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ASYMPTOTIC REPRESENTATIONS OF THE DENSITIES OF
CANONICAL CORRELATIONS AND LATENT ROOTS IN
MANOVA WHEN THE POPULATION PARAMETERS
HAVE ARBITRARY MULTIPLICITY"!

By WiLLiaM J. GLYNN
Harvard University

Asymptotic representations of the joint densities of the canonical correla-
tion coefficients, calculated from a sample from a multivariate normal popula-
tion, and of the latent roots of B(B + W)~ !, where B is W,(n,, Z, Q) and Wis
W,(n,, ), are obtained by deriving asymptotic representations of the hypergeo-
metric functions in the joint densities. The results hold in the first case for large
sample size and arbitrary values of the population canonical correlations and in
the second case for large n, and § = n,®, whete the latent roots of the
noncentrality matrix Q are arbitrary.

1. Introduction and summary. Noncentral distributions of matrix variates and
latent roots based on normal samples involve hypergeometric functions of matrix
arguments. A survey of these distributions and definitions of hypergeometric
functions can be found in James (1964) and Constantine (1963). The exact results
are so complicated, however, that they are of little value for inferential or
numerical purposes. A number of people have found approximations to some of
these distributions, under various limiting conditions, by finding asymptotic repre-
sentations of the hypergeometric functions involved in the exact densities (see
Muirhead (1978) for a review). The general approach has been to apply a multi-
variate extension of Laplace’s method, due to Hsu (1948), to an integral representa-
tion of the hypergeometric function. Usually it has been necessary to place some
restrictions on the multiplicities of the population parameters. James (1969) uses an
invariance argument to obtain an asymptotic representation, for large sample size,
of the (F, hypergeometric function which occurs in the joint density of the latent
roots of a p X p sample covariance matrix. His results apply when the ¢ smallest
population roots are equal and the p — ¢ largest roots are distinct. Chattopadhyay
and Pillai (1973) present a technique to obtain asymptotic representations from
integral representations of hypergeometric functions with no restrictions on the
population parameters. They assert that the method used by James is inappropriate
in the MANOVA and canonical correlation cases when there are several multiple
population roots because the invariance property does not apply. Instead they
introduce a parametrization of a subset of the orthogonal group and argue that it is
sufficient to restrict the region of integration to this subset.
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Asymptotic representations for the MANOVA and canonical correlation cases
are presented in this paper. Section 2 contains an extension of Hsu’s lemma which
is used to derive the representations and to prove that the representations are
uniform on certain subsets of the parameter and variable spaces. Section 3 contains
a factorization of the invariant measure on the orthogonal group. This factorization
is used to show that James’ invariance argument does apply in the MANOVA
and canonical correlation cases and leads to the parametrization suggested by
Chattopadhyay and Pillai. Section 4 contains some results on the maximization of
matrix functions.

The following notation is used throughout the paper:

(i) p is the number of population latent roots;
(ii) k is the number of nonzero population latent roots;

@iii) 8, > 8 > - - - > 8, > 0 are the distinct population latent roots with multi-
plicities ¢, * * * , g,,, T€Spectively;
(iv) / is the number of nonzero §;;
WMr=q+- - +q;
vi) (1), - - -, Q(m) are sets of integers defined by
Q(]) = {1, 2, - ’ql}
o)) ={q+ - +q+ L, g+ +q) 2<is<m

(vii) O(p) is the group of p X p orthogonal matrices;
(viii) V(k, p) is the Stiefel manifold of p X k matrices with orthonormal columns;
and

i) q() = g
“Latent roots” refer to the roots of B(B + W)~ ! or to the canonical correlation

coefficients.

Constantine (1963) computes the joint density of the squares, r? > r3,- - -, > rZ,
of the sample canonical correlation coefficients between variates x,, * * * , X, and
Y1+ > Y(p < g) calculated from a sample of size n + 1 from a (p + g)-variate

normal distribution. The result is

() GIE{(1 = D)0 = DR (7 - )
XzFfP)(%n, 3n; 2q; P2, R2)
where

¢, = T, L, {3 - )T, (3a)T,(32)]

[,(a) is a multivariate gamma function, 1 > p, > p, >+ -+ > p, > 0 are the
population canonical correlation coefficients, P = diag(p;,* - -, p,), and R =
diag(ry, - + - , r,). Glynn and Muirhead (1978) derive an asymptotic representation
for large n of the ,F{P function which occurs in (1.1) assuming that the nonzero
population coefficients are distinct. Their result, which only involves elementary
functions, is obtained by a two step application of Hsu’s lemma. We assume in this
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paper that
(1.2) oo =8 for i € Q).

Chattopadhyay and Pillai (1973) and Chattopadhyay, Pillai, and Li (1976) give an
asymptotic expansion of the joint density of the r? when the p, satisfy (1.2).
However, their result involves a ,F{” function of one matrix argument. An
asymptotic representation of ,F{# in (1.1) for large n, when the p, satisfy (1.2), is
presented in Section 5. This result is used to derive an asymptotic representation of
the joint density of the r2.

