 hence under H:
p = 0, it does not depend on any parameter. From this fact, we assume o1; = 05 = 1
without loss of generality. It is noted that the maximal invariant given in Lemma 1 is
regarded as a maximal invariant under the group A; X A; acting on the space of (z1, 22) by
z— Az, where z = (2}, z5)’ and

(4.1) A= <“1({ql a:} 2) for (ai, as) € A1 X As.
q
TABLE 1
x values of (3.8)
0.1 0.801792
0.2 0.938997
0.3 0.982216
0.4 0.995468
05 0999066 ' 7T Fi di=1
0.6 0.999861 B
0.7 0.999988
0.8 1.000000

0.9 1.000000
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Conversely any maximal invariant under A; X A; acting on (21, 22) in this way is easily
shown to be a maximal invariant under G with z, = Ly;. Hence considering the problems
in terms of y = (y1, ¥2)’ acted upon by the group G is equivalent to considering them in
terms of z = (21, 23)” acted upon by the group A; X A,. From the assumption of normality
of y, the distribution of z is normal with mean 0 and covariance matrix

_ I, poLiL,
“2) Q(”)‘<,0LQL1 Le )

Now using Theorem 4 in Wijsman (1967), we derive the density of a maximal invariant
under the transformation: z — Az. Wijsman’s theorem is stated in terms of our problems
as follows.

LeEMMA 2. Let T = t(2z) be a maximal invariant under the group A, X A; acting on
z by z— Az. Then the density of T with respect to the probability measure P{ induced by
T under H: p = 0 is given by

dPT
dP?¥

f f(Az|Q(p))|A| dv(as, as)
A;xAy

(4.3) = fr(t(2)|p) =

’

f f(Az|R(0))|A| dv(ai, az)
AXA,

where f is the normal density of z, A and Q(p) are the matrices given in (4.1) and (4.2)
respectively, and v is an invariant measure on A, X As. Here PT is the probability
measure induced by T under p.

Theorem 4 in Wijsman (1967) states the conditions for which (4.3) holds. Because
checking the conditions is included in the proof of Theorem 2 in Wijsman (1967), it is
omitted here. A direct proof can also be done by arguing as in Hajek and Sidak (1967)
pages 45-49 or Lehmann (1959) pages 248-249. An invariant measure, which is unique up
to constant multiplication, is taken as dv(a;, a2) = (a:1a2) ™' da; daz, where da, is the
Lebesgue measure on A,. After cancellation of constants, we let K(p) be the numerator of
the right-hand side of (4.3). Then from the assumption of normality,

© P . 1
(4.4) K(p) = |Q(p)|—1/2f J’ exp[— 3 z’A’SZ(p)‘lAz]|A|(a1a2)‘l da; da,.
0 0
Evaluating A’Q(p) 'A in (4.4) yields
(4.5) K(p) = Iﬂ(p)l”‘”J’ f a‘{'_lagrlexp<—% a'H(p)a) da; da,
0 0

(a = (al, aZ)’)
where a = (a1, a;)’ and H(p) = (h;) is a 2 X 2 matrix with elements
(4.6) h. = hu(p) = 2/(I, — p°M,) "2 (i=1,2), and
hao1 = hie = huis(p) = —p2i(I — p2M;) 'L Lyzs.

Here M, = L1L,L5L, and Ms = L3L,L1L, as is defined in Section 3. Let
4.7 r=r(p) = —his/(hih2)"* and R = <:” ;)

By changing a, ’s into X1 = [hzz/huhzz - h%z)]_l/zal and X = [hll/(h11h22 - h212)]_1/2a2 and
after a little algebra, we obtain K(p) = x;1(p)k2(p), where

4.8) Kl(P) = zﬂlﬂ(p)l—lﬂ(l — r2)—1/2(q|+q2—l>hl—lqn/2h2~2qz/2,
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and
w o 1

(4.9) Kka(p) = j f [27(1 — r2)1/2]‘1x‘1’"1x§2‘1exp(—§ x’R"x) dx; dx;
0 0

x = (x1, x2)".

By Kamat (1958) page 318, (4.9) becomes with ¢y = 27(¢1+9276) "1

1 1 1 1
Kk2(p) = CO[F(%)F(%)F<_§ (g1 — 1), ) (g2 — 1); 5; 7‘2>

g +1 g:+1 1 o 1 .3 2
+2rF< / )r( . )F< S @ -2, —3 (@ -5 |,

(4.11) F(a, b; ¢; x) =Y 20 7,[x’ /)] and
7, =T(a+7)T(b+j)T'(c)/T(c + j)T' (a)I'(b).
Hence the denominator of the right-hand side of (4.4) is

(4.10)

where

(4.12) K(0) = 2wd1—1‘"/2d52"2/2c()1“<%>F<%>,
where
(4.13) d. = hi(0) = 2]z, = y,Niy, = ele; i=12.

Since fr(¢(z)|p) = K(p)/K(0) from (4.3), we obtain

THEOREM 3. The density of a maximal invariant T = t(z) with respect to the
probability measure P is given by
(4.14)  fr(t(2)|p) = |Qp)|72(1 = r?) V2@ 2" by /di 1720 oz /da2 ] 7%y (p),
where y(p) = k2(p)/col’(q1/2)1'(q2/2). Naturally fr(t(z)|0) = 1.

