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THE LIMITING EMPIRICAL MEASURE OF MULTIPLE
DISCRIMINANT RATIOS!

By KENNETH W. WACHTER?
University of California at Berkeley

Consider the positive roots of the determinental equation det|YJY* —
x2YY*| = 0 for a p(n) by n sample matrix of independent unit Gaussians Y
with transpose Y* and a projection matrix J of rank m(n). We prove that
the empirical measure of these roots converges in probability to a nonrandom
limit F as p(n), m(n), and n go to infinity with p(n)/n — B and m(n)/n — p in
(0, 1). Along with possible atoms at zero and one, F has a density propor-
tional to ((x — A)(x + A)B — x)B + x))%/[lx(l = x)(1 + x)] between A =
l(n = uB)7~ (B—pB)3| and B =|(s— pB):+ (B — pB)i|. On the basis
of this result,. tables of quantiles are given for probability plotting of mul-
tiple discriminant ratios, canonical correlations, and eigenvalues arising in
MANOVA under the usual null hypotheses when the dimension and degree
of freedom parameters are large.

This paper determines the asymptotic behavior of the empirical measure of the
roots of a determinental equation which sprang into prominence in 1939 when R.
A. Fisher, S. N. Roy, P. L. Hsu, and M. A. Girshick simultaneously published
papers deriving the joint probability distribution of the roots under a null hypothe-
sis. The roots go under many names, since they figure equally in discriminant
analysis, canonical correlation analysis, and in invariant tests of linear hypotheses
in the multivariate analysis of variance. We single out discriminant ratios in our
title merely for concreteness. The roots can be represented, as we shall see in
Lemma 1.1 below, as the singular values of a rectangular submatrix of a Haar-
distributed orthogonal matrix, or as the square roots of eigenvalues of a symmetric
random matrix often called the MANOVA or multivariate beta matrix. We define
them as functions of a p by n dimensional matrix Y of independent unit Gaussians
with p < n. Letting Y* denote the transpose of Y and J denote an n by n
dimensional projection matrix with rank m, our roots are the p largest nonnegative
solutions x = L, for i = 1 to p to det| YJY* — x?YY*| = 0.

In Theorem 3.1 we prove that the erhpirical measure of these roots converges in
distribution as p, m, and n go to infinity together in a suitable fashion and the limit
is a fixed measure with a density proportional, for suitable 4 and B, to

(x + A)(x — A)(B + x)(B — x))*/[x(1 = x)(1 + x)]-
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938 KENNETH W. WACHTER

Depending on the dimension limits, there may also be atoms at zero and unity.
This result gives a standard against which to compare the multiple discriminant
ratios, canonical correlations, or MANOVA eigenvalues from a data sample, where
the numbers of observations and variables are both large.

The technique of quantile-quantile plotting using this limit has already been
presented in Wachter (1976d), and in Section 5 we present tables of quantiles to
facilitate such applications. This probability plotting technique parallels the
methods for principal components described in Wachter (1975) and (1976a). Unlike
the case of principal components, however, limiting forms under alternative hy-
potheses to the null hypothesis do not appear accessible, so the methods here are
more limited in scope.

The empirical measure of the collection L, - - - L,, the pure-point probability
measure placing mass 1/p at each of these p numbers, represents neatly the sample
configuration of the roots. Its distribution function, usually called an “empirical
cumulative distribution function” or “e.c.d.f.” is a step function with p steps of size
1/p at the roots. The expectation of the empirical measure is the marginal
distribution of any one of the unordered L; or of a randomly selected L, out of the
ordered set. It does not of course give as much information for formal hypothesis
testing as exact distributions of various of the ordered roots, but in the eminently
multivariate case when p, m, and n are all large, formal tests may have low power
and more exploratory inference is appropriate. In contrast to methods using
approximations to joint densities, probability plotting using the quantiles in Section
5 is simple and direct.

The different roles of our roots are discussed in practically every text on
multivariate analysis. We describe in Section 4 the reduction of null hypotheses for
multiple discriminant analysis, canonical correlations, and multivariate analysis of
variance to our standard form.

The literature on the L, is extensive, but it has concentrated on functions of them
other than their empirical measure, and it has not by and large led to results handy
for data analysis. Three recent survey articles summarize the work to date.
Expressions for marginal distribution functions of single roots in terms of multiple
integrals and for marginal densities in terms of zonal polynomials are treated on
pages 165 to 177 of Pillai (1976). Page 145 of Krishnaiah (1978) is a good guide to
tables of percentage points computed for low dimensional cases, mostly for p below
8. We compare our results against some of these tables in Section 4. Asymptotic
results for fixed p and large n or n and m are helpfully collected on pages 18 to 20
and 24 to 30 of Muirhead (1978).

Calculation of the limiting form in Theorem 3.1 from expectations of moments is
joint work of Dr. Colin L. Mallows of Bell Telephone Laboratories and the present
author dating from 1969. Proof of convergence and particularly of stochastic
degeneracy of the limit is trickier than the simple limiting form would suggest, and
it has had to await recent refinements in convergence theorems for random spectra
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of matrices with independent elements proved in Wachter (1978). An earlier proof
is found in Wachter (1976c¢).

Section 1 proves an identity between singular values of matrices of different
dimensions, a key lemma in the proof of Theorem 3.1. Section 2 sets out the
notation for asymptotic assertions and states the results on random spectra on
which we depend. The relationship to standard null hypotheses and test statistics
becomes our theme in Section 4, and Section 5 presents tables of quantiles for
probability plotting based on the limiting empirical measure we have found.

1. A singular value identity. Our first quarry is a representation of our roots as
scale factors in an identity between singular values of matrices of differing
dimensions.

In order to cope simultaneously with submatrices of differing dimensions, we
frame our definition of singular values so as to include extra zeros up to a specified
total number of singular values n. We start with a “dimension triple” p, m, and n
along with a p by m dimensional (possibly complex) matrix X. Choose n’ bigger
than p + m and than n and form the n’ by n’ symmetric matrix with X in its
upper-right corner, the (conjugate) transpose X* in its lower-left, and zeros
elsewhere. '

0 0 X
0 0 0
X* 0 0

The n’ eigenvalues of this matrix are all real and at least n” — 2 min(m, p) of them
are zero. Deleting n’ — n of the zeros, we call the remaining n eigenvalues of the
symmetric matrix the “singular values” of the original matrix X. The phrase
“positive singular values” refers to the min(p,m) largest of these eigenvalues
which, together with their negatives, account for all nonzero eigenvalues if X has
full rank. Had we chosen instead the popular convention that singular values all be
positive, nonvanishing odd moments would plague our convergence theorems for
random spectra. The “random spectrum” of X for the triple p, m, and n is the
empirical measure of the n singular values of X /n :,

Our representation lemma is an exercise with Haar distributions on rotation
groups, for whose properties Dempster (1969), pages 292-294 and 304, or Loomis
(1953), Chapter 6, are ready references.