Suppose that B and W are independent p X p random matrices such that W has
the Wishart distribution W,(n,, £) and B has the noncentral Wishart distribution
Wy(ny, Z, Q)(ny > p). Let L = diag(/},- - - , ), where 1 >/, >, > --- >1 >0
are the latent roots of B(B + W)~'. Constantine *(1963) shows that the joint
density of the /; is

(13) KT, (13007201 = s @~2 D) ()~ 1)
Xetr(—%ﬂ)lF,(P){é(n, + ny)i3ng; 18, L}
where '
1 -1
K = mrT{z0m + n) {T,Gm)L,(Gm)T,(p)}
and n; = n(i). Assume, without loss of generality, that @ = diag(w;, w,, * * * , @,)
with @, > w, > -+ > w, > 0. In a multivariate analysis of variance situation W

and B are respectively the “within groups” and “between groups” matrices of sums
of squares and sums of products. Asymptotic expansions of the density of L have
been developed for large n, (large error df) and large §2 (some or all of the w; large).
Constantine and Muirhead (1976) give an asymptotic expansion of the ,F?
function in (1.3) when some of the w; are large. Chattopadhyay and Pillai (1973)
and Chattopadhyay, Pillai, and Li (1976) find an asymptotic expansion of the , F{?
function for large n,. However, their result involves a ,F{? function of one matrix

argument. Let © = diag(d,,- - -,4,), 6, >0, > --- >0, >0. An asymptotic
representation for large n, of the ,F{? function in (1.3), assuming

(14) Q= n®

and ‘

(1.5) 6, =9 for i € Q()),

is presented in Section 6. This result is used to derive an asymptotic representation
of the joint density of the /.

It is usually of interest in a typical analysis of variance, at least as a first step, to
test the hypothesis that @ = 0. If this is rejected then one is often interested in
testing a sequence of hypotheses of the form

(1.6) Hiwe = =w, =0
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Bartlett (1947) proposed the test statistic
- {”z +';'(”1 —-pP - 1)}]11H€=k+1(1 )

which, when H, is true, is approximately distributed as x? on (p — k)(n, — k) df.
The asymptotic representation of (1.3) is used in Section 6 to study Bartlett’s test.
The approach is the same as that used in other contexts by James (1969) and Glynn
and Muirhead (1978).

2. An extension of Hsu’s lemma. Let {f:y €'} and g(x) be real valued
functions defined on a subset D of real m-dimensional Euclidean space, R™. We
will write f,(x) or f(x; y) for the value of f, at x, where x" = (x;, x,, - - -, x,,,) is the
transpose of x. Theorem 2.1 gives asymptotic representations for a family of
integrals of the form [,g(x){ f(x; y)}"dx. If T consists of a single point then the
theorem reduces to Corollary 2.1, which is essentially Hsu’s result.

The notation ‘a ~ b for large n’ means lim(a/b) = 1 as n — co0. If N is a subset
of D and a € R™ then a + N is the set {a + x : x € N}. The infimums and
supremums in the statement of the theorem are taken over all y € T'.

THEOREM 2.1. Let {f, : vy € I'} and g be real valued functions defined on a subset
D of R™. Define the functions h, and p, by h(x; v) = f(x + &(y); v) and p(x; v) =
g(x + &(v)) for all x € — &(y) + D where &(y) is defined in condition (i). Suppose
that there exists a neighborhood N of 0 such that the following conditions are satisfied.

(i) For each vy f(x; v) has an absolute maximum value at an interior point &(y) of
D such that 0 < inf{ f(&(y); v)} and 0 < inf{| g(&)|};

(ii) there exist constants s > 0 and G > 0 such that g(x){ f(x; v)}* is absolutely
integrable on D and

Ipl8(x){f(x; v)}’|dx < G forally €T;
(iii) &(y) + N Cc D and h(x; y) > O for all y € I" and x € N,
(iv) all partial derivatives
0
9x,0x;

oh

a5 (% 1) and (x5 v)
exist and are continuous functions of x on N

(V) there exists an A < 1 such that

|h(x; ¥)/h(0; ¥)] < Aforallx € —§(y) + D — Nandy €T}
(vi) the family of functions {p,:vy €T} is continuous on N and equicontinuous
at 0;
(vii) the family of functions {w;(-; y):y € I'} is equicontinuous at x = 0 where
W(x; v) is the m X m symmetric matrix defined for all y € I' and x € N by
W(x; v) = [wy(x; v)] and

9%n A
wy(x;y) = — —a;a;j(x, Y); and
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(viii) 0 < inf A,(y) and sup A\ (y) < oo where A\(y) > - - - > A, (y) are the latent
roots of W(0; v).
Then for large n
(2.1)  [pe(){f(x; v)}'dx ~ 27/ ) AE(Y); 7)) B EDAE)}
uniformly in y, where A denotes the Hessian of —In f,, i.e.,

021
s, G y)}.

A¢(y)) = det{ -

ProoF. The proof for fixed y is the same as the proof of Hsu’s lemma. Write
the integral in (2.1) as

{f(&(v); 1)} fpg(x)exp[ n{ln f(x; v) — In f(&(y); v)} ]dx

Choose a neighborhood N(y) of 0 such that In f(x; v) — In f(é(y); v) is approxi-
mately equal to — %(x — &(v)) W(0; y)(x — &(y)) in &(y) + N(y). Then choose n
sufficiently large to make the integral over —£(y) + D — N(y) negligible (see Hsu
(1948) for details). The conditions of the theorem are sufficient to insure that N(y)

and n can be chosen independently of y.

