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A BAYESIAN NONPARAMETRIC APPROACH TO RELIABILITY

By R. L. DYKSTRA! AND PURUSHOTTAM LAUD

University of Missouri and University of Northern Illinois

It is suggested that problems in a reliability context may be handled by
a Bayesian nonparametric approach. A stochastic process is defined whose
sample paths may be assumed to be increasing hazard rates by properly
choosing the parameter functions of the process. The posterior distribution of
the hazard rates is derived for both exact and censored data. Bayes estimates
of hazard rates and cdf’s are found under squared error type loss functions.
Some simulation is done and estimates graphed to better understand the
estimators. Finally, estimates of the hazard rate from some data in a paper by
Kaplan and Meier are constructed.

1. Introduction. Recently, the Bayesian nonparametric approach to statistical infer-
ence has received a good deal of attention. In this approach, a stochastic process is defined
whose sample paths index distributions. Thus the distribution of the process serves as a
prior over the indexed family. The goal of this approach is to obtain the scope and
robustness of nonparametric procedures along with the mathematical elegance inherent in
Bayesian methods.

The most common Bayesian nonparametric approach has been extensively discussed
by Ferguson (1973), and consists of using a ‘Dirichlet Process’ prior: Ferguson defines a
continuous time parameter stochastic process whose finite dimensional increments have a
Dirichlet distribution. The sample paths of this process correspond to univariate proba-
bility measures. Ferguson shows that the posterior distribution of the process, given the
complete observations, is also distributed as a Dirichlet stochastic process, and uses this
posterior distribution for making statistical inferences. Doksum (1974) addresses his
attention to prior stochastic processes that are ‘tailfree’ and/or ‘neutral’. Susarla and Van
Ryzin (1976) were able to obtain the posterior mean of censored data using a Dirichlet
prior. Recently, Ferguson and Phadia (1976) were able to generalize these censored data
results to more general “neutral to the right” processes.

This type of approach seems to have merit concerning statistical inference in a reliability
context. What we propose, since the concept of hazard rate plays such a key role in
statistical reliability, is to place the prior probability over the collection of hazard rates.
This is done by defining an appropriate stochastic process whose sample paths are hazard
rates. With this prior we derive the posterior distribution of the hazard rates for both
right-censored and exact observations. This approach has the advantage of placing the
prior probability on absolutely continuous rather than on discrete distributions, as is the
case with the Dirichlet process prior. Moreover, Bayes estimators of the entire distribution
under natural loss functions are absolutely continuous. We note that, since our prior
random cdf’s are not neutral to the right, the work of Doksum (1974) and Ferguson and
Phadia (1979) does not apply.
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2. The extended gamma process. Let F(-) be a left-continuous cdf such that F(x)
= 0 for x < 0. The survival function and cumulat_ive hazard function corresponding to F'
are defined by F(x) = 1 — F(x) and H(x) = —In F(x). If for all x,

H(x) = f r(t) dt,
[0,x)

then r(x) is called the hazard rate of the distribution and in a reliability context indicates
the propensity for failure of an item in the near future given that the item has survived till
time x.

Let G(a, B) denote the gamma distribution with density
g(x|a, B) = x*7" exp(—x/B) Li0.x)(x) /T () B°,

for a, B > 0; G(0, B) denotes a distribution degenerate at 0.

Let a(t), t = 0, be a nondecreasing left-continuous real-valued function such that «(0)
=0, and let B(¢), t = 0, be a positive right-continuous real-valued function, bounded away
from 0 with left-hand limits existing.

Let Z(t), t = 0, defined on an appropriate probability space (2, % P), denote a gamma
process with independent increments corresponding to «a(¢). That is, Z(0) = 0, Z(¢) has
independent increments, and for ¢t > s, Z(t) — Z)(s) is G(a(t) — a(s), 1). It can be shown
(see Ferguson (1973)) that such a process exists and that its distribution is uniquely
determined. We assume WLOG that this process has nondecreasing left-continuous sample
paths.

We now define a new stochastic process by

(2.1) r(t) = B(s) dZ(s),

[e.6)

where the integration is with respect to the sample paths of the Z(¢) process. We say a
process defined in this manner has an extended gamma distribution, and we denote such
a process by saying r(¢) is I'(a(-), B(-)).