LemMa 1.1. Let L be a p by p diagonal matrix whose diagonal elements are the
positive singular values of a p by m submatrix of an n by n random rotation with Haar
measure for p < m < n. Let J be an n by n projection of rank m. Then there exist
identically distributed (though not independent) p by n matrices Y and Z such that YJ
and Z*L have the same singular values, Z is independent of L, and the diagonal
elements of L are the positive solutions to det|YJY* — x>YY*| = 0. We may arrange
for Y and Z each to have independent unit normals as elements.
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Proor. To mediate between dimensions, we define a p by n matrix P by the
condition P;; =1 if i = and P,; = 0 else. All matrices in this proof except for P
and the sample matrices X, Y, and Z are square. The dimensions are as follows:

pbyp:D’F’G’H7H09K9K0,L
pbyn:P,X,Y,Z
nbyn:J,Q,R,R,,T,U,V.

Any p by n matrix X has a singular value decomposition X = H,DPR, described
among other places on pages 388 to 394 of Golub (1969) and pages 111 to 115 of
Chambers (1977). Here H,, is a p by p rotation whose columns are eigenvectors of
XX*, D is a p by p diagonal matrix of positive singular values of X, and R, is an n
by n rotation whose columns are eigenvectors of X*X augmented to a complete
orthonormal set.

If we form Y = GXV from X with Haar-distributed random rotations G and V,
we find Y = (GHy) DP(R,V'). Our Haar rotation ¥ has the same distribution as
R,V = R even conditional on G, H,, D and R, purely because R, is a rotation
independent of V. Likewise G and H = GH, have the same Haar distribution
conditional on H,, D, and R. Therefore Y = HDPR where H and R are Haar
rotations and H, R, and D are independent. Our construction of H and R might
seem roundabout, but it neatly avoids technical snags posed by nonuniqueness of
singular value decompositions. We now have any random X yielding a matrix
Y = GXV = HDPR whose distribution can boast two-sided rotational invariance.

Our key equations are Y = HDPR and a similar decomposition PRJ = KLPQ
involving the rotation R. We form this decomposition of PRJ with the aid of
another p by p independent Haar rotation F, which we augment to an n by »
rotation 7" by adjoining the n — p dimensional identity and suitable zeros, so that
FPT* = P. The Haar distribution of R makes T* R be Haar independent of 7. We
take a singular value decomposition PT*RJ = K,LPQ. Since F is Haar, so is
K = FK,, independent of K, L, and Q. Thus PRJ = FPT*RJ = KLPQ, where K
is Haar independent of L and Q. In our proof we need this equality between PRJ
and KLPQ themselves and not merely between their distributions.

The diagonal elements of L are its p positive singular values when p < m, our
only reason for requiring p < m. They are then the positive singular values of
PRJ = KLPQ since pre-and postmultiplications by rotations do not alter singular
values. Premultiplication by P picks out p rows of R. The projection J may not be
of the form to pick out m columns, but we can substitute a singular value
decomposition of J for J in PRJ. We then find R postmultiplied by a rotation,
which preserves its Haar distribution, by a diagonal matrix of zeros and ones which
does pick out m columns, and by a rotation which does not change the singular
values. Thus the diagonal elements of L are the positive singular values of a p by m
submatrix of a Haar rotation, as the condition of the lemma requires.
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We show that the diagonal elements of L are the positive solutions to det|YJY*
— x2YY*| = 0 by writing down

YY* = HDPRR*P*D*H* = HDD*H* = HDKK*D*H*

YJY* = YJJ*Y* = HDKLPQQ*P*L*K*D*H* = HDKL’K*D*H*.

The determinant equals det| HDK |det| L? — x2I|det| K*D*H*| and det| HDK | # 0
when rank D, which equals rank Y, is equal to p, as occurs with probability one
when p < n.

We are now ready to construct Z from YJ. The matrix YJ equals HDPRJ =
HDKLPQ, which has the same singular values as DKLP, since prerotations and
postrotations leave singular values unaltered. D, K, and L are all p by p matrices,
and postmultiplication of DKL by P merely adds n —p columns of zeros, just as
premultiplication of DKL by P* would add n — p rows of zeros. Therefore DKLP
has the same singular values as P*DKL or as (U*P*DK)L, where U is an
independent n» by n Haar-distributed random rotation. But Z* = U*P*DK then
has the same distribution as Y* = R*P*DH*, since U and K are n by n and p by p
Haar rotations independent of D = D* and of each other just like R and H*. We
have Z independent of L because U, D, and K are. Thus YJ and Z*L share the
same singular values and Y and Z share the same distribution.

We can make Y and Z each have independent unit normals as elements by
starting with X of this form and appealing to invariance of this distribution under
rotations on both sides. []

The construction of Y makes its distribution invariant under rotations on both
sides but not necessarily Gaussian. We need to make Y Gaussian in Theorem 3.1
not for the YJ and Z*L relationship but for the convergence theorems for random
spectra which require both Y and Z to have independent elements.

The arguments in Lemma 1.1 and throughout this paper remain valid when X, Y,
and Z have complex elements, so long as we reinterpret “rotation” as “unitary
matrix” rather than “orthogonal matrix” and * as “adjoint” or “conjugate trans-
pose” rather than “transpose” (our reason for using * instead of 7). The elements
of L are always real. Whenever we begin the proof with a matrix X of identically
distributed elements whose real and imaginary parts are general (not necessarily
spherical) bivariate normals, we obtain Y, whose real and imaginary parts are
spherical normal. Our proof was specially designed for this bonus. Since we can
replace Y by X in det| YJY* — x?YY*| if we also replace J by the projection VJV*,
we shall be able to replace “a matrix Y of independent unit Gaussians” by “a
matrix Y of independent exchangeable complex Gaussians” in the statement of
Theorem 3.1. This generalization is noteworthy. Submatrices of Haar orthogonal
and Haar unitary matrices have different joint distributions of singular values, so it
is surprising to find the asymptotic empirical measures turning out the same.

