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Let X3, --+, X, beiid. P(X>u)=F(u)and Yi, ..., Y, beiid. P(Y>u)

= G(u), where both F and G are unknown continuous distributions. For i = 1,

..,nsetd=1if X,< Y, and 0if X, > Y, and Z, = min {X,, Y.}. One way to

estimate F from the observations (Z,, 8,) i = 1, ..., n is by means of the product
limit (PL) estimator, F} (Kaplan-Meier, [8]).

In this paper it is shown that F} is uniformly almost sure consistent with rate

O(Vlog n/ v/n), that is

P(supo<u=7| FX(u) — F(u)| = O(¥log n/n)) = 1.

Assuming that F is distributed according to a Dirichlet process (Ferguson,
[3]) with parameter «, Susarla and Van Ryzin ([11]) obtained the Bayes estimator

F; of F.
In the present paper a similar result is established for the Bayes estimator,
namely:
P(supo<.<7| Fi(u) — F(u)| = O(J(log n)'*"/Vn)) = 1 (y>0).
1. Introduction and summary. Let X;, ..., X, and Y1, ..., Y, be iid. sequences of

nonnegative random variables. Let the two sequences be independent of each other. The
statistician has available only the data

Zi = min{X,, Y,’},

§i=1 if Xi=Y.

=0 if X,>7, i=l.en

Let P(X>1t)=F(t), P(Y>1t)= G(t)and P(Z>1t)= H(t),(H(t) = F(t) G()). An important
problem of survival analysis is the estimation of the distribution function F.

Recently the properties of two types of estimators were investigated. One of them is the
product limit (P.L.) estimator of Kaplan and Meier [8], the other is the nonparametric Bayesian
estimator introduced by V. Susarla and J. Van Ryzin [11].

In an earlier paper [13], B. B. Winter and the authors proved the uniform consistency of the
P.L. In a second joint paper [6] there was proved the uniform consistency of the P.L. with rate
of o((log n)"/?/n'/*). The results of the above two papers were proved without any continuity
conditions on F and G. In case of arbitrary F and discrete G (having finitely many jump
points), the uniform consistency of the P.L. with rate factor O(vVlog n/ Vn ) was proved in [5].

In [10] Susarla and Van Ryzin proved for the Bayesian estimator the pointwise consistency
with rate factor O(log n/ */;l); and the pointwise mean square consistency with rate factor
O(1/n); for arbitrary F and continuous G. In [9] Phadia and Van Ryzin proved that the
pointwise expected square difference between the Bayes estimator with a Dirichlet process
prior and the P.L. estimator for a survival function based on censored data is O(n?).

For arbitrary F and continuous G this result implies the pointwise consistency and the
pointwise mean-square consistency of the P.L. estimator with the analogous rate factors.

In the present paper the uniform (sup norm) consistency of the P.L. estimator with rate
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factor O(Vlog n/ Vn) is proved. Furthermore, by a sharpening of the lemma of [9] of Phadia
and Van Ryzin we get the almost same result for the Bayes estimator too. These results are
valid for continuous F and G.

Recently Odd Aalen [1] investigated this problem in a more general context. In that paper
a slightly weaker result than Theorem 3.2 is proved, namely the rate factor is O(log n/vn),
but the smoothness (see page 534) is more stringent than the condition Al of the present
paper.

Note that Theorem 3.1. is the analog of Lemma 2 of [2] (except that in [2] F need not be
continuous) concerning the uncensored case. The convergence rate of Theorem 3.2 is slightly
weaker than the best known rate for the law of iterated logarithm in the uncensored case.

2. Definitions, notations and assumptions. Let us introduce the following notations:
[4] the indicator function of the event 4, Z; = min{ X,; Y;},i=1, .-+ , n, 7, = maxi<j=n { Z;},

di=1 if X\=Y,
=0 if Xi>Y, i=[,...,n,
N'w={Z>uj=1,...,n}.
The main assumptions are the following:
(Al). Xy, ..., Xy and Y3, ..., Y, are i.id. nonnegative random variables with right-sided

fixed unknown continuous distribution functions F and G respectively. The two sequences are
independent of each other.

(A2). Suppose that at the point 0 < T' < +
min (H(T), 1 — H(T)} = 3,

where 0 < § < %. The usual definition of the product limit estimator of F in case of continuous
Fand Gis

. N.,,(Z ) [8,=1,Z,=u] ‘

Fru) =T} <_—_N*(Z-)j+ l) if u<mn,
J

= 0 ) if U=Th

3. Results for the P.L. estimator. This section contains the main theorems and the
lemmas. The proofs are postponed to the next section.