COROLLARY 2.1. Let f and g be real valued functions defined on a subset D of R™

such that
() f has an absolute maximum value at an interior point § of D and f(§) > 0;

(ii) there exists a constant s > 0 such that gf° is absolutely integrable on D;
(iii) all partial derivatives
2
g O
ox; 0x,;0x;
exist and are continuous in a neighborhood N of §&;
(iv) there exists a constant A < 1 such that

|f(x)/f(§)] < A forallx € D — N;

(v) g is continuous in a neighborhood of § and g(§) # 0.
Then for large n

[,8(){f(x)Y'dx ~ (27/n)™{ (&)} 2(){A®)} 7.

3. A factorization of the invariant measure on the orthogonal group. The results
in this section follow from the work of James (1954). Let G(q,, " -, q), ¢,
+ -+ +¢q =k, be real manifold defined as follows. A “point” p of
G(q, + + -, q) consists of [ orthogonal subspaces of R* of dimensions
41> 4 * * * » - The manifold G(q,, - - - , g;) consists of all such points. Considered
as a group of transformations on G(q,, - - - , q;), O(k) is transitive. If p, is any
point in G(q,, - - - , ;) then M, the isotropy subgroup at p,, is defined by

(.1) M = {diag(H,,- - -, H): H € 0(g)} = O(q) X - XO(q)
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The manifold G(g,, - - -, ¢) is identified with the coset space
0(k)/O0(qy) X - -+ X O(q)-
We need to calculate the invariant measure on G(q,, * * , q;). The result is

summarized in the following lemmas.

LemMma 3.1. Let H =[h, h,, - - -, ] € O(k). The (unnormalized) invariant
measure on G(q,, * * + , q;) is given by the following differential form

AecpBicobyc ot dh;
where A denotes the exterior product and Q(a) is the set defined by (vi).

Proor. The result follows directly from the construction of the invariant
measure on the Grassmann manifold given by James (1954).

LemMMA 3.2. The normalized invariant measure on G(q,, - - - , q,) is
_ 1,2 R Yo ’
rk(%k)” Al | {rq(i){ %‘I(’)}"T 240 } Aa<ﬁAlEQ(a) e ocp) ah;.

Proor. Let 4 =|[a,, - - -, a,] € O(k). The columns of A4 span / orthogonal
subspaces in R* which can be regarded as a point p € G(q,, - - - , q,), i.e., the first
q, columns span a subspace of dimension q,, - - -, and the last g, columns span a
subspace of dimension g,. The orthogonal matrix 4 is uniquely determined by p
and the orientation of the g-frames in p. Introduce a reference matrix H € O(k) in
p where the elements of H are analytic functions of p for almost all p. Then

A = HG for some G = diag(G,, - - , G;) € M. If we write G =[g, 8, " * * , &l
then

(3.2) AL=1Aj>i; ijeod da; = Afx=1Aj>i; ijeo& a8 + *dH

and

(3.3) Aa<,BAlEQ(a)A EQ(B)aJ,da Aa<BAlEQ(a) EQ(ﬁ)h dh

where *dH denotes linear differential forms in the elements of H. The right-hand
side of (3.3) is a differential form of maximum degree defined on G(q,, - - * , q))
and H is a function defined on G(q,, - - -, ;). Therefore, the exterior product of

(3.2) and (3.3) is

AR ajda; = {Ab=iAr > i; tjEQ(a)gjdgt}A{ Agcphico@b EQ(B)hfdhi}’
or equivalently
(3.4) (dA) = B,AL(dG)A{A. oA e oMy oipytidh;)

where

I‘k(zk)”_—k2 i= l{rq(t){zq(’)}w zq(’)} l

and (dA) and (dGi) are the normalized invariant measures on O(k) and O(g;),
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respectively. The lemma follows by integrating (d4) over

O(k) = G(qy,- - -, q) X O(qy) X -+ XO(q).

LeMMA 3.3. Let (dH) be the normalized invariant measure on G(q,," - - , q)).
Then

(d4) = {Ai~\(dG)}A(dH).
ProOF. The lemma is a restatement of (3.4).

LemMMA 3.4. If f is a function defined on O(k) such that f(A) = f(AG) for all
A € O(k) and G € M, where M is the isotropy subgroup defined by (3.1), then

fo(k)f(A)(dA) = f(;(q,,- .. ,q,)f(H)(dH)-

Proor. Write A = HG with H € G(q,,* - - , ¢) and G € M. Then the result
follows from the fact that

fo(k)f(A)(dA) = oo " fo(q:)f(HG)(dH)A{ALl(dGi)}
and f(HG) = f(H).

4. Maximization of matrix functions. This section contains some results on the
maximization of certain matrix functions. The result that we need in the derivation
of the asymptotic representation of ,F{P is given in Corollary 4.1.