Applications as described in Section 4 often invoke sample matrices with more
than n columns, whose equivalence to the n-column setup we now prove. Our
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notation employs double primes to avoid confusion between single primes and a
popular symbol for transpose.

LEMMA 1.2. For any n” > n we can start with a p by n” matrix Y” of independent
unit Gaussians and two n” by n” projections N” and J” of ranks n and m and obtain
J, L, Y, and Z satisfying Lemma 1.1 with the diagonal elements of L also being the
positive solutions to

det|Y"(N"J"N")Y"* — x’Y”"N"Y"* = 0.

PrOOF. Postmultiplying Y” N” and J” N” by the inverse of the final rotation in
the singular value decomposition of N” leaves matrices whose n” columns include
n” — n columns of zeros. Deleting these zero columns gives a p by n matrix to call
Y and an n” by n matrix which we premultiply by its transpose to obtain J. Putting
X = G*YV* in the proof of Lemma 1.1 and citing th€ invariance of the distribu-
tions of matrices of independent unit normals under rotations on both sides, we are
left only with elementary details to verify. []

Our representation via the n by » Haar rotation R reveals intriguing symmetry
relationships. If we split R into the four rectangular submatrices with sides of
dimensions p and n — p by m and n — m, the identity RR* = R*R = | means
that we obtain the squares of the ordered positive singular values of one rectangle
by subtracting from unity the squares of the reverse-ordered positive singular
values of either adjacent rectangle. Thus our limiting measure to be derived in
Section 3 must be invariant under each triple of interchanges p <> n — p, me m,
xo(l=x)3; peop, mon—m, xo(l - x?)2; and pe>n—p, mesn — m,
X & X,

One way of phrasing these symmetries is to take along with the empirical
measure of positive singular values for one rectangle the measures for the other
three rectangles. In the measures for the adjacent rectangles replace x by (1 — xz)%
and leave the measure for the opposite rectangle alone. Then our original measure
equals a superposition of these four measures, with arbitrary weights summing to
one.

Now it turns out, remarkably enough, that we obtain the limit measure of
Theorem 3.1 from a set of parallel operations. First replace each rectangle with
dimensions r by ¢ from our Haar matrix with a rectangular matrix of independent
unit Gaussians of dimensions r — r¢/n by ¢ — rc/n. Form the limiting random
spectra of these four rectangular matrices. Choosing one rectangle, transform the
measures for adjacent rectangles by x < (1 — xz)%, and leave the oppaosite one
alone. Then it turns out that the superposition of the absolutely continuous positive
parts of these four measures with equal weights scaled to give total mass one
produces our limiting empirical measure in Theorem 3.1 in the atomless case. The
mass of the term from the r by c¢ rectangle in the superposition is (min(r,c) —
rc/n)/2p. We make no use of this characterization in our proof, but it suggests the
possibility of a different derivation from convergence theorems for random spectra
using suitably clever conditioning and superposition.
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2. Paths to the asymptotic limit. In this section we embed the p by m and p by
n matrices that figure in the representation in Section 1 into sequences of matrices
whose dimensions go to infinity together, and we state the results about asymptotic
limits which will enter our proof. We begin with a collection of definitions which
hold throughout Sections 2 and 3.

DerFiNITIONS 2.1, Y and Z are independent infinite matrices of independent
random variables with unit variances, the same means within rows, and a uniform
bound on some central moment above the second.

p(n) and m(n) are nondecreasing sequences of positive integers for » > 2 such
that p(n)/n— B > 0 and m(n)/ n — u > 0 as n goes to infinity.

o is any infinite sequence of elements in (0, 1].

Z{o) is the matrix with elements ¢,Z;.

K,{o) is the empirical measure of o, - - - 0,,.

R,{o) is the empirical measure of the singular values of the p(n) by n upper-left
submatrix of Z{¢)/ n? for the dimension triple p, n, n.

A is the measure that puts unit mass at unity.

M(F, u, w) is an analytic function of the complex argument w off the real axis
for each probability measure F and positive real u given by

M(F, u,w) = 2u— 1)/ (2w) — (1/2)f°_°°°———th_(t3v.

W(K, u, B, z) is an analytic function of the complex argument z off the real axis
for each probability measure K and positive reals u and B8 given by

WK, B,2) = (n/2) + g —2K0)

(1/1) - z

R denotes the real line.

P denotes probability.

Prob S for a topological space S is the space of Borel probability measures on S
with the topology of weak convergence, under which a sequence of measures
converges if and only if the expectations they assign to bounded continuous
functions converge.

D is any metric for Prob R which imposes the same sense of uniform conver-
gence as we obtain from neighborhoods of zero in the linear space (containing
Prob R) of all bounded linear functionals on the bounded continuous functions on
R with the weak-star topology. For instance, D may be the metric defined on page
59 of Wachter (1974) or page 9 of Wachter (1978).

The sequences p(n), m(n) form a “path of dimensions” if p(n) + m(n) < n,
pin+1)—pn)< land m(n + 1) — m(n) < 1forn > 2.

Our theorem in Section 3 rests on the following two propositions, which are
proved as Theorem 2.1 and Theorem 2.4 of Wachter (1978):

ProrosiTiON 2.2.  If p(n), m(n) form a path of dimensions, if B < u, and if the
empirical distribution K, (o) of the row scale factors converges in Prob R to a
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measure K, the random spectrum R,{c converges almost surely in Prob R to a fixed,

nonrandom measure F determined by the -condition for nonreal w that
W(K, p, B, M(F,u, w)) = w.

PropositioN 2.3.  If p(n), m(n) form a path of dimensions and G,(o) is the
measure determined by the condition for nonreal w that

W(K, o, m(n)/n, p(n)/n, M(G,(a), m(n)/n, w)) = w,
then D(R,{0>, G,{06)) converges in probability to zero uniformly over a.

The restrictions on the sequences p(n), m(n) needlessly complicate manipulations
with differing dimension triples, so we prove a technical lemma to relax them.

LEMMA 2.4. The conclusions of Propositions 2.2 and 2.3 still hold whether or not
p(n), m(n) are paths of dimensions, so long as they are nondecreasing sequences of
positive integers with p(n) < m(n) < n and p(n)/n—> B > 0 and m(n)/n —p >0
as n goes to infinity.