Of course if r(t) is taken to be a random hazard rate, there will be a corresponding

random cdf given by
Fx)=1- exp[— f r(t) dt].
[0,x)

From Doksum’s work, F(x) will be neutral to the right only if H(x) = [0« r(¢) dt has
independent increments. It is easily seen that even though r(¢) has independent increments,
H (x) will not, and hence the distributional results of Doksum will not apply.

The finite dimensional cdf’s (or densities) of r(¢) appear to be rather intractable,
although the distribution of the extended gamma process is “nice” in many ways.

THEOREM 2.1. If r(t) is distributed as T(a(-), B(-)), then r(t) has independent
increments and for fixed t

(2.2) the characteristic function of r(t) in some neighborhood

of 0 is given by Yru)(0) = exp[— In(1 — iB(s)8) dal(s)],

[0.6)

(2.3) Er(¢) = B(s) dal(s),

[0,2)
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and

(2.4) Var r(t) = B(s) da(s).

[0,6)

The proof follows by first defining a sequence of partitions 0 = t,1 < tn2 < +++ < ly i
whose norm goes to 0 and whose upper end point goes to . Then the sequence of random
functions

(25) rn(t) = Z(L>O;l,,<,<l) ,B(tn,t)[Z(tn,t) - Z(tn,t—l)]

is defined. Appropriate limiting arguments then complete the proof.
Since the original gamma process Z(t) is a pure jump process, the extended gamma
process will also be a pure jump process.

3. Random hazard rates. Provided a(t) is not identically zero, we may assume that
the sample paths of an extended gamma process r(t) are well defined nondecreasing hazard
rates corresponding to absolutely continuous distributions. Thus the conditional distribu-
tion of the observations X, - .-, X, given r(¢) will be defined by
(3.1) PXizxy, -+, Xn = x| r(t)) = [[i= exp[— J' r(t) dt:|.

[0,x,)

Of course (3.1) and the distribution of r(¢) will determine the joint distribution of X,
.+, X,, r(t) and will be used to derive the marginal distribution of X;, ..., X, and the
posterior distribution of r(¢) given the observed values of X, --., X,. Since the sample
paths of the r(¢) process are nondecreasing functions a.s., we are placing our prior
probability entirely within the class of distributions with nondecreasing hazard rates.

In assigning a prior probability measure by this method, one needs to input the functions
a(t) and B(t). One approach consists of defining nondecreasing mean and variance
functions u(t) and o2(t). It would seem reasonable to assign as u () the best “guess” of the
hazard rate and use 0%(¢) to measure the amount of uncertainty or variation in the hazard
rate at the point ¢. Assuming u(t), 62(t) and a(¢) are all differentiable, one can use (2.3) and
(2.4) to set

w(t) = B(s)d!(s) ds,
[0,¢)
and
o%(t) = B2(s)a(s) ds.
{0,¢)
Solving for a(¢) and B(¢) yields
_do®(¢) / du(t)
(3.2) B(t) = ar /7,
and
da(t)_ d/.L(t)2 do(t)
3.3) dt _[ dt ]/ dt

which then determines the prior distribution. The form of the posterior distribution gives
information on the effect of the prior and may help in choosing a(-) and S8(-).

The marginal distribution of an observation X can be found from (3.1) with the use of
a limiting argument.
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THEOREM 3.1. If the prior over hazard rates is I'(a(-), B(-)) then the marginal
survival function of an observation X is given by

(3.4) F(t) = P(X=t) = exp[— J In(1 + B(s)(t — s)) da(s)].

[0,2)

The marginal survival function of the observations X, - - -, X, can be found by methods
similar to those used in Theorem 3.1 and is given in the following corollary.

COROLLARY 3.1. If the prior over the hazard rates is I'(a(-), B(-)), then the joint
marginal survival function of n observations X1, -+, X, is

35) (F(ty, -+, ta)=P(Xizt, -, Xa=t)

= exp[— f In(1 + B(s) Y1 (s — £)*) da(s)]
[0,0)

where a* = max{a, 0}.

Thus the marginal survival function of ¥ = min(Xj, - - -, X,,) is of the same form as the
survival function of X; providing B(s) is replaced by nf(s).

The key problem in any Bayesian setting is to derive the posterior distribution.
Moreover it is important to handle censored observations since reliability data are often of
this type. If an extended gamma prior is used, the posterior distribution for right-censored
observations is also an extended gamma process. The proof is given in Section 7.