LeMMA 4.1. Suppose that
(i) U = diag(uy, - - - , u,) where y, = m, for i € Q(a) andn, >y, > - >,
> 0;
(ii) / = number of nonzero njs;
(i) B(y) = [b;()] is a p X p matrix defined for all y € T; and

@v) 7y, + +, 7T, are constants such that T\ > T, > - - - 21, and
(4.1) Zpcaicombi(¥) < Zpcaicom)T 1l <ac<l
Then

tr(UB(y)) < Zf_yum;
with equality if and only if equality holds in (4.1) for all a(1 < a <1).

PrOOF. Let
S,(Y) = ZpcaZicomybi(y) 1 <ac<!
and
A, = ZpcalicoB)Ti 1 <a <L
Then
tr(UB(y)) = ZiZ1S(V)(m — mivn) + S(V)m,
and

S2_jur = 20 — mie) + Ay
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Therefore
P ur, — u(UB(y)) = Elx‘;ll(Ai = S(M)(n; — Msr) + (&, = SV
By conditions (i) and (i) m; — m;4, > 0(1 <i </ —1) and 7, > 0. By condition
@iv) A, — S(v) > 0(1 <i < ). Therefore,
20w — uw(UB(y)) > 0

with equality if and only if A; = Si(y), (1 <i <).

LeMMA 4.2. Let
f(H, - - ,H,) = tl‘[ UH UH, - - - Uth]
where H, € O(p), (1 <i <), U, = diag(u, - - -, up,) with uy >up > -+ >,
>0,(1<j<t—1),and U, = diag(u,, - - - , 4,) withu; = n, forj € Q(a), (1 <
a <m),andm; > -+ >mn, > 0. Then

(4.2) f < Ziouuy s ey,
with equality if and only if
(43) H, = diag(M,,- - -, M, G), H,_, = diag(xM,,---, *M,G,_)),
and
H, = diag(=1,---, *1,G) 1 <i<t—-2

where | = number of nonzero n/s,v = q, + + -+ +4q,, G, € O(p — »), M; € O(q)),
I, is the v X v identity matrix, and the H;s satisfy

H\H,- - - H, = diag(l,, G)
for some G € O(p — v). If | = m thenp = v and the G/’ do not appear.

Proor. The proof is based on the fact that maximizing f is equivalent to
maximizing a class of functions generated by f. The structure of this class is made
explicit by Lemma 4.1. The following notation will be used in the proof:
(@ T'={(H,,---,H): H € O(p)} and v is a point in T;
(b) T, is the subset of I' consisting of all (H,, - - - , H,) which satisfy (4.3);
© B(v) = HU \Hyy - UHH, - H_,, (1 <i <) |
(d) 7, = sup b,(y) and 7, = sup(By(y) + + + - +b(Y) — 7, (1 <i<1,2<
Jj < p),‘ where b,(y) is the jth diagonal element of B(y) and the supremum is
over ally e T

(e) H(r, s) is the r X s matrix formed by the first » rows and s columns of the
p X p matrix H (in particular H(p, p) = H);

) G ky- - - k)= Uy Hyy - - U H,UH(p, k)Hy(ky, k) - - -
Hi(k, p), (1 <i<t-1), and C(y, ky, = -+, k) = H(ky, k)

“H,_y(k,_ k)H(K,, Kky);
(g) ut+l,j = ls (l <j < P);
(h) Pi(ky, - - -, k), (1 <i <) denotes the proposition
tr{Ci(Y’ k- ee k,.)} < ij=inl(k'" N ’ki)ui+l,j T ut+l,jf0" ally € T; and

(i) 'a — b’ means ‘a implies &'.
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We will write f(y) for the value of f at y € T. Note that f(y) = tr( U,B,(y)) and
by Lemma 4.1 f(\) < 3%_,u,;7,;. The proof consists of showing that

(1) Ty = Wivr, ¥iva; 0 Yy 1 <j<pl<icgt
and
@) fy) = Si_yuyry if and only ify € T,

If y € Ty then by(y) = #;4,; * * * #.41,,- Therefore, to prove (1.) it is sufficient to
prove that
(44) Sho1bi(y) < z{c=1uz‘+l,k Uk
for all y €T, i,(1<i<t¢), and j, (1 < j < p). This is equivalent to
P(p,---,p,j)forallj, (1 <j<p)andi (1 <i<t),since

2Jl'c=1bik(‘Y) = tr{Ci(Y’Ps e ’P’j)}'
By Lemma 4.1
Pky, - - -, k) forall k(1 <k; < p) — P_y(ky, - -+, ki_y)

2<j<t

Therefore,

P(ky, - -, k)forallk,-- -, k, (1<ky: -,k <p)— (44).

Note that P(k,, - - - , k,) is equivalent to

(4.5) tr(E) < min(k,, - - -, k,)

where E = H(k,, k,) - - - H/(k,, k). Since E is the product of submatrices of

orthogonal matrices, the elements of E are all less than or equal to 1 in magnitude.

Therefore (4.5) holds which implies that (1.) is true.

