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BAYES SEQUENTIAL ESTIMATION OF A POISSON RATE:
A DISCRETE TIME APPROACH!

By BraDLEY NoviC
Carnegie-Mellon University

This paper provides explicit solutions to the problem of estimating the
arrival rate A of a Poisson process using a Bayes sequential approach. The loss
associated with estimating A by d is assumed to be of the form (A — d)?A 7 and
the cost of observation includes both a time cost and an event cost. A discrete
time approach is taken in which decisions are made at the end of time intervals
having length ¢. Limits of the procedures as ¢ approaches zero are discussed and
related to the continuous time Bayes sequential procedure.

1. Introduction. Suppose that one observes a continuous-time Poisson process
in order to estimate its arrival rate A using a Bayes sequential approach. The
observation cost is assumed to be ¢, per unit time and ¢, per event observed where
¢, and c, are nonnegative constants. The loss associated with estimating A by d is
assumed to be of the form LQ, d) = (A\ — d)*\ 7 where we will discuss values of p
in the interval 0 < p < 3. Thus the total loss resulting from estimating A by d after
having observed the process for time ¢ during which X, events occurred is
L, d) + c;t + c,X,. Prior information about A is assumed to be represented by a
gamma distribution.

In this paper a discrete time approach is considered in which the process is
observed continuously but decisions are made at the end of time intervals having
length . The optimal Bayes sequential decision procedure for estimating A is
determined explicitly. Furthermore, the solutions will be presented in a simple form
which makes them appealing for practical applications. This approach contrasts
with one taken by Shapiro and Wardrop [6] in which decisions can only be made at
the time an event occurs. El-Sayyad and Freeman [4] have also attacked the
problem using both approaches and various loss and cost functions. Shapiro and
Wardrop [7] have also solved the problem in continuous time using the notion of
“monotone case” for continuous time problems and employing Dynkin’s identity.

If the prior gamma distribution over A has density function g(QA) =
T'(a) " 'B*A*"'e™* and one observes X, events in time ¢, the posterior distribution
at time ¢ will also be a gamma distribution with parameters (a + X,, 8 + ¢). It will
be convenient then to represent the results of experimentation by a plot of the
posterior parameters. The optimal stopping region will be determined using back-
ward induction; see, e.g., DeGroot (1970) or Chow, Robbins and Siegmund (1971).
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2. Observation cost proportional to observation time (c, = 0). Define py(a, B)
as the risk, or minimum expected loss, of estimating A without any observation of
the process when (a, B) are the parameters of the prior distribution. Define
p(a, B, t) as the risk, or minimum expected total loss, of the optimal procedure
when i sampling intervals of length ¢ are available. Also define p*(a, B, ¢) as the
risk of the optimal procedure in the infinite horizon case. Then
2.1) pi(a, B, 1) = min{py(a, B), E[po(a + X,, B + 1)] + ¢t} and

pi(“: B’ t) = rnin{f’o(“: :B)9 E[pi—l(a + Xt’ :B + ¢ t)] + clt}
where the expected value is taken with respect to the marginal distribution of X,.
The functions p; determine the optimal procedure in a finite horizon problem. The
role they play here will be their use in determining the nature of the function
p*(a, B, ). Since p*(a, B, f) = min{py(a, B), E[p*(a + X,, B+ 1, 1)] + c,t}, the
optimal stopping region in the (a, 8) plane is {(a, 8)|p*(a, B, ¥) = po(a, B)} and
the continuation region is {(a, B)|p*(a, B, t) < poa, B)}.

The stopping risk py(a, 8) associated with the Bayes estimate d = 8~ '(a — p) is
given by p(a, B) = B T'(a — p + 1)/T(a), where we assume a >p. By (2.1),
pi(a, B, 1) = min{py(e, B), pola, B) — [1B°~T(e — p + 1)/(B + HI(a) — ¢,1]}.
Thus, the optimal procedure when at most one sampling period is available for
observation is characterized by the following stopping region R, , and continuation
region R, ,:

(22) R, = {(¢, B)IT(a)/T(a —p + 1) > B77%/c\(B + 1), a >p, B > 0}
R, = {(a, B)T(a)/T(a = p + 1) <PF72/c\(B + 1), >p, B > 0}.

3. Characterization of the optimal stopping region for 1 < p < 3; ¢, = 0. Note
that for 1 < p < 2, T'(a)/T(a — p + 1) is nondecreasing in a« and B7~2/c (B + ©)
is decreasing in B. This is also true for 2 <p <3 if 8 >4p —2)/3 —p). In
either case once the point (a, B8) enters R, ,, the posterior parameters (a + X,, 8 +
f) must remain there. Consider any point (a, 8) € R ,. Then p,(a, B, t) = py(a, B)
and pj(a + X, B+ t,1) = po(a + X,, B + ¢) for all ¢+ and X,. Hence it follows
from (2.1) by induction that p,(a, B, {) = py(a, B) for any n and (a, B) € R, ,.
Furthermore, it follows from [3], page 296, that lim,_ p,(a, B, £) = p*(a, B, ?).
Hence, p*(a, B, 1) = pofa, B) for (a, B) € R, , and p*(a, B, £) < po(e, B) in R, ,.
This proves that R, , and R_, are the optimal stopping and continuation regions
for the infinite horizon problem when 1 < p < 3.

