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THE ESTIMATION OF THE ORDER OF AN ARMA PROCESS

By E. J. HANNAN
The Australian National University

Under general conditions strong consistency of certain estimates of the
maximum lags of an autoregressive moving average process is established. A
theorem on weak consistency is also proved and in certain cases where
consistency does not hold the probability of over-estimation of a maximum lag
is evaluated.

1. Introduction. We here consider a stationary process, x(n), generated by

(1)
Zga(j)x(n = j)

23B(N)e(n —j),  &{e(n)} = 0, &le(m)e(n)} = 8,02
a0) = B0) =1, g(z) = Zpa(j)z/ # 0,]z] < 1;
h(z) = S3B(j)z’ +# 0,|z] < L.

It is also assumed that g, 2 have no common zero. These conditions ensure that

x(n) may be represented as a moving average

Se(s)e(n —j), ZFx(j)z’ = k(z) = g~'h,
where the k(j) decrease to zero at a geometric rate, and that the ¢(n) are the linear
innovations. It has been assumed that &{x(n)} = 0 but this is immaterial to all of
the results presented below, which would continue to hold if the various statistics
involved were computed from (sample) mean corrected quantities.

Our purpose is to study the estimation of the true order, which shall be called
Po»>9o- A zero subscript shall be used throughout for true quantities, e.g., ay(j), g,
and k,. This estimation problem is considerably more complex than that for the
case ¢ = 0, which has been studied, for example in [7], [14]. This is because when
P > Py, q > q, the estimates G&(j), B(j), obtained by maximising the Gaussian
likelihood, do not converge in any reasonable sense because the likelihood is
constant along the “line” where k = k, so that as N (the sample size) increases the
sample point will search up and down that line.

Though the estimation method used will be based on the maximisation of the
Gaussian likelihood the assumption of normality will not be made. It will always be
assumed that

@ &%) =0, &{e(n)IF,_,} = 0% &{e(n)*} < oo,

where 9, is the o-algebra determined by &(m), m < n. The first of these conditions,
(2), seems near to minimal since without it linear prediction is suboptimal. The
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1072 E. J. HANNAN

second could be considerably relaxed as we indicate in Section 3 below. The third
seems minor.

Two other restrictions will be imposed. In the first place it will be assumed that
Po < P,qy < Q where P,Q are known a priori. It will follow that all of the results
given below will continue to hold if P, Q are allowed to increase sufficiently slowly,
with N, but how slowly we do not know. The remaining restriction is that A(z) will
be required to have all of its zeros bounded away from the unit circle by a positive,
albeit arbitrarily small, quantity, 8, prescribed a priori. Of course h also must satisfy
this requirement.

The estimates of p,, g, here considered will be based on the estimates 6,,2, o of a2,
obtained by maximising the Gaussian likelihood (though Gaussian assumptions are
not maintained). In fact, except for a constant, —2N~! times the maximised
log-likelihood is log 67, + N~ 'logdet P, where 6P, is the covariance matrix of
the data and ﬁN is the estimate, which is a function only of g~ 5. The conditions
imposed above ensure that eventually the zeros of g, k are bounded away from the
unit circle and hence it is easy to show that N~ !logdet ﬁN = O(N~"). We shall, in
accordance with previous practice, therefore omit this term, though it would, even
asymptotically, affect the first of the criteria introduced below (but only that one).
The estimates are to be obtained by minimizing one or the other of the quantities.

AIC(p,q) = logé}, + 2(p + q)/N
BIC(p,q) = logé?, + (p + q)logN/N

o(p,q) = logé?, + (p + q)cloglogN/N, c > 2.
The first of these was introduced by Akaike [1], in connection with autoregressive
model fitting and has been fairly widely used in this and other problems. BIC has
been suggested by Akaike, [2], Rissanen, [12], and (in a somewhat different
connection) by Schwarz, [13]. The third method was introduced in [7]. Its interest
lies in the fact that the second term there decreases as fast as is possible if strong
consistency for g, 4 is to hold. (It may be that ¢ = 2 would suffice but this would
require a more delicate analysis.) Because of the sharp nature of this result,
depending as it does on the law of the iterated logarithm (LIL), it is much the most
difficult to establish. In the present conmection that difficulty is increased by the
behaviour of the (), ,é( Jj), for p > py,q > q,, already alluded to, which makes it
necessary to prove the LIL for a quantity maximised over a region of parameter
values. Strong consistency has appeal because it means that from some N, on then
P = pg>-4 = q,. Of course this of itself casts doubt on the model for one can hardly
believe that one can know any parameters exactly from data. It is well known that
D, g from AIC (p,q) are not weakly consistent. That method is designed for a
situation where x(n) is not generated by one of the processes in the model set.
Nevertheless it is desirable to complete the theory of ARMA model fitting by
discussing the strongly consistent estimation of p,, g,. We shall also state a theorem
on weak consistency.