If y €T, then by (1) f(y) = ;7 + + - +uy,7y,. Suppose conversely, that
f(¥) = uymyy + - - - +uy,7y,. Note that tr(B(y)) = tr(U By (v), (1 <i <t -
1). It follows from this fact, (1.) and Lemma 4.1 that

tr((JiBi(Y)) = Ef-luy""ij - tr(Ui+lBi+1(Y)) = 2:}’-I“H1,j'"i+|,j
1 <i<t-1
In particular, since f(y) = tr(U,By(v)), f(v) = Zf_,u,;7,; implies
(4.6) : tr(U;B(v)) = 2. uy7; 1 <i<ut
The result (4.3) is obtained by considering (4.6) for i =1¢, ¢t —1,- - -, 1. If (4.6)

holds for i = ¢ then by Lemma 4.1 2, 5,yb,(Y) = q,, (1 < a < /). This implies,
since B(y) = H,H,- - - H,_, € O(p) that

4.7 HH, - - H,_, = diag(l,G)

for some G € O(p — v). We get, by substituting (4.7) into the definition of
B,_«(v),

(4.8) B,_\(y) = H,_,diag(u, -+ -, 4,,0,- -, 0)H,_,.

Again by Lemma 4.1, if (4.6) holds for i = ¢ — 1 then b,_; ;(v) = u,, (1 < j < p).
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This together with (4.8) implies that H,_, = diag(M,, - - - , M,, G,_,). The lemma
follows by continuing this procedure fori = ¢t —2,¢ —3,- - -, 1.

COROLLARY 4.1. Let
AG,H, Q, F) = tr{[UGVHPlH'Q’R : O]F}
where

() U =diag(uy, - - -, w) withu, > - - - >u, > 0;

(i) V = diag(vy, - - - , ) witho, > - - - > v, > 0;

(iii) P, = diag(p,, - - - , p,) where the p;’s satisfy (1.2);

(iv) R = diag(ry, - - -, r,) withry >r, > -+« >r,>0;

V) G, HEOK), G=(g), H=(hy;

) Q e Vk,p), Q=(qy, p>k;and
(i) FeVik,q, F=(f), q>p.

Then
f < Zi o,
with equality if and only if G = diag(*1,- - -, *1), H = diag(H,, - - - , H),
*1 0 -3 | 0
0= . and F = .
0 *1 0 +1
0 0
where H; € O(q;) and g;q,f; = 1, (1 <i < k).
ProOF. Define U, = diag(r), - - -, 1), U, = diag(u;, - - - , u), U; =
diag(v,, - - -, v,), and U, = diag(P,, O) where u, v, (k+1<i<g), and r,
(p+1<i<gq), are chosen so that w >u, > >u, >0, v >v,

>+ >p0,>0,and r, > -+ - >r, > 0. Also choose Gy, Hy € O(q — k), and
Fy, Qo € V(q — k, q) such that H,, H,, H;, H, € O(q) where

H, =[F:F], H, = diag(G, G,), H, = diag(H, H,),
and
Q' :0
%
Then f = tr{U,H,U,H,U;H,U,H,] and the result follows from Lemma 4.2.

(4.9 H, = Hj

5. An asymptotic representation—canonical correlation case. We first obtain
an asymptotic representation for large » of the ,F{? function which occurs in (1.1).
The result is summarized in Theorem 5.1. The following identities are used in the
proof of the theorem to derive the integral representation of ,F{P:

(5'1) "+1F0(a1’ ct .4, a; bl’ Y bo’ S)
= {T,(a)} ' fpucetr(— T)det Ta—2@+D
X Fay -+ ,a; by, by ST)(dT)
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(5'2) uFu(al’ Lt au; bl’ DY bo; S’ T)
= fo(p) qu(al’ s, @by, by SH’TH)(dH)
and Bessel’s integral
(53) S vk, pett(XH,)(dH,) =0F1(%P; %XX')

where S and T are p X p symmetric matrices, X is a k X p matrix, (k < p),
H € O(p), H, € V(k,p) and (dH) and (dH,) are the normalized invariant
measures on O(p) and V(k, p) respectively.

THEOREM 5.1. If the population correlation coefficients satisfy (1.2), then for
large n

2Ffp)(%n, %n; %q; P2, R2) ~ CIH,i(=l{(1 - ’}Pi)_n+%(p+q—l)(Piri)%(p_q)}
1
(54) X Hla=1Hi<j; i,jEQ(a){(l —rp)(1 — ’)Pj)("i + ’})Pi} ’
-1
x Mopllicowleow{(of = )7 = 17)}

XHIic=1Hf=rk+l{(ri2 - ’:,'z)pi2}_

Nj—

where

1 -
_nk(%n)k 2k@+q)rk(%p)rk(%q){rk(%n)} 2

i o iyati) — AT
XHI,~=|['I7%q(I)2(27T/n) 29()(a() l)rq(i){%q(l)} l]

G =

Q

q(i) = q,, and k and | are defined by (ii) and (iv). Furthermore, (5.4) holds uniformly
on any set of r;’s and p;’s such that the r;’s are strictly bounded away from 1,0, and
one another and the ;s (distinct values of the p;’s) are similarly bounded.