PrOOF. On a graph of the lattice of pairs of positive integers mark the pairs
p(n), m(n) and connect them with a broken line. Among all step functions with
steps only at integers and only of integral height starting at (0, 1), choose the
highest which lies wholly below this broken line. Let p(n’), m(n’) be an enumera-
tion of the pairs of integers that this step function traverses in order. Then
p(n’), m(n’) forms a path of dimensions and p(n’) + m(n’) = n’. There is a finite
nonzero limit to n’/n, namely p + B, and p(n) < m(n) at the junctures of the
broken line implies p(n’) < m(n’) along the step-function in between. Furthermore,
convergence of p(n)/m(n) to B/u implies convergence of p(n’)/ m(n’) to the same
limit, since the step function falls never more than two units below or to the right
of the broken line.

Replacing n by n’ under our conventions rescales the singular values by the
square root of g = n/n’ and increases or decreases the number of singular values
fixed at zero by n” — n = (1 — g)n’. Now augmenting the atom and rescaling in
this fashion converts any empirical measure F into

F*2(r) = gF(t(g)7) + (1 — g)A( + 1).

Then R, converges to F whenever n/n’ converges to g and R¥"/" converges to
F#%, We must now check that M(F¥®%, ug, wg) = M(F, u, w) so that
W(K, ug, Bg, M(F *%, ug, wg)) = wg is equivalent to W(K, u, B, M(F, p, w)) = w.
0

3. Convergence of the empirical measure.

THEOREM 3.1. The empirical measure of the p(n) positive solutions x to the
determinental equation det|YJY* — x>YY*| = 0 for a p(n) by n matrix Y of indepen-
dent unit Gaussians and an n by n projection matrix J of rank m(n) converges in



LIMIT E.C.D.F. OF DISCRIMINANT RATIOS 945

probability in Prob R as n goes to infinity and p(n)/n — B and m(n)/n — p for B and
w in (0, 1). The limit in distribution is a fixed, nonrandom probability measure with
density between A = |(u — pB) — (B — pB)?| and B = |(u — pB)* + (B — nB)’|
given by ((x — A)(x + A)(B — x)(B + x))? /[aBx(1 — x)(1 + x)] and atoms of size
max(0, 1 — u/B) at zero and size max(0,1 — (1 — p)/B) at unity.

ProoF. By virtue of Lemma 1.1 we can begin with a sequence of independent
matrices the nth of which is a Haar-distributed » by n orthogonal matrix. For each
n we take a p(n) by m(n) rectangular submatrix of the nth matrix, and let
Ly(n) - - - L,(n) be its randomly shuffled p(n) largest singular values. We augment
each L(n) to an infinite sequence by adjoining, say, values y, , - - - on the right.
Li(n) - - - L,(n) are the same as the diagonal elements of L in Lemma 1.1 which
proves them equal to the roots of the determinental equation for suitable Gaussian
Y when p < m. This claim is also true when m < p, for Lemma 1.1 then holds for
the largest m roots and singular values other than one, while the remaining p — m
are ones Or zeros.

Under Definitions 2.1, K,{L(n)) is the object whose convergence we are trying
to prove. We are going to work our way back to this convergence by a circuitous
route, and the reasons for our detours are clearer if we see first what would prevent
us from working forward if we knew that X,{L(n)) did converge in some sense to
a limit K. Then we should like to apply Proposition 2.2 to conclude that R,{L(n))
converged to the limit F determined by W(K, 1, 8, M(F, 1,w)) = w. But we cannot
apply Proposition 2.2 because L(n) is random rather than fixed and because
L(n + 1) is not an extension of L(n) but a whole new sequence for each n. We are
not riding the same sequence down to the finish line; rather, as it were, we are
leaping from horse to horse in mid-gallop, changing sequences with every change
of n, a circus stunt for which Proposition 2.2 was not designed.

We can at least use the condition W(K,{L(n)>, 1, 8, M(G,{L(n)>, 1, w)) = w to
generate a sequence of measures G,{L(n)) which with luck ought to converge to
the solution F to W(K, 1, B, M(F, 1, w)) = w. We should then like to apply
Proposition 2.3 to conclude that R,{L(n)) also converged to F, although we
cannot apply Proposition 2.3 without further argument, because L(n) is random
rather than fixed. We do, however, at least know from Lemma 1.1 that R,{L(n))
has the same distribution as the random spectrum S, of the matrix Y for the
dimension triple p(n), m(n), n, a rather different triple from p(n), n, n with which
R, itself is constructed. Furthermore, we can apply Proposition 2.2 to prove that S,
converges to a limit F determined by W(A, pu, 8, M(F, p, w)) = w, and so we
finally arrive at a limit for R,{L(n)) courtesy of S,.

We are using here the equivalence of the distributions of singular values of the
scaled p by n matrix Z{L(n)) with the unscaled p by m matrix Y. We can describe
our problem as a hunt for the distribution of random scale factors which makes a
p(n) by n scaled case look like a p(n) by m(n) unscaled case in the limit. The main
fact in our favor as we now try to reverse our path and go back from S, to
R, (L(n)) to G,{L(n)) to K {L(n)) is the stochastic degeneracy of the limit F.
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We begin, then, with the matrix Y and its random spectrum S, for the dimension
triple p(n), m(n), n. Lemma 2.1 tells us that, for all n, S, has the same distribution
as R,{L(n)>, the random spectrum of Z{L(n)) for the dimension triple p(n), n, n.
(If m <p,p — m elements of L(n) are always zero, as are p — m of the p largest
singular values that enter S,.) We write Law S, = Law R,{L(n)). Almost sure
convergence entails convergence in distribution, so Proposition 2.2 makes Law S,
converge in Prob(Prob R) to unit mass at the measure F determined by the
condition for nonreal w that W(A, u, 8, M(F, u, w)) = w. This is the defining
condition for F to which we later refer. Strictly speaking, Proposition 2.2 requires
B < p, butin case p < 8 we apply it to Y* with the triple m(n), p(n), n. The simple
form of A enables elementary algebra to verify that W(A, B, u, M(F, B, w)) — w =
0 implies W(A, u, B, M(F, u, w)) — w = 0.