The conditions of this section will be maintained throughout the paper.



ESTIMATION OF THE ORDER OF AN ARMA PROCESS 1073

2. The theorems on consistency.

THEOREM 1. If, in addition to the conditions of Section 1, the &(n) are independent
then p, § obtained via BIC (p, q) or ¢(p, q) are strongly consistent. If the e(n) are not
independent but &{|e(n)|"} < 0o,y > 4, then the estimates obtained via BIC (p,q)
are strongly consistent.

The requirement of independence, which is likely to hold only in the Gaussian
case, is almost certainly not needed and the second part of the theorem almost
certainly holds for ¢( p, ¢) also. We shall discuss this briefly in Section 3.

Assuming p, < P, g, = 0, the limits

limy , Pr{p=p},p < P,
are evaluated for AIC in Shibata (1976), on Gaussian assumptions for the &(n). For
P < p, the limits are zero while for p > p, they depend only on p — p,, P — p. We
shall call the limits #(p — py, P — p), this being zero for p < p,. Then the following
is true.

THEOREM 2. For AIC, under the conditiqns of Section 1
limy_, ., Pr{f =po,d =g} = 7(qd— g, Q — 9),
limy_, Pr{p < py,4d=4q} = 0; P = p,
limy_, Pr{p=p,4d=qo} = 7(p—Ppo,P —p),limy_ {p=pG<q} =0;
0 = q,.
This says that when P = p, (or Q = ¢q,) Shibata’s evaluations continue to hold.
This result seems of value only for Q = 0 (Shibata’s case) or P = 0, i.e., a pure

moving average. It seems very likely that these probabilities can be asymptotically
evaluated in general but we proceed no further here.

THEOREM 3. Under the conditions of Section 1, if the last term in BIC or ¢(p, q) is
replaced by (p + q)Cy/N where Cy, increases to infinity, then the resulting p,§ are
weakly consistent.

ProoF oF THEOREM 1. Let x, be the vector of observations and T, be its
covariance matrix. Then P, = o6 2T, depends only on k. Moreover 6],2"1 =
N~'x} Py 'x, wherein a, 8 have been replaced by their estimated values. Then as in
[4], but more simply because of the condition on A,

(3) 62, — JT fo(@)]Kk(e™)|2dw > 0,  as.

Here f, = 0%|ko|?/(27) is the true spectral density. If p < p, or ¢ < g, then the
right side of (3) is strictly greater than o2, uniformly in k, since the contrary could
hold only if there were a sequence of k, for such p, ¢, such that f0|lé|'2 converged
to 62/(2), almost everywhere, which is impossible. Thus, almost surely, eventually
P > po»d > q,- Henceforth we consider only that case.

Let 6 be the vector of coefficients in the polynomial (gh, — hg,), which is of
degree r = max(p + ¢4, 9 + p,) and has zero constant term. Then, putting «, 8 for
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the vectors comprised of the a(j), 8(j),
a— ag
0= 45 )

where A is a function only of a,, 8,. The matrix A4 is of rank r. To see this observe
that Ax = 0 implies that if the components of x are used to define transfer
functions g, h, then g h, — h, g, = 0. But then g, = g,8., %, = g,h, where g, is a
polynomial with g,(0) = 1. But the degree of g, cannot exceed s = min(p — p,,
q — q,) so that the space of vectors x satisfying Ax = 0 is s dimensional at most.
Since 4 is r X (r + s), because r + s = p + g, then A4 is of rank r. Now we may
find s further linearly independent, linear combinations of «, 8, linearly indepen-
dent of the elements of . Call these . We may then use 6, as new parameters. At
6 = 0 we have gh, = hg, ie., k =g 'h =k, = g5 'h,. Because h,,g, are prime
polynomials it must also be true that, at § = 0,h = h,g,,8 = g,8,, Where g,, of
degree s, is a function of . Of course g, must have all zeros bounded away from
the unit circle because this is true of A.

Now it is shown in [4] that, in any case k— kg, a.s., uniformly on every closed
subset of the open unit disc, so that [N 0, a.s. Nothing of this kind can be said
about . It will now be convenient to write é, q(0 ) for the optimised quantity.
Because 8’ = (o’ — ag, B’ — B3)A’ then it is clear that # = 0 is an interior point of
the region over which @ varies, since (g, 8,) is an interior point of the region over
which (a, 8) varies. Since 6 — 0 then 4 is an interior point, also, for sufficiently
large N. In our developments below we therefore assume that 4 is interior.