THEOREM 3.1. Under the conditions (A1), (A2) for each 1 > € > 12/né*
24d, 206
P(supo<u=t| FX(4) — F(u)| > €) = —exp {—dne’8°}

where do = 3max {8; 10¢o} and d = Yis are universal constants, and c, is the constant of Lemma
2 of [2].
THEOREM 3.2. Under the conditions (A1), (A2) with probability 1
suposu=7| Fi (4) — F(u)| = O(Vlog n/n).

Throughout the paper the supremum is taken over the set [0, T]. In what follows it will be
denoted simply by sup.
Before the lemmas are given, we need some calculations. Let us denote by 4, the set

3. An = {w; maxi<j<p Zj(w) > T}.
Observe that

(3.2) P(A)=(1-8y=e™,
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Thus
(3.3) P(sup | FX(u) — F(u)| > ¢€)
= P(sup|Fx(u) — F(u)| > €| An) P(A4n) + €.

Therefore it is enough to deal with the first term of the right-hand side.
On the set A, we may consider

B4 log Fx(u) = %7-1[8 =1, Z, = ullog{N*(Z,)/(N*(Z) + 1)}
forallO0=u=<T. Let
3.5) Bw)=1[68=1,2Z =<u], j=1...,n

Using the logarithmic expansion let us consider the following decomposition of (3.4) (similar
decomposition is used in [12] (3.2))

(3.6) log F¥(u) = Rn1(#) + Rn2(u) + R s(u)

where

@) Rus @) = == Sie1 BG)H(Z),

69 Rua@) = =51 ) Sia g (14 N (Z)),
69 Rus(®) = = Tim1 B0 (1 + N*(Z))y ' ~H(Z)).

After an easy computation it can be seen that E R,,1(u) = log F(u). Lemmas 3.1-3.3 state
that for every fixed u € [0, T, | Rn,1(4) — log F(u) |, | Ru,2(4) | and | Ry, 3(x) | are small outside
of a set of exponentially small measure. Hence the analogous statement holds true for
| log F7(u) — log F(u)| under the condition 4,. Lemma 3.4 gives an exponential bound to
| FX(u) — F(u)|.

LemMa 3.1.  Under the assumptions (A1), (A2)
282

P(| Rn1(u) — log F(u)| > €) < 2e72"
for every fixed u € [0, T].

COROLLARY 3.1.  Suppose that nd > 1, (A1) (A2) hold, then
P(| Ru,1(u) — log F(u)| > €| An) < 472
for every fixed u € [0, T).

LemMmA 3.2, Suppose that (Al) and (A2) hold and 1 > € > 1/(n8*) then
P(| Ru2(u)| > €| An) < 47258
for every fixed u € [0, T1.
LeMMA 3.3.  Suppose that (Al) and (A2) hold, and 1 > € > 4/(n8%). Then for every fixed
uelo0,T]
P(| Rus(u)| > €| An) < 2¢ & /5

where c is universal constant.

LemMA 34, Suppose that (A1) and (A2) hold and 1 > € > 12/(n8*). Then for every fixed
uel0,T]

P(|FX(u) — F(u)| > €| Ay) < dye~ ™
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where dy and d are universal constants.
4. Proof of theorems and lemmas.

ProOF oF THEOREM 3.1. Let us choose a partition 0 = 10 < m1 < +-+ < Mg = T of
[0; T] in such a way that

@ F(ni-)—F(n)<¢€/3, i=1,...,L,
(b) L(e) < 6/e.

If| FE(n-1) — Fi-1)| < €/3 and | FX(n,) — F(n,)| < €/3 and n,-1 < x < 7, then | FX(x)
— F(x)| < €/3 + 2(¢/3) = e Hence if sup|F¥(x) — F(x)| > € then for some
0=j=L;|F¥(,) — F(n,)| = €/3. Therefore applying (3.3) and Lemma 3.4

P(supo<u=7| FX (1) — F(u)| > ¢€)
€ — T
= 2L(¢) suposy=r P(| FX(n;) — F(n,)| > 3l4n) +e *
<12 doe %" 4 ¢ < 2 dye= %<
€ €
which proves the theorem.