We now know that Law R,{L(n))> also converges to unit mass at F. Since the
limit is fixed rather than random, convergence in distribution to F entails conver-
gence in probability. In terms of our metric D for Prob R we are justified in writing

Ve, 6 AN Vn > N P{D(F, R,(L(n))) <8} > 1 — e
We resort to epsilons and deltas because we must be careful with the uniformity
condition in Proposition 2.3 which allows us to pass from fixed sequences o to
random ones L(n). Let G,{o)> be the measure determined (as Proposition 2.2
assures us) by the condition for nonreal w that

W(K{o>,1,8, M(GLo>,1,w)) = w.

The inclusion of the support of K,{o ) in [0, 1] restricts the support of G,(¢) to at
most [—2,2]. We now have by Proposition 2.3

Ve, 8INVn > NVoP{D(R,(0),GLa)>) <8} > 1 —e.

The same N works for all ¢ and gives us control over R,{(L(n)) conditional on
L(n) = o. The sequence o is a fixed sequence. We are conditioning on a different
event for every n. But, fortunately for us, we are able to operate with the values of
n separately one at a time. Integrating the conditional probability over the
distribution of L(n), we have

Ve,6 ANVn > NP{D(R,(L(n)>,GLL(n)>) <8}>1 — e.

The triangle inequality now squeezes D(G,{L(n)), F) below 28 with probability at
least 1 — 2¢ for all n above some N, so G,{L(n)) also converges in distribution
to F.

Rudimentary weak-convergence theory carries us over the next hurdle in our
proof. Writing simply K,, G,, and R, for K,(L(n)), G,(L(n)) and R, (L(n))
from here on, we note that K, is the empirical measure of a collection of roots in
[0,1]. The set of all probability ‘measures concentrated on [0,1] is a (closed,
uniformly tight) compact subset of Prob R. The set of all probability measures in
Prob(Prob R) concentrated on this compact subset of Prob R includes Law K, for
all the random measures K, and is itself a compact subset of Prob(Prob R).
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Thus every subsequence of Law K, has a subsubsequence convergent to a limit
Law K. We want to find Law K and show it to be the same for all subsubse-
quences. By 4.4 on page 27 of Billingsley (1968) convergence in distribution of G,
to F and of K, to K through our subsubsequence along with degeneracy of F is
equivalent to joint convergence in distribution of X,,G, to K, F through the
subsubsequence. In order to infer that M(G,, 1, W(K,,, 1, 8, z)), which equals z for
all z in the range of M converges in distribution to M(F, 1, W(K, 1, B3, z)), through
the subsubsequence we must prove the last expression to be a jointly continuous
function of K and F.

The functions 1/(z — (1/¢2)) and 1/(w — t?) are bounded continuous functions
of ¢ for each nonreal z and w, so the maps which integrate them by dK(¢) and
dF(t) are continuous maps between Prob R and R, Thus W(K,p,B,z) and
M(F,p,w) are continuous in K and F for fixed nonreal w and z, and simple
differencing shows M to be jointly continuous in F and w for nonreal values of w
like the values W(K, 1, 8, z) for z in the range of M. Thus we may assert the desired
joint continuity and define K by the condition M(F, 1, W(K, 1,8,z)) = z for z in
the range of M. The next paragraphs show this condition to determine K uniquely,
so that all the subsubsequence limits will coincide.

We possess all the ingredients for the calculation of W(K,1,8,z). In these
calculations we always take z to be in the range of M and w to be nonreal. The
defining condition for F provides

w = W(A,u,B, M(F,p,w)).

The formula for M in Definitions 2.1 arranges
M(F, p,w) = M(F,1,w) = (1= p)/w
so that
wo= WA p B[M(F 1,w) - (1-p)/w])
Substituting W(K, 1, B, z) for w we obtain the horrendous but crucial formula
W(K, 1,B,z) = W(A p, B[M(F, 1, W(K, 1,8,2)) — (1 — p)/W(K, 1, B, z)]).
Now our weak convergence argument defining K supplies
M(F, 1, W(K, 1,B,2)) = z

so the argument in bracketsis y = z — (1 — w)/ W(K, 1, B, z). The formula for W
in Definitions 2.1 gives

WA, B,y) = n/y + B/ (1-).
Therefore W(K, 1, B, z) satisfies a quadratic equation with coefficients which are
quadratics in z. We find

W(K, 1,8,z) =

(1B tl-u, 1-p—u (4’ 1/2)(B>-1/2)
‘(1/22)( 17z T 1-1/z © (/21 =1/7) )
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with

1 1
|(p — wB)? — (B — pB)?|
1 1
B = |(p— pB)* + (B — pB)
The proper branch of the square root is the one which makes it equal p — 8 at
z =0 and equal B8 — (1 — p) at z = 1. This claim follows from equating the

expression

A

2wM(F, 1, w) = 2 — [(£2/ (> — w)) dF(?)

from Definitions 2.1 with the expression just derived for 2zW(K, 1, B, z) at
z = M(F, 1, w). The measure F, being the almost sure limit of S, has an atom of
mass 1 — min(2y, 28) at the origin, so in the expression involving F as w goes to
zero along the positive imaginary axis, M(F, 1, w) = z goes to infinity and 2wz
goes to 2 — min(28, 2p). That value has to equal 2 — 8 — u *+ (4 B 2)%. Similarly,
in the expression involving F we cannot have w go to infinity when z goes to 1, so
1 — B — p has to equal —((42 — 1)(B* — 1))2. We notice parenthetically that
2zW(K, 1, B, z) goes to 2 as z goes to zero and that W(K, 1, B, z), which equals
W(K, 1, B, Z) has positive imaginary part when z has negative imaginary part, and
vice versa.

The formula for W in Definitions 2.1 gives

dK(¢)
(1/z) - &
The expression we have derived for W(K, 1, B, z) now supplies in the limit where
1/z = x? + iy and y decreases to zero a finite limit for

dk(y) _ _ B—p 1-B—p

+
24— 28(x*+ i) 2B8(1—-x*— i)

(42— 2 = p)(B> = x* = )"

28(x% + p)(1 — x* — i)
for all finite x, except perhaps zero and unity. This limit has a nonzero imaginary
part only for A2 < x? < B? given there by ((x — A)(x + A)Y(B — x)(B +
x))% /(2Bx(1 = x)). If p < B there is a pole at zero with residue 1 — p/f and if
1 — pu < B there is a pole at unity with residue 1 — (1 — p)/B. We can recover K
from the imaginary part of these limits of its transform via a rarely quoted version
of Fatouw’s Theorem for the half-plane (cf. Hoffman (1962), pages 34 and 123)
which is not hard to verify directly: For any test function g(¢) continuous off a
K-nullset, [g(¢) dK(t) equals

limit, o (1/2mi) e[ 1(1/ (x* — iy — 12))dK(z)
— J(1/ (x> + iy — 1?))dK (1) ] g(x)(2x) dx.