THEOREM 3.2. If the prior over the hazard rates is T\(a(-), 8 (.)), then the posterior
over the hazard rates, given m censored observations of the form X, = x,, Xo = x2, ++ -
Xon = X, is T(a(-), B(-)) where

’

B(t)

36) B =Ty w0

The effect of censored observations is thus to decrease the slope of the sample paths to
the left of the censoring points while leaving the slope of the values to the right unchanged.

We next address ourselves to the question of the posterior distribution of r(t) given
exact observations. The following states that the posterior can be expressed as a continuous
mixture of extended gamma distributions. The dimension of the mixing measure increases
with sample size. The proof is given in Section 6.

THEOREM 3.3. If the prior over the hazard rates is I'(a(-), B(-)), then the posterior
over the hazard rates, given m observations of the form X, = x;, + « +, Xon = X IS @ mixture
of extended gamma processes. The distribution of the mixture is given by

3.7 P(r(t)eB|Xi,=x1, +++, Xn = Xm)

f M H:';l B‘\(zi) F(B; F(a + Z:'—l-—l I(z“ea), [i)) H:il d[a + Z;’;“'l I(,J,m,](z,»)
— J00,x,) [0,x,)

f T2 B2 T Al + 3o L] (20)
[0,x,,) [0,x;)

Here F(B; Q) denotes the probability assigned to B € %r by a stochastic process which
is distributed as @, B (-) is defined as in (3.6), and the iterated integrations are done with
respect to z, through z,. Of course ¥, fm+1 Iz =)(2:) = 0.

The complexity of this distribution makes it difficult to see how a particular observation
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X, = x, affects the posterlor A failure at time x; serves to increase the hazard rate prior
to x;. This increase is smaller for smaller ¢. This is evidenced by the weight function B@t)
=B(t)[1+ B(t)(x, —t)*] " in the mixing integral. The above effect is tempered by the rate
at which «a(t) increases so that B(t) and «a(t) together determine where and how the
increase in risk (the unit jump in the a function) occurs.

4. Bayes estimators. A natural loss function when estimating a hazard rate is the
squared error type loss function used in Ferguson (1973) for distribution functions

4.1) L(r,7)= J’ (r(t) — F(¢))* dW(t)
[0,%0)
where W is an arbitrary finite measure on [0, ) such that

f B%(s) da(s) dW(t) < .
[0,:0) J[0,2)

The Bayes estimator (¢) which minimizes the expected loss is given by the posterior mean
of r(t).

With no censored observations, we may use the form of Er(t) in (2.3) and the fact that
the mean of a mixture of distributions is the mixture of the means (assuming existence) to
.express F(t) as

J’ te J o B(Z;) H =0 d[a(zz) + Z] 1+1 I(z (2 )]
(0,x,,) [0,xy) Y[0,¢)

4.2) F(t) =
J' Mz, (zl)n d[a(z,)+Z}"=,+II(Z,,°°>(2;)]
[0,x,,) [0,x,)

where integration is performed respectively with respect to 2o, 21, -« +, 2= and ﬁ is given by
(3.6).

Note that the denominator is the same form as the numerator, though the integral is of
smaller dimension. Obviously 7(t) is a nondecreasing function of ¢ as expected. Censored
observations can be incorporated in 7(t) by defining S as in (3.6) where the x,’s include
both censoring points and complete observations.

It would appear that the utility of this estimate is severely limited since it involves a
multi-dimensional integral. We shall show in the next section, however, that 7(¢) is
expressible in a manner that involves only one-dimensional integrals.

If the prime consideration is predictive in nature, the solution is different. Suppose

(4.3) F*(t) = PXpr z t|Xi =21, -+, Xo = %)

denotes the conditional survival function of a future observation given n current observa-
tions. Then F*(¢) will be the function that minimizes E [(o,) (F(t) — F(t))2 dW(¢) for any
finite measure W, Thus F*(¢) is also the Bayes estimator of the survival function when
the loss function is of the squared error type over cdf’s. Diligent computation shows that

(4.4) F*(t) = exp[J’ In(1 + B(20)(t — 20)") dvl(zo)] J(B*)/J(B)
[0,0)
where
J(B) = J e Hzﬂ=1 B(zl) H:L=1 d[a(zz) + Zjn=z+1 I(z],m)(zt)])
[0,x,,) [0,x})

B is defined by (3.6) and (1 + Bz)(t — z)*B* () = B(z,). Similarly, Corollary 3.1 can be
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used to express the joint survival function of % future observations X,.1, ---, Xnss
conditional on the observed data. Thus

(45) F*(tn+ly M) tn+k) =P(Xn+1 = tn+1, "'an+k2 tn+k|X1 = X1y oy Xn =xn)

is of the same form as (4.4) with (¢ — z,)* replaced by Y 7%%, (¢ — 2;)*. One of the
consequences is that the minimum of % future observations has the conditional survival
function given in (4.4) with £ replaced by kp.