- . 962(0,¢ . 3%6%(0,¢) .
4 62 (0.4) = 6>+ 0'——g0 ¥) + %0'———80(60,¢) 6.

Here 62 = 6,,2’ q(O,z[:) = 6},20 4.(0), the latter following from the fact that 13N is now

being evaluated at k. It will be sufficient to show that

limN_m{(&pz’q —6%)672+ (p —po+ g — qo)cloglogN/N} > 0, as,
P > po,q9 > qo'

Indeed if this is so the same will certainly be true when 62 is replaced by 6, p o

because, to O(N "),6% — 62 , > Obecause 6. has been obtained after minimisa-
tion of —2N~ by the log hkellhood (and the ormtted term is O(N 1). Since it will
follow that log(; /6> S ) P_qu)/ 0o F0(N™Y) and 6} —0?, as., we

need consider only (67, — 02) Smce §'is nearer to O than 6 then 8% 2(0,4)/9030’
— 3262(0,4)/3636’ converges to zero.
It may be shown that

9%62(0, ¢ 2 .
() ————00( 0,4/) =2 2L T eV d {1+0(1)}
a a . IgOhOgll Jok=1,+-,r

where the quantity that is o(1) is of that order a.s. and uniformly in y, while gis g,
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evaluated at 4: Indeed from [4] it follows that

3%62(0,) 3|k |?
3040’ = [Zahol@) 3000’
Remembering that, at § = 0,k = k, and that f, = 6%|ky|?>/(27) the result (5)
follows by elementary, albeit tedious, manipulations.
On the other hand, expanding about 6,

36,4(0,¥) 9%67(0,¥) 5
©) —%8 " " eoaw
where the last term is of the i{ldicated order almost surely and uniformly in z[: Put b
for the left side of (6) and B for the right side of (5), ignoring the factors 2 and
{1 + o(1)}. Then from (4), (5), (6)

(7 62(0,9) — 6% = —36B7'6-{1 + o(1)} + O(N7Y).

We shall hold p, ¢ fixed for the moment and hence have omitted these from the
notation on the right. Of course b, B are functions only of ¢ and not of §. Now

dw{l+0o(1)}.
0,y

6 +0(NY),

(8) 16 -—f” I(w ) {e'“},-l rdw + o(N73)

where again the last term is of that order a.s. and uniformly in i and
1 inw
1(@) = ISNe(n)em|2.
The equation (8) may be established by first showing that

~ 1 - a - -1 inw

16 = 1o 1 (@) kg gde + o(ND).1,(0) = = [EMx(n)em]
Again the proof is given, essentially in [4]. Since 1 9| k|~2/38, evaluated at 0, has,
as jth component, the real part of |kq| 2(goho8,)  'e”/“, (8) is obtained by showing
that I (w)/ko|™? may be replaced by I(w). This may be done by using the
formulae in [5] page 246, which shows that

SVx(n)eine = {izre(n>e""~}ko(ew> + L) Ry (0)

Ry(w) = 2‘)_j+,e(n)ei"‘° — ZN_jme(n)e, 0<j<N
= 30 v, .&(n)e™ — SNe(n)e™, N < j.

The result now follows. For example

1 1 inw 1 ) 2\ pijw - > )
27 Zﬂ{ EEfe(n)e }{;%' oKo(J)e" RjN(w)}kO l(gogogl) 'de

SNe(n)e™ } { Ell—E?Ko(j)e‘j‘”ij(w)}e‘k”dw

1 T
- zrfdkﬁf_,,{ pe
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when the d, are the Fourier coefficients of kg '(goho8;) "
= o T inw ijw) yikw
2325 d Ko(j)N 2 /7 {ZVe(n)e’ }{RjN(w)e’ }e do.
The integrated expression contains min(j, N) terms each of which is o(N %),
uniformly in j, k, because of the fourth moment condition. Since
23| d, ko(J)|-min(j, N) converges the assertion follows. All other terms constitut-
ing the term that is o( N~ %) may be treated in much the same way.

Now

e dw

207 () ek + )

1 1
ﬁf-,,fe(w)g P,

0081
©) e(k) = ~3¥,e(m)e(n — k),

where yj(x[/) are the coefficients in the expressmn of (gohog,) ! and thus converge
to zero at a geometric rate uniformly in 4/ The expression (9) may also be written
as

(10)  SEe(min—j) + 0N, 6(n) = Spr(d)e(n — ).
Indeed the error is
S{e(m)in — ) + 5 Ee(ME2 y(§)en — k = j)
= S 3{e(m)f(n =) + 5 ZNere() ity m(9)e(—m).