222W(K, 1,B,z) — (2 —2B)z = 2B/§




LIMIT E.C.D.F. OF DISCRIMINANT RATIOS 949

It follows that K itself has a density on [A4, B] given by
((32 — x?)(x? - Az))%
aBx(1 — x?)
along with atoms of size max(0,1 — p/B) at zero and max(0,1 — (1 — u)/B) at
unity.

Since every subsequence of K, has a subsubsequence converging in distribution
to the same nonrandom limit K, K,, itself converges in probability to K. []

4. Discriminant ratios, canonical correlations, and MANOVA. We can relate
our roots to familiar quantities in linear multivariate analysis concisely through the
definition of L, - - - L, established in Lemma 1.2 as solutions to det| YNJNY* —
x?YNY*| = 0 where we now omit the double primes of 1.2 except on n”, letting Y
be a p by n” matrix of independent unit Gaussians, while J and N are n” by n”
projection matrices of ranks m and n.

In multiple discriminant analysis we start with a sample Y of n” =n + 1
p-vectors divided into m subgroups. The matrix N is the projection onto the
complement of the space spanned by any sample grand mean vector and J is the
projection onto the space spanned by subgroup sample means. The usual null
hypothesis asserts equality of the subgroup means. Lachenbruch (1975), pages 63 to
72, is a standard reference.

For canonical analysis, we start with two samples Y and X of dimensions p by n”
and m by n” respectively, where n” = n + 1. Let N again denote projection onto
the complement of any sample grand mean and for any matrix C let hat(C) denote
projection onto the space spanned by columns of C. Excepting singular cases,
hat(C) = C(C*C)~'C*, the “hat matrix” of Tukey in Hoaglin and Welsch (1978),
page 17. Put J = hat(NX*) and observe NJN = J. The canonical correlations
between Y and X are then the positive solutions to det| YJY* — x>YNY*| = 0 and
the usual null hypothesis takes Y and X independent. Anderson (1958), pages
323-324, is a standard reference.

For the MANOVA model expectation (Y*) = XS, where Y is a p by n” sample,
X an n” by r design matrix of rank r, and S an r by p parameter matrix, consider a
null hypothesis of the form CS = 0 for an s by r matrix C of rank s. Invariant tests
are functions of our roots if we put N = I — hat(X) + hat(X(X*X)~!C*) and
J = NJN =1-—hat(X). Here n=n" — r + s and m = n” — r. Detailed refer-
ences are Roy, Gnanadesikan, and Srivastava (1971), pages 32 to 36, and Timm
(1975), pages 189 and 371.

The five well-known test statistics called Hotelling’s Trace, Pillai’s Trace, the
Largest and the Smallest Root criteria, and Wilks’ Likelihood Ratio are all
functions of the empirical measure whose limit we have found. Without wanting to
recommend hypothesis testing compared, for instance, to the plotting methods of
Section 5, we may still set out consequences of Theorem 3.1 for these statistics.



950 KENNETH W. WACHTER

COROLLARY 4.1 (to 3.1). Under the null hypotheses covered by Theorem 3.1 for
0<B<u<B+p<lasp/n— B, m/n— pand n goes to infinity, the following
test statistics converge in probability:

a) Hotelling’s Trace A/p)Z —-1/A0 = 1/L}) top/(1 —p— B)

b) Pillai’s Trace (1/p)=L? top

c) Largest Root maximum L? top+ B —2uB 1
+2(pB(1 = p)(1 — B))?

d) Smallest Root minimum L2 top+ B —2uB .
—2(pB( — p)1 — B))?2

e) Wilks® Likelihood Ratio (1/p)X log L; to [ log(x) dK

PrOOF. Consider the five functions [(x*/(1 — x?) dF, [x’dF, F~'(1 — 1/2n),
F~'(1/2n), and [ log(x) dF, functions of n and of a probability measure F. These
equal the five test statistics respectively when F is the empirical measure K,. For
0<B<u<B+ p<1 there is no sequence of measures converging to the
limiting empirical measure K for which the values of the five functions do not
converge to their values at F = K. This assertion is the condition for applying
Theorem 5.5 on page 34 of Billingsley (1968), which establishes convergence in
probability. The integrals may be evaluated with help from the transform [(—1/(¢?
— 1/2)) dK given at the end of the proof of Theorem 3.1. []

The limiting distributions demanded for significance tests are not the constants
of 4.1 but rather the differences between the statistics and these constants, all
multiplied by the square root of p, more delicate limits about which we have
proved nothing. Yet by and large these centering constants themselves (like the
limiting distributions) appear to be known already only when p/n goes to zero. A
suggestion by Colin Mallows to treat p singular values like alternate order statistics
from an independent sample of size 2p — 1 from the limiting empirical distfibution
has met with success in studies by Lurie (1978) of principal component variances,
and does generate guesses at significance levels. It is interesting to compare the
centering constants and Mallows-style guesses against tabulated levels for the test
statistics to address two questions. First, how easily does Theorem 3.1 extend the
information in current tables? Second, how close to its asymptotic limit is the
empirical measure for the rather small p, m, and n which current tables treat? Space
constraints preclude a systematic study here, but three examples are instructive.