PrOOF OF THEOREM 3.2. Forn > ny(8) > 1 choose

. = 2Tog n
" ndd® -’

Then Theorem 3.1 is applicable, hence

2logn nds® 1 24d, Vd&®
Fro - [ - = .
P<sup | FX(u) — Fw)| > nds® ) =24do \[5 lognn®  n2 2logn

71
e P(sup | F2(u) — F(u) | > + /%’—') < +o.

Now, the theorem follows from the Borel-Cantelli lemma.

Therefore

PrROOF OF LEMMA 3.1. Observe that R,:(4) is the sum of n independent identically
distributed random variables. The expectation of the summands of R, ; is

E(-Biw)H™(Z1)) = —E([: = 1, Z = u]H ' (Z1))

- %(2(1 — F(1) =£ ile_t)""(_’)L log F(u).
Moreover, for every fixed u € [0, T] the rv’s are bounded.
OSI,Bi(u)H_l(Z,)ISH_l(T)Sé i=1, ,n
Then Theorem 2 of paper [7] of Hoeffding is applicable. Hence
P( - % Y01 Bi(u)H ' (Z,) — log F(u)| > e) = 2¢7 7%,

ProoF oF COROLLARY 3.1. Using (3.2) and the condition n8 > 1 we have that

4.1) P(A)=1=P(d,)>1—e™ >,
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PROOF OF LEMMA 3.2. It is easy to see that on the set 4,

Bw  _ 1
(N (Z)+ 1P (N (D) + P

1
By(u) Yie 7 1+ N+(Zj))_l =

Therefore by (4.1)

n n

Applying the Bernstein inequality (see, e.g., [10] page 387) to the binomial random variable
N¥(T)
4.3) . P(IN*(T)—nH(T)|>nH(TX1 — H(T)))

=2 exp{—(2/9nH(T)(1 — H(T))} < 2 exp{—(2/9)ns*}.

Let us define a set

(4.4) B, = {|N*(T) — nH(T)| > nH(T)(1 — H(T))}.
Then using (4.3)
4.5) P(B,) < 2¢” /9%

From (4.2), (4.4) and (4.5) it follows that

n _ ) ,
P(|R. >Seld) =2 - . - (2/9m8? |
(| Ru2(u)| > €| 4n) < {P<(N+( l)2>€|B)+2e }
On the set B,

(4.6) nHYT)< N*(T) <nH(T)2 — H(T))
hence

n < 1 < 1
(N*(T) + 1" " nHYT) " nd*’

Using the condition ne > 1/8*, the statement of the lemma immediately follows.

>e|A,,>

PrOOF OF LEMMA 3.3.  Using (4.1) we get

|
P(|Rus(u)| > €| An) < P(; Y1 B (u) sup

n _ 1
N (O +1 H®)

>¢)

N* ()

n

N () +1 H®

= 2P<sup

n
=2P su
<(N*m FDHMD T
Arguing similarly as in the proof of Lemma 3.2, using (4.4) and (4.5) it follows that
P(| Rn5(u)| > €| 45)

—H(t)+—l’>e>.
n

@&.7) N0

= de@/m 4 2P<

n 1 }
(D) + DH(T) P ‘H(t)+;’.>e|3,,).

Using the inequality (4.6) it follows that, on the set B,

n 1 1
RGEDGREG R

Hence the second term of the right-hand side of (4.7) can be estimated by
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P(sup ‘ .Iy_n(t_)_ H(®) +% ‘ >683|§,,>

(4.8)

S €8’
2

1 €8
=P(->—- — H(®)

n

N™(1)
n

E,,) + P(sup Bn)~

Under the condition of Lemma 3.3 the first term of the right-hand side of (4.8) is zero,
moreover

4.9) P(B,)>1 =2 5| =2 =¢,20,2.
Using Lemma 2 of paper [2] of Dvoretzky, Kiefer and Wolfowitz, and (4.9) we get that

(4.10) P<sup E%’—) —H@) + %

0, = (175 256
>€8"IB"> 502e (l/anﬂeﬂ.

Here ¢z = 5S¢y where ¢ is an universal constant of the above Lemma 2. Now the statement of
the lemma follows immediately from (4.7) and (4.10).