Now we prove Theorems 1 and 2. First we note that the power function of an invariant
test ¢ is expressed as m,(p) = [5 ¢(¢(2)) fr(£(2)|p) dP{. Since we show at the end of this
section that the derivatives of the first and the second orders #’(p) and #”(p) in the
neighborhood of p = 0 can be computed beneath the integral sign, as in Ferguson (1967)
pages 235-238, for testing H: p = 0 versus K;: p > 0, an LBI test is given by the critical
region

(4.15) %fr(t(z) 1) |p—0 > kfr(£(2)] 0),

and for testing H:p = 0 versus K,:p # 0, an LBIU test is given by the critical region
2

(4.16) 33 Fr(t(E) )0 > KF(E(2) [0) + B 2 r(t(2) ) o

From Theorem 3, we write fr as fr(¢(z)|p) = [[?=1 Q:(p) where

@17 Q) =207 Qlp) = (1 —r)THOreTD Qu(p) = [hn/du]*,
Qi(p) = [hze/d2]™"** and @s(p) = y(p).

By using the matrix formula, (I — A)™' = I+ A(I — A)™}, it can be easily shown that A;;(0)
= dzn h:L(O) = 0’ and A 0) = dt+2,z+2 (l =1, 2) where
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(4.18) d33 = ZiLiLzLélel = eiNgel and d44 = Z§L§L1L1L222 = eéNlez

and that h2(0) = 0, ~12(0) = di2 and h12(0) = 0 where di2 = 21L1Ls2; = e1e.. Hence r(0)
=0, r'(0) = dis/(dndn)"?= Wi, r"(0) =0, Qi(0)=0(G =1, ---,4) and Q4(0) = 2¢, W,
where ¢; = [[%: [T ((g. + 1)/2)/T(g:/2)]. Thus f7(¢(2)|0) = [[[=: @:.(0)]1Q5(0) = 2¢; W;.
Substituting this and fr(¢(z)|0) = 1 into (4.15), we obtain Theorem 1. To prove Theorem
2, we first note that f#(£(2)|0) = Y- [[[»=1 @ (0)]Q7(0) since Q;(0) =0 (i =1, ---, 4).
From the results above, it can be easily verified that @7 (0)[[] %2 @;(0)] = const., @3 (0)
=(q1+q2— I)W%, Q3 (0) = qi[dss/dn ], Q7 (0) = g2[daa/de2], Q5(0) = (g1 — 1)(g2 — 1) wi.
Hence

(4.19) fr(¢(2)|0) = const. + q1q: W3 — [qi(dss/dn) + q2(dus/ds2)],
and from (4.16) and LBIU test ¢. is given by the critical region
(4-20) q1q2 W% - [Q1(d33/d11) + Q2(d44/d22)] > k3 + k4W1-

Here %® and %* are so chosen that the size of this test is «, i.e., E¢¢2 = a, and the first
derivative of the power function at zero is zero or equivalently Eqp. Wi = 0 (see Ferguson
(1967) page 238). But exactly following the argument in Ferguson (1967) pages 239-240, we
can prove that Eo¢s Wi = 0 if and essentially only if 2* = 0 in (4.20). For (W;, W:) in our
problem corresponds to (U, V) in Ferguson page 239, and the distribution of (W;, Ws) is
symmetric about W; = 0. Hence Theorem 2 is obtained.

To complete the proofs, we shall show that the derivatives can be computed beneath
the integral sign. Since the latent roots of the matrix M, lie between 0 and 1, it is easy to
show that 1 = [hi/di] = 1/(1 — p?) (i = 1, 2). Further since A% = pZ2{(I —
M) 2125 LY L (I — p2My) 'L Lo 2o, [h%/diids] < p?/(1 — p?)% Hence | r| < |p|/(1 —
p?) follows, and for | p | < %, | r| < %. This implies that @,(p) is bounded for [p| <5 (j =
1, -+, 5). Next, since | A/,/duds| < 2|p|/(1 = p?) (=1,2),|Qi(p)| = qi|p|/(1 = p*) (j
=3, 4). And since |Aiz/dude| = (1 — p®) '+ 2|p|/(Q — p) 2 =1(p), | 7'| = n(p) + 207/
(1 — p?)?® and so Q/(p) is bounded for [p| < % (j =1, -- -, 5). Therefore, since f7(¢(z)|p)
=Y [[],= @ (p)]Q!(p) and since the hypergeometric functions in (4.10) are increasing
in r? and converge absolutely for r* < 1, the boundedness of f7 follows and 7} (p) = [ ¢f7
dP{ is obtained at least for |p | < %. Similarly since @/ (p) is shown to be bounded for
lpl < % and since [#(t(z)|p) = ¥ii [[Liw Q(PIQI(0) + oot (Somi [Mliws
Q:(0)1Q;(0))Q:(p), 7i(p) = [ ¢f % dP{ is obtained for | p | < %. This completes the proof
of Theorems 1 and 2.

We remark that the essential uniqueness of the LBI test and the LBIU test can be
proved by applying the necessary part of the generalized Neyman-Pearson lemma (Leh-
mann (1959) page 83).
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