The rescaled version (n + m —p — 1)/(mp — np))Z log L, of Wilks’ Likelihood
Ratio is often compared against a chi-square variable divided by its mean with
degrees of freedom equal to p(n — m). For large p, m, and n Corollary 4.1 shows
this scaling to be wrong unless p/n goes to zero. The factor (1 + u — B)/(1 —
w))f log(x)dF which connects the means of the scaled Wilks’ statistic and the
scaled chi-square does not equal unity unless 8 = 0. Exhibit 4.2 compares this
factor against the factor connecting the ninetieth percentiles of the two statistics
tabulated by Schatzoff (1966). His parameters p, g, M, and n equal our p, n — m,
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EXHIBIT 4.2.
Comparisons on adjustment factors for Wilks’ likelihood ratio
p m n B M Schatzoff 90% factor lt—f“—ﬂ f log(x) dK
8 9 17 471 529 1.270 1.211
8 10 18 444 556 1.185 1.150
8 11 19 421 579 1.138 1.115
8 12 20 400 .600 1.108 1.091
8 17 25 320 .680 1.046 1.040
8 27 35 229 771 1.017 1.015
8 67 75 .107 .893 1.003 1.002
7 8 18 389 444 1.285 1.223
7 9 19 368 .474 1.197 1.160
7 10 20 350 .500 1.148 1.123
7 11 21 333 524 1.117 * 1.099
7 16 26 269 615 1.051 1.045
7 26 36 194 722 1.019 1.017
7 66 76 .092 .868 1.003 1.003

m + 1 — p, and m respectively. We choose p and n — m values among the highest
Schatzoff lists. The factors agree within 4% for 8/u below .80, suggesting 4.1 as a

reasonable surrogate for Schatzoff’s tables beyond the p, m, and n he treats.
Our second comparison ventures still further toward low dimensions, considering

percentiles of the smallest and largest root given by Chang (1974) for p = 3.
Chang’s parameters p, m, and n equal our p, (m —p — 1)/2,and (n — m — p —
1)/2 respectively. The 90th percentile of the square of the smallest root from
Chang, labeled 1:90%, is juxtaposed against an asymptotic percentile labeled
K:22.6%. This is the squared 22.6th percentile from the limiting empirical measure,
the 22.6th percentile of any distribution being the 95th percentile for the smallest of
2p — 1 =9 independent observations from it. Similarly, Chang’s 95th percentile
for the squared smallest root (1:95%) is juxtaposed against the asymptotic per-
centile K:28.3%. The differences between Chang’s values and the asymptotic
percentiles are substantially smaller than the differences between 90th and 95th
percentiles, except for overshoot at 95% in the first and third rows. The last three
columns of Exhibit 4.3 compare the squared upper bound B? for the support of the
limiting empirical measure against the 95% and 99% quantiles for the squared
largest (fifth) root, labeled 5:95% and 5:99%. Here the upper tail of the largest root
distribution creeps beyond the asymptotic upper bound, but the size of the excess
considering the low dimension is hardly discouraging.

ExHiBIT 4.3.
Comparisons on smallest and largest roots

p m n B p 1:90% K:22.6% 1:95% K:28.3% B? 5:95% 5:99%

6 16 .313 375 .088 .106 113 .146 902 929 961
36 46 .109 .783 .664 .664 .689 697 978 985 .992
32 .156 .188 .035 .043 045 .060 569  .607 676
36 62 .081 .581 .451 454 473 482 .836 .857  .885

AV IRV IRV V)
(=)}
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Among the tabulations in Krishnaiah and Schuurmann (1974) are various upper
percentiles for all six roots of the complex MANOVA matrix when p = 6. The
applicability of Theorem 3.1 to the complex case which we have discussed in
Section 2 after Lemma 2.1 makes these tables relevant, though the medians of the
six roots would make for better comparisons than the upper percentiles. Exhibit 4.4
gives the 95th percentiles for each root for four cases, followed by the p-value from
3.1 for each case, that is, by the probability that the limiting empirical measure
assigns to values less than the tabled percentile point. The bottom line gives the
same probability for the 95th percentiles of alternate order statistics from a sample
of size 2p — 1 = 11. Considering the variety in the percentile values, the close
match down each column in the p-values argues that important structure for
dimensions as low as 6 is already being captured by the asymptotic form. The
alternate order statistic guesses, however, fit badly, at least this far out into the
tails.

ExHiBIT 4.4.
Comparisons on upper percentiles of ordered roots in complex case

95% quantiles of ordered squared roots
m n #1 #2 #3 #4 #5 #6

p
6 6 17 .0444 .1646 3356 5324 7281 8972
6 21 32 4389 5796 7025 .808 .8958 9624
6 6 32 0190 .0730 1571 2694 .4095 5877
6 21 47 2630 3633 4627 563 6669 7799
B I p-values from limiting empirical measure
353 353 .183 359 529 695 855 993
.188 656 .194 .366 533 696 .856 .993
.188 .188 .183 360 530 696 .857 994
128 447 195 367 535 .699 .859 995
alternate } 238 470 650 .800 921 995
order stats.

5. Quantiles of the limit measure for probability plotting. Probability plotting
of multiple discriminant ratios, canonical correlations, and MANOVA eigenvalues
offers a substitute for formal hypothesis testing when the range of interesting
alternative kypotheses is hard to restrict and the kind of divergence from a null
hypothesis, not merely the fact of divergence, is at issue. Methods based on our
limiting empirical measure are described in Wachter (1976d). They apply when the
dimension p and the two degree of freedom parameters m and n — m are all
comparably large, so that the asymptotic empirical measure is a plausible ap-
proximation to the expected empirical measure for the finite parameter values. The
comparisons in Section 4 suggest that the methods begin to be useful when p, m,
and n are about 10, but detailed simulations would be desirable to indicate more
clearly the rapidity of convergence.

The definitions of the parameters p, m, and n and of the roots L, appropriate to
null hypotheses in each area of application are found at the start of Section 4. The
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singular value decompositions in the proof of Lemma 1.1 are generally efficient
ways of calculating the roots (cf. Chambers (1977), Chapter 5). If roots are output
from packaged programs, it is essential to put them in a form equivalent to that in
Section 4 or transform the empirical measure accordingly. Many programs reverse
m and n — m or output L?, not the L, with which we are dealing. The choice is
purely conventional, our unsquared roots having the virtue of being on the familiar
scale of correlations. The roots given in Wachter (1976d) are squares of the roots
given here. Exhibit 5.1 shows quantiles of the limiting empirical measure for cases
of B and p satisfying 8 < p <p + B < 1 and so having no atoms. If we inter-
change B and p, putting B’ = p, p’ = B so that p’ < B’, we create an atom of size
(B’ — w)/B’ at zero, but the quantiles of the distribution conditional on values
greater than zero, which are the quantiles of real interest, remain unchanged. The
further symmetries mentioned after Lemma 1.2, namely under interchanges

Bol-Bxo(l-Dhpel-pxo(l-x);