The fact that 8* in (4.4) is a nonincreasing function which is equal to § at 0 guarantees
that F*(¢) is a bonafide survival function. The first factor of F*(¢) in (4.4) would be the
survival function of a future observation were the observations censored at xi, ---, x,
rather than observed. Thus, the second factor gives the information gained by observing
“deaths” rather than “losses” using the terminology of Kaplan and Meier (1958).

5. Computation and simulation. The presence of multi-dimensional integrals in
our estimates would appear to make computation extremely difficult. The following
theorem enables us to work with integrals of only one dimension. The integrands are
powers of the £ function and the integration is with respect to the a measure.

THEOREM 5.1. If a(-) and B(-) are defined as in Section 2, then

J' coe | (Y B(z) M1 dla(zi) + ¥ =i I(z,,m)(Z;)]
[0,x,) [0,x))
(5.1)

= Zek(e)[Hne) B(t)" da(t)]

[0,x,)

where 0 < xp < xp-1 < --- < x; < © and the sum is over all vectors e = (e, ---, e,) of
nonnegative integers such that Y’-1e;<j,j=1,--.,n—1and Y% e;= n. Here I(e) =
{j:eg=1} and

(62) ke)=[liaPU-1-Yi"e, = 1) =[lra (-1 -3 el/[j-Tiel

where P(n, r) denotes the number of permutations of n things taken r at a time.

The proof follows from integrating with respect to the indicator functions and applying
combinatorial techniques.

ExampLE. Consider the very specialized case where a(-) is flat except for a jump at
zero. That is, «(0) = 0 and a(x) = «, x > 0. In this case, r(¢) is a constant function whose
value is a G(a, 8(0)) random variable. The only value of 8(¢) that matters is B(0) = B.
Since the parameter in an exponential distribution is just its constant failure rate, this is
equivalent to putting a G(a, B) prior over the parameter 6 of an exponential density.

If we have complete observations at x1, - - -, x, and censored observations at x,,1, - - -,
Xn+m, We can specify the posterior distribution of r(¢) from Theorems 3.2 and 3.3. Since
the posterior of an exponential distribution with a gamma prior is again gamma, the
distribution of r(), £ > 0, specified by the mixture in Theorem 3.3 must also be a gamma
distribution.

In this example, the Bayes estimate of r(¢), ¢ > 0, is a constant (free of ¢) and may be
expressed in terms of Theorem 5.1.

Let #e denote the number of nonzero components of e. Then from Theorem 5.1, the
numerator of 7(¢) in (4.2) equals

BO)™! Te k(e)a* = B0)"" LI o ¥ (eime=) k(e).
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However, it can be shown that Y, &(e), whose sum is over {e; #e = i}, is the coefficient
of Z'in Z(Z + 1)(Z + 2) - .- (Z + n) (the modulus of Sterling numbers of the first kind).
Thus, the numerator of 7(¢) equals

B+ BYT ™ x,) " Va(a+ 1) -+- (a+ n).
By similar treatment, the denominator of 7(¢) equals
B A1+ LY x) "a(a+1) -+ (a+n—1).
Thus
Ft)=Ba+n)1+BY1"" x) '=(a+n) (B + 31 x)7, t>0.

This agrees with the posterior mean for uncensored data given by Mann, Schafer, and
Singpurwalla (1974, page 414). To conclude the example, note that as n — oo, 7(¢) ~ [total
number of failures]/[total time on test].