Proor. We can express ,F{?, using (5.1)-(5.3), as
B,f \h(x){ f(x))"dx
where
etr(— LU - 1 V2 + [UGVHP,H'Q'R : O]F)det(UV),
b= (6 - o) — ))det(uV) ™,
(dU)(dG)(dV)(dH )(dQ )(dF),
B, = (3n)"a* 2T, (smLu(34))
D(U) X 0(k) x D(V) x O(k) x V(k,p) X V(k, q),
D(U) = {diag(uy, -« + ,u) :uy >uy > - -+ > >0}

H,G € Okk), Q € V(k,p), FE€V(k,q), U€ DWU), V€DWV) and P, =
diag(p,, - - + , o). The integrand is invariant under transformations of the form
H— HW, W € M, where M is the isotropy subgroup defined by (3.1). Therefore,

<
Il

&
I

>
[
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by Lemma 3.4, we can replace A by

T= D(U) X O(k) X D(V) X G(q,- - -, q) X V(k,p) X V(k, q)
where the matrix H is to be interpreted as a point in the manifold G(q,, - - - , q))
and (dH) is the invariant measure on G(q,, * - - , g;) given by Lemma 3.2.

It follows from Corollary 4.1 that the location of the maximum of f, for fixed U
and V, is independent of U and V. Consequently, f can be maximized in two steps
as follows

maxy v, g 6,0 f = maxy v {max H,G, Q,F,f}

It follows from this that the maximum value of f is
e I (1 — ripi)_l

and the maximum is obtained at the 2% points of T defined by
) _1 _1
U=V = dlag((l =) % (1= pen) 2)

and H, Q, F, and G are defined as n Corollary 4.1. Note that the values of H
define a unique point in G(q;, * * * , q))

The integral over T can be replaced by 2%* times the integral over II where

I = D(U) X O0*(k) X D(V) X G(qy,",4q) X V*(k,p) X V*(k, q),

and O *(k), V*(k,p), and V *(k, q) are subsets of O(k), V(k, p), and V(k, q),
respectively, consisting of matrices with positive diagonal elements which, in the
case of orthogonal matrices, are proper. This is a consequence of the fact that the
behavior of f is identical in neighborhoods of each of the points at which it obtains
its maximum and it is strictly bounded away from its maximum value outside of

these neighborhoods.
Since G is proper in II, it can be parametrized as

G = exp(S), S ={(s)
where S is k X k skew symmetric. Anderson (1965) computes the Jacobian of this
transformation as
J, = J(G—8) = T,(3k)2 %~ 2¥(1 + 0O(s2))
where 0(s,.12.) denotes terms which are at least quadratic in the elements of S. James
(1969) proves that a parametrization of Q and F can be obtained by writing

W W
[@: -] = exp(W) = exp( —Wl’!fz 012), W = (w;)
and
[Fi-]=op@ = ew( S0 SR z-G)

where [Q : —]is ap X p orthogonal matrix whose first k columns are O,[F: —]is
a g X q orthogonal matrix whose first k columns are F, Z,, and W), are k X k
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skew symmetric, W, is kK X (p — k), and Z,, is (¢ — k) X k. The Jacobians of
these transformations are (James (1969))

= J(Q—>(W|1, wy,)) = I‘k(%p)Z_kvr_%"”(l + O(fo))
and
Jy = N(F—>(2,,2Z,)) = k(zq)2 T kq(l + 0(2 ))
Similarly, H € G(q,, - - - , q;) can be parametrized by writing
H = exp(T), T = (1)

where T is a k X k skew symmetric matrix such that t; = 0ifi,j € Q(a) for some
a, (1 <a </). This is the parametrization used by Chattopadhyay and Pillai
(1973). The Jacobian of this transformation is

= (6= T) = TGk I (T (a0 }r=0) (1 +0(s),
By making this change of variables we can express ,F? as

(5.5) B,fzgf"
where

g = II“_ (4 v,)_kH’? -{(u.2 - u~2)(v~2 — v?)}J 5
f = exp{E’f-,( Ju} — 307 + uvp,r,) + \p} RS
Y = —Eiqz{(u,.v,.pir,- + uup, )(2s +1 w +1 327
+ (b — p)(uoir; — woyr)eg + (o — 0)(w0yr; — woir)syt;
+ (u,.vjpjr,. + ujvip,.rj)s,jw,.j + (u,.vjpjrj + 14jvip,.r,.)s,.jz,.j
+ (p; — Pj)( ur; — wo;r)t, Wy t (o; — Pj)(“jvjri - uivirj)ty‘zij
+ (yop,r; + ujvjpjr.)wuz..}
3%, f=k+,{%u (w + z; ) + uvp,rwuzu}
— 328129, iuv,pr,z] + terms of higher order

and X is the image of II. The maximum value of f is obtained at the single point &,
in the interior of =, defined by

. -1 _1
U = diag((1 = pyr) 72, -, (1 = pr) 7)
S=Wn=2,=0,W,=0,Z,, =0,and T = 0.

Theorem 2.1 is now applied to (5.5). The Hessian of —In f, A, reduces to a
product of determinants of matrices which are at most 4 X 4. After simplifying

A = 2T, [ (1 = pr){oirs/ (1 = o)} P T T { (77 — 1P)02(1 — py1) %)
XHIa-IHi<j; i,jEQ(a){pis(ri - '}')4("' + "')(1 - P-’~)_3(l - Pj")_s}

xH’a<ﬂHiEQ(a)HjeQ(B){(pi' Y /)4(1’: - Pj)(’ - 2)(1 — o)1 - pjrj) }
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The conditions of Theorem 2.1 can be shown to hold and the result then follows.