Since |y, (¥)| < o5, |p| < 1 the second term is dominated by
2 le(n)" |50 e(—m)| o~

which is clearly O(N~ ’) a.s.
For any fixed it follows that
A N
11 limsup{ —6%(9,¢) + 6>} ——— =1 a.s.
(1n { (6.4) } 20%loglog N
This follows from the observation, first, that the first term in (10) is, for fixed
Y, N~! by a martingale with stationary, square integrable, ergodic martlngale
differences. Hence, [8], it obeys the law of the iterated logarithm. The matrix B is,
for  fixed, just the covariance matrix of the expressions in the first term of (10),
neglecting a factor 62N~ !. Thus (11) is of the form

;Zj(N)2’zj(N) = ziv{yj'(")}/ {2N108108N)%}, J=1,-,r

where the y;(n) constitute a vector of stationary, ergodic, square integrable
martingale differences, with unit covariance matrix. Then limsup z,(N Y=1j=
1,- - -, r. Consider then r-vectors a(u),u = 1,- - - , M, with 2¢xj(u)2 = 1, chosen so
that they are uniformly spread over the unit sphere. We may choose M so that any
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r-vector, z, has an angle with some a(u) whose cosine is not less than (1 — ¢), no
matter how small ¢ may be. Then, if 8,(u) is the angle between the vector with
components z;(N) and a(u), and & makes {cos 0 (u))?* smallest,

~ 2 2
limsupE{zj(N)2 = limsup {Eaj,(u)zj(Nz)} < limsup maxu{Eaj(u)zzj(N)}
{cos by (i)} (1-¢)

1
(1-¢)’

since evidently
lim sup maxu{}‘,ozj(u)zj(N)}2 =1
because Za,(u)y;(n) has the same properties as y,(n) and there are only finitely
many a(u). Thus lim sup Ezj(N)2 = 1, as.
We shall now show that (11) also holds when { is allowed to vary. We shall do this
by showing that

is continuous in y, uniformly in N (i.e., is equicontinuous). Since B clearly has this
property the same will then be true of x N(’,(:) =[N/{2loglog N }]l;'ﬁ'll;. Now
choosing y(/),! = 1,- - - , L, arbitrarily dense in the compact space within which \l:
lies and observing that there is an / so that | — (D] < 8, where 8 may be made
arbitrarily small by choosing L large, it will follow that
max{XN('j;) - XN(‘P(i)} < cb.

Since

lim supmax,xy{¢¥(/)} = 1.

The theorem will then hold.
To show equicontinuity, we first show that there is a finite constant d so that,

putting d(N) = dloglog N then
(12) limy_, max,[SXH (n(¥)e(k +/)}{N/ Qloglog N)}| = 0, as.

For this it is sufficient to show, as M — o0, and using ¢ here and below for a finite
constant, not always the same one, that

(13)  &{max, max,_y =N (1(¥)e(k +/)}{N/ (2loglog N)}|}

may be made arbitrarily small by choosing c large. However |v,(¢)| < ok p <1,
uniformly in ¢ so that for d sufficiently large, there is a py, p < po < 1, for which

pk(logN) %2 > o*,6 > 1,k > d(N).
Thus (13) is bounded by
(14) 8] max, .y .o Z2H {PEN"310g N) (S, 0 e(m)e(n = j = K)I} ]
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Choosing ¢ so that d(N) > A, N > ¢ and using the easily established inequality
X

k2,
1 ty

1
k
maxX, ck<n, [Zfx;] < 2max; 4p
n

O< b] <"'< b”,
we bound (14) by
v &n)e(n —k—J)
j+k+1 1
{n(logn)'s}2

Using Doob’s inequality ([11], page 68, Proposition IV-2-8) we obtain the bound

o0, k
23%pso| max, _y

04

n(logn)®

The result (12) now follows. The proof of equicontinuity of xn(¥) now may be
established by showing that

(15) limsupN_,wmaxk<d(N){k"|c(k){N/ (2loglogN)}%|} <c

For this purpose, and for the first time we use the independence of the ¢(n). Then
Ne(k) can be decomposed as (k + 1) sums, Sy(k,j),j =0, - -, k, of independent
random variables where

Sy(k,j) = Z.e{(k+ Dm+ j}e{(k + 1)m +j — k}.