In order to observe the performance of our Bayes estimators, samples from Weibull and
exponential distributions were taken and the corresponding Bayes estimators computed.
In all cases the sample size was 11 and the prior parameter functions «(t) = ¢, and 8(¢) =
2 were used. Thus the expected value of the prior hazard rate would be [, 8(s) da(s)
= 2¢. This is the hazard rate of a Weibull distribution with mean .8862. All observations
were complete (not censored). If one decreases B(-) and increases a(-) in such a way that
the mean of the prior [(0.) B(s) da(s) is unchanged, the variance of the prior [0,y 8%(s)
da(s) will be decreased. This specifies a more precise prior distribution and hence the
prior will have more influence in posterior estimates.

Bayes estimates are computed under both loss functions, i.e., integral squared error loss
on hazard rates and cdf’s. The hazard rate corresponding to the Bayes estimate of the cdf
is graphed along with the estimated hazard rate for the purpose of comparison. Thus on
Figures 1 and 2, the posterior Bayes estimate of the hazard rate is denoted by a solid line,
while the hazard rate which corresponds to the posterior Bayes estimate of the cdf is
denoted by the line made up of alternate dashes and plusses. Figure 1 depicts the Bayes
estimates of the hazard rate when the random sample comes from a Weibull distribution
with failure rate 3¢ while Figure 2 depicts the Bayes estimates of the hazard rate when the
sample comes from an exponential distribution with the same mean. The estimated failure
rates in Figure 1 conform fairly well to the true failure rate of 3¢ even though the mean of
the prior process was different from the true rate. The estimates are quite responsive to
the data and yet reasonably smooth. When the sample comes from an exponential
distribution rather than a Weibull, the estimates are more nearly constant, as one would
hope. Finally, Figure 3 depicts estimates of the hazard rate for the data given by Kaplan
and Meier (1958). The prior was arbitrarily taken to be a(t) = ¢, 8(¢) = 4 and the starred
lines indicate censored values. A slight peaking occurs in estimates of the hazard rate at
complete observations. In comparing our estimates with those of the cdf given by Susarla
and Van Ryzin (1979) and Furguson and Phadia (1979), ours are somewhat closer to the
Kaplan-Meier product limit estimate. Also, our estimates have the advantage of being
continuous.

6. Proofs of theorems. In this section we consider stochastic processes defined on
an appropriate probability space (2, &, P). We use # 7 to denote the set of all nonnegative
functions on the nonnegative real line # and B to denote the usual smallest a-algebra
generated by finite dimensional cylinder sets. The distribution of a stochasti¢ process r is
the measure induced on (£, By) by the measurable function r:Q — %2 7. Since, with
probability one, the sample paths r(¢, w) of our stochastic process are failure rates we can
define a probability measure P on the product space (2% X &, B X &) by extending
P(B x C) = [4 F.(C) dP(w) to the usual product o-algebra of % and #. Here A =
r'(B), B € B4 and F,(C) is the probability assigned to C € # by the distribution
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function corresponding to (-, w). A marginal probability measure on (£, %) is determined
by P(C) = P(2” x C) = [o F,,(C) dP(w), C € #. The posterior distribution of the process
for a single observation is a function ¢(-, :): Z,X # — [0, 1] such that (i) ¢ is Borel-
measurable in the second argument, (ii) for each fixed X € #, ¢(-, x) is a probability
measure on (2 *, 8 ,) and (iii) [c ¢(B, x) dP(x) = P(BX C) for all B € %, and C € 4.
The extension for several observations is straightforward.
For convenience we adopt the following notation:
i) g(x; a, B) = x* exp(—x/B) o, (x)/a’T (a); g(x; a) = g(x; a, 1).
(i) Aa, = a(t) — alti-1), t, abbreviates ¢{" .
(i) B: = B(t).
(iv) § =3, I =T
(V) Bn(u’ Ba T, )’) = {(uI’ Tty uk(n)) (S ‘@k(n): Z BiulI[O,‘n)(tt) > Y1, Z BiuLI[TI,Tz)(ti) >
Yo, vy 3 Bildilin,_ 5y (&) > yi}. Often B,(u, B, 7, y) is abbreviated B.(u, 8).
(vi) F(B; Q) = probability assigned to B € %#., by a stochastic process with distribution
Q.
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We state, without proof,