PrOOF OF LEMMA 3.4. An easy consequence of Lemmas 3.2-3.3 and Corollary 3.1 is that
if 1> e>12/n8" then for every fixed u € [0, T]

P(I lOg F:(u) — log F(u)l > eIA,,) = P(an,l(u) - lOg F(u)l >§ ‘ An)
@11
+ P(an.Z(u)l >§

A,,) + P<|R,.‘3(u)| >§

— 256
An)sd)e dne®s

and do, d are universal constants. f0<x=1and 0 <y =1 then|x — y|<|log x — log y|.
Hence on the set 4,

4.12) | F¥(u) — F(u)| < |log F*(u) — log F(u)|.
Therefore the statement of Lemma 3.4 follows from (4.11) and (4.12).

5. Consequences to the Bayesian estimator. In this section we show that the analog of
Theorem 3.2 is valid for the Bayesian estimator of F. We prove this result by a sharpening of
the lemma of Phadia and Van Ryzin [9].

Now we list definitions, notations and assumptions in connection with the Bayesian
estimator.

Let o be an arbitrary nonnull positive measure on (0; +o). We shall make the following
assumption:

(A3). a(u) = a((u; +=)) >0 for all u € [0; T].

Let us denote by Zy) = Zp) = - - = Z») the ordering of the sample Z,, ..., Z, and 4,
(i=1, .-+, n) denotes the § corresponding Z,) in the original sample.

DEfFINITION. If 1 — F is assumed to be a random distribution function with Dirichlet
process prior with parameter «, the Bayes estimator of F(x) (when G is assumed to be
continuous) has been obtained by Susarla and Van Ryzin [11] as

N™(u) + a(u)

« - ifo<u=<Z
Fi) =—="70 Ho=u=2Zm
N*(u) + a(u) N*(Z) + o Z,,) + 1\
=7 I fZy=u<?Z,
G.1) a7\ TNz + alZo) FoosEs s
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where a[ Z;) = a([Z,; +=)). Then the P.L. estimator may be written as

Fru)=1 if Osu=<2Z,
N*(u) <N+(Zm) + 1)”"'=‘” .
= H if Zoy=u<2Z,
(5.2) n U TRz @ e
i=1,... n—1
=0 if Zn=u.

LEMMA 5.1.  Under the assumptions (A1)-(A3)

1
E(sup| Fx(u) — Fy(w)|)* = O<?>

Proor. Letu €[Zy; Zu+1)) (i=0,---,n— 1) where Z¢ = 0. Then it was proved
by Phadia and Van Ryzin ([9] see formula (2.8)) that
4na*(0)

|Fi = Fil* = .

It follows that the inequality
4na®(0)
(n—9"

(5.3) SUpz,, <u=z,., | Fx(u) — Fa(uw)|* =

holds fori=0,1, ..., n. Now
E(sup | FX(u) — Fa(u)|)?

5.4 ‘
= j sup| F¥(u) — Fa(u)|® dP + f sup | F¥(u) — Fa(u)|* dP
A,

n A

n

where A4, was defined by (3.1). Using (3.2) it is enough to estimate the first term of the right-
side of (5.4). Applying (5.3) on the set A,, we get that

4na®(0
(5.5) sup| Fx(u) — Faw)|* = ;:1(7(,); .

Using the set B, defined by (4.4) and the inequalities (4.5), (4.6), (5.5)

J’ sup| F¥(u) — Fa(u)|® dP
A,

n

=f sup|F,‘:(u)—F‘,‘l(u)|2dP+J’ sup | F¥(u) — Fx(u)|® dP
A,nB

n A’lnB’l
4na2l(0)
< P(B.) + J’ 2ne Q) ap
a0, V(TP
—eonst . 1 4a(0)
<20 4 25
Thus
, ’ 2 1 4a(0
E(sup | FX(u) — Fa(u)|)> = e™" + 2”9 + O;(G )
n

which proves the lemma.

THEOREM 5.1.  Under the assumptions (A1)-(A3) the Bayesian estimator is uniformly almost
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surely consistent with rate factor O((Vlog n)'*"/ \/;) (for any y > 0) on the interval [0; T],

namely
sup| Fa(u) — F(u)| = 0( \/@)

with probability 1.

PrOOEF.
sup| Fii(u) — F(u)| < sup| FX(u) — F(u)| + sup| Fi(u) — F2(u)|.

Since n®E(sup | F&(u) — F¥(u)|)> < g (where g is a constant) and

1
—————— <+
2=t n(log n)"* (for any y > 0)

sup| Fa(u) — Fr(u)| = 0( (—IM) a.s.

n

by the Borel-Cantelli lemma. Now the theorem follows from Theorem 3.2.
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