Now almost precisely as in [9], Section 8.16, the quantities e(n)e(n — k), k =

,d(N),n=1,2,--- may be truncated so that the truncated quantities are
o{(nlog logn)~ 2} umformly in k, and so that the contribution of the truncation
errors to Ty(k,j) = SN(k,j)/{2NloglogN} k < d(N),1 <j<k+ 1, will con-
verge almost surely to zero, uniformly in j, k. Thus, assuming such a truncation
having been effected on the summands in Sy(k,j), we must establish the conver-
gence, for ¢ > 1,6 > 0, of

(16) S P{max, _y.max,max; Ty(k,j) > 1+ 8}.

42?00{2,”“ } < 02?9'6-

For then, by the Borel-Cantelli lemma Ty (k,;) has limit superior unity, uniformly
in k,j and since the limit inferior of —1 will be established in the same way by
considering — Sy (k,;) while c(k){N/(2loglog N )}2 is composed of (k + 1) such
bounded quantities then (15) and, the first part of the theorem, will result. However
(16) is bounded by

303 P{max, y o« Ty(k,j) > 1+ 8},
and remembering that the e(n)e(n — k) have the same distribution for all n,k > 1,
then using the classical result in [9], pages 376379, we see that this is bounded by

o (logu)’

u=1
ul+e

< o
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The second part of Theorem 1 is established by following the proof just given,
down to the point where

maX\I/[Ef(N)Yk(H”)C(k +j)( % )E}

must be shown to converge almost surely to zero. It is now sufficient to show that

o N\
(17) max,<k<d(N){c(k +J)(logN) }

converges almost surely to zero. The proof may now be completed using extensions
of Menshov’s inequality and the method of subséquences as in [10]. Indeed
&(n)e(n — j) has a moment of order a > 2, by assumption and consequently as is
shown in the reference cited,

(18) &{max,, | yop|Ne(k +j)|*} < CN/2,
Hence, by Markov’s inequality,

Cloglog M C
log M(loglog M)'*® ~ logM

P{maxl<N<Mmaxk<d(N)|c(k +j)| > }\(M)} <

if A(n) = ni(logn)"/*(loglog N )" *®/2 The proof may now be completed as in the
last reference cited by showing that N~ :(log N)~'/*max, <k<amyle(k + )| =0,
a.s., which evidently completes the result since a > 2.

PrROOF OF THEOREM 2. When ¢g = 0 the limits
limy ,P{p=p}.po <p <P

were evaluated in [12]. Of course the limits are zero for p < p,. It was shown above
that, when P = py(Q = g, is the same) then again we need consider only P{§ = q,p
=po} 40 < g < Q. However now r = g + p,,s = 0 and it follows from (5), (7), (8)
that (67 , — 6?) is of exactly the same form, to o(N ~2), as if an autoregression of
order r = p, + ¢ is being fitted when the truth is an autoregression of order
Po + qo. The term (82, — 67) can be expressed in the same way, with  now equal
to (py + ¢,), again to o(N~ 7). Thus to this order of magnitude the limits

limy ., P{§= ¢, =Po}s90 < 4 < Q

are precisely the same as those obtained by Shibata, in [14], for a true autoregres-
sion of order p, + g, when the fitted order is p, + ¢g. The result then follows.
(Though Shibata’s treatment is for the Gaussian case this relates only to the
asymptotic distribution of the partial autocorrelations, which is the same under the
present circumstances. See [6].)

PROOF FOR THEOREM. We have now only to show that

max { 2,7, ($)Sy(k)/ {NCy)?|, Sy (k) = Ne(k +)),
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converges in probability to zero. However this is no greater than

oISy (K)|/ {NCy):

whose root mean square is dominated by
S0*/Ci - 0.

3. Some comments. The proof of the first part of Theorem 1 could be
completed without the requirement of independence for the e(n) but with the
higher moment condition of the second part of the theorem if the Skorohod
representation theorem was available for a triangular array of martingale dif-
ferences, the proof following the lines of [8]. The martingale difference array would
be composed of X, , = e(n)e(n — k),n > k + 1, where k = 1,2, - - indexes the
rows of the array. However that construction has not so far been completed.

We have maintained the second part of (2) throughout the paper for uniformity.
Of course it is necessarily satisfied if the &(n) are i.i.d. and so is not used in the first
part of Theorem 1. However it would be necessary for that result, if the proof were
to be completed without the use of independence along the lines of the previous
paragraph, because without the second part of (2) the vector 5 b for v fixed, does
not have N™'B as covariance matrix. In the same way Theorem 2 would not hold.
However Theorem 3 and the second part of Theorem 1 are not affected by the
elimination of the second part of (2). This is obvious for Theorem 3. For Theorem 1
the proof down to (17) is not altered. The fact that (18) holds follows from Doob’s
inequality and the inequality in [3], Theorem 9. The remainder of the proof is
independent of the second part of (2).
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