Partial checks on some rather complicated algebra are provided by the fact that
(5.4) agrees with the known asymptotic behavior of the classical hypergeometric
function when k = p =1 (see Luke (1969, Section 7.2)) and it agrees with the
results of Glynn and Muirhead (1978) when ¢, = 1, (1 < i </).

An asymptotic representation of the joint density of the squared canonical
correlation coefficients is obtained by substituting (5.4) in (1.1). The result is
summarized in the following.

THEOREM 5.2. An asymptotic representation of the joint density of ri, - - - , r? for
large n when the population coefficients satisfy (1.2) is

(56) I\ {(1 = o) ()00 = )i )
XH;‘=I{(1 _ piri)—n+%(P+q—1)(piri)%(p—q)}
1

_1 _1 _1 _
xHix=1Hi<j;i,jEQ(a){(ri2 - '}'2)(1 = o) 2(1 - Pj’j) I(r, + "j) 2p; 2}

' P
xH{x<BHiEQ(a)HjGQ(B){(ri2 = r)e? - o) 1}2

1
XTI { (72 = D)0 2} 1y (P2 — 12)
where

¢ = e_nk(%”)”k_%k(pﬂ)w%(""‘)z*%"krp—k{%(" - k)}
<[ (30 = )T, (30~ D)L, (30~ D)ru(n)]”
XHL'[ﬂ_%q(i)zrq(i){%q(i)}(2-rr/n)%‘l(i)(q(i)—1)]-1'

Furthermore, the convergence is uniform on any set of r;’s and p;’s such that the r,’s
are strictly bounded away from 1, 0, and one another and the distinct p;’s are similarly
bounded.

An additional check on the results of this section can be obtained by considering
the standardized variables

% = (7 — )/ (201 - o)} 1<i<k

(5.7) xj=m}.2 k+1<j<p

Hsu (1941b) gives the limiting joint density of the x;’s, Suguira (1976) extends Hsu’s
result by computing the terms through order n~' when the p; are all positive, and
Fujikoshi (1977) computes the terms through order n~7 when some of the p; are 0.
By a more careful analysis of the integrals used in the proof of Theorem 5.1 one
can show that ,F{P = ¢{1 + O(n~"')} where ¢ is the asymptotic representation
(5.4). By using this result and making the change of variables (5.7) in (5.6) one
obtains Fujikoshi’s result.
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6. An asymptotic representation—MANOVA case. Assume, without loss of
generality, that © = diag(d,, - - -, §,) where 6, > 6, > --- >4, > 0.

THEOREM 6.1. If © = diag(8,, - - - , ,) satisfies (1.5) then for large n,
(6.1) lFl(p){%(nl + ny); 3155 51,0, L}
_1
~ Kl pllicoleom{(h = 5)(6; — 8)}

! 3 3 -1 -173
Xl 51 jec] {40076 = (48)78 )16, — )"
XHI;_1{gin(2)+%(n(l)—p+I}(lioi)%{P—n(l)}(liai + 4)-%}
xexp{ 1 mSk_ ,(16)38)

where
(18)7 + (46, + 4
. _
= e 2 Dngnt2T, (3p)Tu(37) [ Te{5(n + n)}] :
1.2 A1 -]
XTlo |73 o0 (390}
a = 3k(m = p +3+3k) + Zi_q(q, — 1)/4,
b= — (K+Z2i_147)/4
¢ = %k(2p -3k =3n,—n _%) — 32014

Lo
I

a(i) = 4,n(2) = myandn(l) = n,.

Proor. The steps in the proof are essentially the same as the steps in the
derivation of the asymptotic representation for large sample size of the LF®P
function in the joint density of the canonical correlation coefficients.

The ,F{? function can be represented as
(62) Kyf sh(x){ f(x)})" P
where

f(x) = etr{—1V? +[VHOFH'Q'L? : O]F }det V,

®, = diag(f;,- - -, ),
h(x) = (det V)" O~ Ik _ (07 — of),
K, = (%”2)%”"(])“(2))”%"22"[Fk{%(”1 + ”2)}rk(%k)]_l’
A = D(V) X G(qy,- - -, q) X V(k,p) X V(k, n),
D(V) = {diag(vy, - -+, 0) 10, >0, > -+ >, >0},
dx = (dV)(dG)(dQ)(dF),



ASYMPTOTICS IN MULTIVARIATE ANALYSIS 973

V = diag(v, - - -, ) €ED(V), HE G, ,q) Q€ V(k,p), and F €
V(k, ny). It follows by the same argument used in Corollary 4.1 that the maximum
of f for fixed V is obtained when

*+1 0 +1 0
6.3 = i = '~ , F= f; =
L@, Wl s
0 0
and
H = dia'g(Hla Tt HI)

where H; is a g; X g; orthogonal matrix and F and Q satisfy ¢,f; = 1, (1 <i < k).
It follows from this that

maxy g pof = maxv{maxH,F,Qf}'