LEMMA 6.1. Let a(-) be a nonnegative nondecreasing left-continuous function on [0,
o] with a(0) = 0. For a sequehce of partitions 0 = to < t; < - -+ < ty(n) Whose norm goes
to zero and upper end point goes to infinity, define a,(0) = 0 and an(t) = ¥, a(t.) ¢ _,.1(t)
+ (X(t/q(n))l([mm,m)(t), te (0, 00) Let B = {r(-) ER ":r(n) >y, r(’Tz) - 7‘(’7’1) > Yo, o,
r(tx) — r(7e=1) > y.} where k is any positive integer and 7, < -+« < Tp, Y1, +++, Yr aQre
nonnegative real numbers. Define r,(t, w) as in (2.5), A = r (B) and A, = r; (B). Then

(6.1) f I, (w) dP(w) — j I4(w) dP(w), ie., F(B; I'(an, 8) = F(B; I'(a, B)) and
e e

(6.2) lim,_. j Il g(ui; Aa,) du, = F(B; I'(a, B)).
B.(u,B)
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Fi1G. 3. Data from Kaplan-Meier paper. (Starred lines indicate censored data.)

ProoF oF THEOREM 3.2. First consider the case m = 1. It suffices to show that the
posterior probability of sets of the form B defined in Lemma 6.1 equals that assigned by
T'(a(-), B(-)). Recall r,(t) from (2.5), and let A, and A be defined as in Lemma 6.1. Then
ro(t) = r(t) a.s. and Iy, — I4 a.s. Thus

P(r(-)EB|X=x)

Prior:

=J exp[—J’ r(t) dt] dP(w)/J exp[—J r(t) dt] dP(w)
A [0,x) Q [0,x)

= lim,,h,wJ’ exp[—j ra(t) dt] Iy, (w) dP(w)/limn_,mf epr:—J' ra(t) dt} dP(w)
Q [0,x) Q [0,x)

= limn_,m J’ eXp[—Z B,(x - tz)+lh] H g(uz; Aaz) duz/limn—bm [1 + Bz(x - ti)+]_Aa‘
B,(u,B)
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= lim,_ f I &g(uw; Aa;, 1 + Bi(x — ¢,)*) du,
B, (u,B)
= lim,_ J [l g(v;Aa) dv.  where  Biu, = Biv;
B.(v.,8)

=F(B;T(a, B)) by (6.2) of Lemma 6.1.

This proves the theorem for m = 1. Using a parenthesized subscript to emphasize the
dependence of B on the sample size, we have B, (£)/[1 + Bi;)(t)(xjx1 — £)*] = Bi+1) ().
The theorem follows by induction.

Proor oF THEOREM 3.3. First consider the case of m = 1. It suffices to show that for
sets of the form B defined in Lemma 6.1

(6.3) J ¢(B, s)f(s) ds = P(r(-) € B, X = x)
[x,)

where f(x) = —d/dx [q exp[— [(0,x) r(s) ds] dP(w) is the marginal density of X and ¢(B, x)
denotes the family of distributions (for m = 1) given in (3.7). Let r.(¢) be defined as in
(2.5), A, = rz'(B),

—d
fa(x) = —J exp[—J' ra(s) ds] dP(w),
dx Q [0,x)

and
(B, x) = 11J' eXp[—f ra(s) dS] Ly, (w) dP(w)/fa(x).
dx Q [0,x)
Thus,
(6.4) J on(B, s)fa(s) ds = J’ exp[—j ra(s) ds} Iy, (w) dP(w).
[x,) 2 [0,x)

The right-hand side of (6.4) converges to [ exp[— [(0,x) 7(s) ds]Ia(w) dP(w) = P(r(-) € B,
X = x). It can be shown that f,(x) — f(x) and ¢.(B, x)f.(x) = ¢(B, x)f(x). Hence by a
generalization of LDCT (see theorem in Royden (1968), page 89) the left-hand side of (6.4)
converges to [(r,«) ¢(B, s)f(s) ds upon observing that 0 < ¢.(B, x)f.(x) =< f.(x) and [{«)
fr(8) ds = [[x,«) f(s) ds. This concludes the proof for m = 1.

For m = 2 a similar proof can be given by taking the posterior distribution after the first
observation as the prior for the second. ¢,.(B, x) and f,(x) are similarly defined except that
r(t, ) is distributed as a mixture of extended gamma processes. The detailed computations
are more cumbersome and one needs a generalization of an unsymmetric Fubini theorem
given by Cameron and Martin (1941) to interchange the order of certain integrals that are
encountered. Using the LDCT and the result proved for m = 1, one arrives at the result for
m = 2. The proof for arbitrary m follows by induction.
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