Beol=-Bpol-—up

ExHIBIT 5.1
Quantiles of the limiting empirical measure of 3.1
p=.50 .50 .50 .50 .50
F B =.10 .20 30 40 .50
.00 447 316 204 .101 .000
.04 .492 .380 279 179 .063
.08 519 420 329 235 125
12 .542 .455 374 288 187
.16 .563 487 415 339 249
.20 .583 517 455 .388 309
24 .602 546 493 435 .368
.28 619 573 529 481 426
32 636 .599 564 526 482
.36 .653 .625 .598 .569 .536
40 .669 .649 .631 .611 .588
44 .684 .673 .662 .651 .637
48 .699 .696 692 .689 .685
.52 714 718 721 725 729
.56 729 739 749 759 a1
.60 .743 .760 776 792 .809
.64 57 781 .801 .822 844
.68 771 .800 .826 .850 .876
72 .785 819 .848 .876 905
.76 .798 .838 870 .900 930
.80 812 .856 .890 922 951
.84 .826 .873 910 941 969
.88 .840 .890 927 957 .982
92 .854 .907 944 972 992
.96 .870 925 960 984 .998

1.00 .894 949 979 995 1.000
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L= .60 60 .60 .60

F B=.10 20 30 40
.00 535 410 302 200
04 579 476 383 291
08 605 516 434 352
12 628 550 A79 407
16 648 582 521 458
20 666 610 559 506
24 648 638 596 552
28 700 663 630 .59
32 716 688 663 638
36 731 11 694 678
40 745 733 724 715
44 759 755 752 51
48 73 775 779 784
52 786 795 804 815
56 799 813 828 844
60 811 831 850 871
64 823 848 871 895
68 835 865 891 917
72 847 880 909 936
76 858 895 925 953
80 870 909 940 967
84 881 923 954 979
88 892 935 966 988
92 904 948 976 995
96 917 960 985 999
1.00 935 976 994 1.000

make our tables apply to all parameter combinations, so long as the atoms at zero
when p. < B and at one when 1 < u + B are borne in mind.

In order to compare a set of roots for multivariate samples against their
approximate expected empirical measure, we choose the column in Exhibit 5.1 with
B and p nearest to p/n and m/n. We then plot the ith smallest of the p observed
roots L, on the y-axis against the value X; on the x-axis which is the table entry
for which F(X,) is closest to i/(p + 1) or we interpolate for greater accuracy.
Points falling away from the 45 degree line through the origin indicate divergence
from the null hypothesis. An example of the application of these methods to actual
data is given in Wachter (1976d), pages 832-833. That paper also discusses cases in
which traditional practices searching for sets of large roots or gaps in the set of
roots as clues to divergence from the null hypothesis can prove thoroughly
misleading, as contrasted with the probability plotting methods advocated here.

The computation of quantiles in Exhibit 5.1 capitalizes on the super position
representation of K described at the end of Section 1 to utilize general programs for
quantiles of limiting random spectra already developed for principal components in
Wachter (1976a). The quantiles have been checked for accuracy of one unit in the
third decimal place by relying on the following result:
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COROLLARY 5.2 (to 3.1).

K(x) = (1 - w)Ky(p — pB, B— 1B, x)

+[.L(1 - Ko(l — ,B —u+ .U‘:B> IJ-:B’ (1 - x2)%)

where

Kya, b, x) = (1/7b){x(a — x2U%a, b, x))* - (a) arc cos(xU/ (a)?)

+ (b) arc cos(x(U -1/ (b)%)}

955

The limiting measure of Theorem 3.1 when 0 < 8 < p
< u + B < 1 has a distribution function given by

and U(a, b, x) = (1 + (a — b)/x%)/2 with range of the arc cosine between zero

and .

The mean, variance, and third central moment of x* under this distribution are s
Bu(l — w), and pB3(1 — p)(1 — 2u) respectively.

ProoOF. By differentiation and contour integration. []

p=.70 .70 70

B=.10 20 30
F
.00 621 503 400
04 663 569 484
.08 688 609 537
12 709 642 581
.16 727 672 622
20 745 699 659
24 760 725 693
28 775 748 725
32 789 770 755
36 803 791 784
40 815 811 810
44 828 830 834
48 839 847 857
52 851 864 878
56 861 879 898
.60 872 894 915
64 882 907 931
68 892 920 946
72 901 932 958
76 910 943 969
80 919 953 979
84 928 962 986
88 937 971 992
92 945 978 996
96 954 985 999
1.00 967 993 1.000
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=80 80 u=.90
B=.10 .20 B=.10

F F
.00 707 .600 00 800
04 747 665 04 .836
.08 770 703 .08 857
12 789 735 12 873
.16 .806 763 .16 888
.20 821 788 20 .900
24 835 811 24 912
28 .848 832 28 922
32 860 851 32 931
.36 872 869 36 .940
.40 .882 885 40 948
44 .892 901 44 955
48 .902 915 : 48 961
.52 911 927 .52 967
.56 919 939 .56 973
.60 927 950 .60 978
64 935 959 64 982
.68 942 968 .68 986
72 949 975 72 989
.76 955 982 ‘ 76 992
.80 962 987 .80 995
.84 967 992 .84 997
.88 973 995 .88 998
92 978 998 92 .999
96 983 999 96 999
1.00 .990 1.000 1.00 1.000

Unfortunately, few authors have been accustomed to quote the values of the full
set of roots when they perform discriminant or canonical correlation analysis or
MANOVA tests. This lack precludes us from giving a good selection of illustrative
examples in the present paper. It is to be hoped that quoting all the roots will
become standard practice, so that good examples can be collected and agreement
with null hypotheses reviewed on the basis of the asymptotic results.

The scope of our probability plotting methods would be enhanced if we
possessed asymptotic forms for the empirical measure of our roots under alterna-
tives to the null hypothesis, like those for principal components in Wachter (1975),
(1976a) and (1976b) studied in Lurie (1978). But the obstacles to proving anything
once we surrender the two-sided rotational invariance of the distribution of the
matrix Y in 3.1 are formidable. Even the strengthening of Theorem 3.1 from
convergence in probability to almost sure convergence in the null case appears
nontrivial. Nor is the problem of limiting forms particularly amenable to simula-
tion, because so many cases of the parameter values demand investigation. It may
therefore be that further progress will have to await new breakthroughs in the
theory of random matrix spectra.