A straightforward calculation now shows that the maximum value of f is

(64) 27k IS [Gexp(16(10)F} ]

and the maximum is obtained at the 2* points of A defined by (6.3) and

(6.5) o =3¢ 1<ic<ck
Using the invariance properties of f, Q, F, and H can be parametrized by writing

w, W
exp(W) = eXP[ W 0'2}, W= (w)
12

Qo
I
I

_ Zy —Z _
(@) = el 71 0] 2=

| |

~
.
|

—_
I

and

H = exp(S), S = (s)
where [Q : —]isap X p orthogonal matrix whose first k columns are Q, [F : —]is
an n; X n; orthogonal matrix whose first k columns are F, W is p X p skew

symmetric, Z is n; X n; skew symmetric, and S is k X k skew symmetric with
s; = 0if i, j € Q(a) for some a, (1 < a < /). Making this change of variables leads

to the integral
(6:6) 2K,/ p&f™®

where

g = i, 0]~k _ (7 — v1)J(Q - W)J(F - Z)J(H - S),
<J J

S = exp{Shi(= 507 + 0 lF) + ¥ )T 0,
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and

1
—2',;,2]’;,‘“0,.0‘.2{2 Wylz +3 12(w +z; }
— 33k 30 Ly B?I?z,.j + higher order terms.

The maximum value of f is given by (6.4) and is obtained when the v, satisfy (6.5),
W=0,Z=0,and S = 0.

It can be shown that the regularity conditions in the extension of Hsu’s lemma
are satisfied by (6.6). The Hessian of —In f is the product of the determinants of

matrices which are at most 3 X 3 and simplifies to
s AN ()
k=l[(1igi)%{n(1)-p}(liai + 4)%£7(1)+p—2k—1]
X1l _ i ;5 je ol Gk = DIE — &)}
XIL,<pllie gellieocm| (6 = (6 = 8){(8)% ~ (4757

The theorem now follows by combining these results.
An asymptotic representation of the joint density of /;, - - -, /, is obtained by
substituting (6.1) in (1.3). The result is summarized in the following.

THEOREM 6.2. IfQ = n,0 and 8, > - - - > 8, the latent roots of ®, satisfy (1.5)
then an asymptotic representation for large n, of the joint density of I, - - - , L, is

67) Kl [ FOO2=0(1 — ()3P0 lexpl 1,3 (1(16)7 ~ 6} ]
xn,-.[(lio,.)%"""">’(1,-o,. + 4) 3@+ 3 -p D]
XHL-1H.<, JIGQ(a)[( 1)0 {(lioi)igi - (1,9,)%,}]5
X Ty <pllic o1l EQ(B){( - 1)(6, - )" } et z<,(l )

where K, = KK, and
§ = (1,01)% + (40, + 4)%-

Furthermore, (6.7) holds uniformly on any set of I’s and §8;s such that the I’s are
strictly bounded away from one another, 0, and 1 and the 8;’s are bounded and are
bounded away from one another and zero.
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A partial check on the previous results can be obtained by considering the
following standardized variables

(6.8) x = njo7 (1 - 1)7" — ) 1<i<k
and

x = ml(1—1)"" k+1<j<p
where

o, = (28)*(9, + 2)? 1<i<k

Hsu (1941a) gives the limiting distribution on the x;’s and Fujikoshi obtains the
terms of order n{%. Fujikoshi’s results can be obtained by making the change of
variables (6.8) in (6.7). :

A direct consequence of Theorem 6.2 is the following.

COROLLARY 6.1. An asymptotic representation of the conditional density for large
nyof hyy, - v+, L givenly, - - -l is

1 Lena)—p—
(69) AT TR yi(l — )Py [ O P70(1 = [ @27 ]
)

X Hi+l;i<j (l: - 11
where A is a constant.

Note that (6.9) does not depend on 4,, - - - , 6. James (1969) has argued, in a
different context, that this suggests the use of (6.9) to test the hypothesis H,, given
by (1.6), that the p — k smallest latent roots of @ are zero. There are two points
worth noting.

(i) Constantine and Muirhead (1976) found an asymptotic representation for
the joint density of /j,-- -,/ for large w;,: - -, w when ; > w,
> > W > w2 00 > @, > 0. While their asymptotic representa-
tion is markedly different from that given in Theorem 6.2, an asymptotic
representation of the conditional density of /.y, - -+ , [, given /;, - - -, [ is
still given by (6.9).

(ii) By making the following identifications

L, > rin — qp—pandn + n, > n
in (6.9) we obtain an asymptotic representation of the conditional density of
the smallest p — k sample canonical correlation coefficients given the
largest k canonical coefficients (Glynn and Muirhead (1978)). In this con-
text, rf, cee, rf are the sample canonical correlation coefficients based on a
sample of size n + 1 from a (p + g)-variate normal distribution.

The following theorem, which is simply a restatement of Theorem 4 of Glynn
and Muirhead (1978) for the MANOVA case, is a direct consequence of (ii)

THEOREM 6.3. The statistic
L, = - {”2 —k+5(m—-p-1)+ 2’:‘-111_1}111 I pir(1 = 1)
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is asymptotically x> on (p — k)(n, — k) degrees of freedom and E.(L,) =
(p — k)(n; — k) + O(ny?), where E, denotes expectation with respect to the density
(6.9).

If the observed values of /;, - - - , /, are all near one, then the multiplying factor
in L, is approximately — {n, + %(nI — p — 1)}, which is the value suggested by
Bartlett.
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