One can partition the continuation region R, , into a number of disjoint regions
such that in each region the optimal procedure is explicitly described. The kth
region is defined as:

(B.1) R = {(0, BB+ kY /e[ B+ (k+1)t] <T(a)/T(a —p + 1)
<[B+(k—1t]""*/cy(B + kt), a >p, B > 0}.

The optimal procedure in the kth region is to observe the process for at least one
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more period. No more than k periods will ever be needed, however, since the
posterior parameters must lie in R, , after k further sampling periods. Since the
prior parameters must belong to one of the above regions for some k = ky < oo,
there is an upper bound k4t on the total observation time.

Note that the optimal procedure was derived by realizing that for certain values
of p monotonicity arises and the myopic rule is optimal. When ¢, = 0 we only find
this to be true for 1 < p < 3, and for the case in which 2 < p < 3 we also need to
choose ¢ such that the prior parameter 8 is greater than #(p — 2)/(3 — p). If this
condition is not met, one can partition R, into R, U R, U R; where R, =
{(&, BIT(@)/T(@ = p + 1) > 7>/, a >p, B > 0}, R, = {(a, B)| BP %/ c\(B
+0) < T(@/T(@—p+1)<B/c,a>p, B >p —2)/(3 - p)}, and Ry =
(@, B B?"2/ey(B+ 1) < T(a)/T(a—p + 1) <Br>/c,a>p, B < (p—2)/
3-p)}. In Ry U R, it is optimal to stop sampling and in R, , one should
continue. The optimal procedure in R, is unknown, however.

Note that when p = 1 the optimal stopping region becomes

R, = {(w BB > L2 +4/c) —4,a>1).

If (ag, By) are the parameters of the prior distribution, the optimal procedure is a
fixed time procedure in which one samples for exactly + = max {O,l[%(t2 +4/ cl)%
+ 5 — Bo]} units of time, where [ - ] is the greatest integer function. Note when
= 1 (ordinary Poisson sampling), that the optimal procedure is equivalent to
taking a sequential random sample of exactly 7 = max{0,[3(1 + 4/¢)) + 3 — B}
Poisson random variables.
When p = 2 the optimal stopping region becomes

1
R, , = {(a,B)IB >m— t,a>2, B8 >0}.

The simple form of the boundary is appealing for practical applications.

4. The optimal procedure for ¢, > 0. The cost function for observation time ¢
has the form c(X,) = ¢, + ¢,X,. Thus p,(a, B, 1) = min{py(a, B), E[ps(a + X, B
+ 1) + (X))} = min{pol@, B), polas B) = [1B*~*T(a — p + 1)/(B + H(a) —
¢t — cyta/B]}. Hence the optimal procedure when at most one sampling period is
available is characterized by the following stopping region C, , and continuation
region C_ ,:

al(@(B+1)  ol(a+1)(B+1)
(a —p+1)pP7? T(a—p+1)pr!

G, = {(a,ﬂ)ll—r <0, a>p, B >O}

4.1)

_ _al(@B+1) ol(a+1)(B+1)
v = {t@mi -5

(a—p+DBF? T(a—p+Dpr"

>0, a >p,,8>0}.
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Note that for 1 <p <2 and 8 > #p — 1)/(2 — p) the sum
al(a)(B +9) + l(a+1)(B+ 1)
Na-p+1)BF~2 T(a—p+1)p!
is nondecreasing in a and 8. It follows that once C,, is entered by posterior
parameters it cannot be escaped. By the same arguments given for the case in
which ¢, = 0, C, , is the optimal stopping region and C, , the optimal continuation
region when 1 < p <2and B8 >t(p — 1)/Q2 — p).
If we let ¢, = 0 the above arguments hold additionally for 0 < p < 1 and all +.
This follows by noting that

ol(a+1)(B+ 1)
T(a —p+ 1)pr~!

is increasing in « and B for 0 < p < 1. The optimal stopping and continuation
regions in this case are

T 1
“2) D, = {(0‘, Bl — ;z(a(a_-; -B(I'I;,B-:‘? <O0a>p B> 0} and
. T (]
D, = {(a,B)Il - ;2(0!(0‘_; 3(1/;[:;_? >0,a>p, B> 0}.

5. Convergence to continuous time. One can use the discrete time approach as
an approximation to a continuous time problem, the approximation improving as
the length ¢ of the interval is suitably decreased. In viewing continuous time as a
limiting version of the discrete time problem as ¢ — 0, one obtains the stopping
regions

R, = lim,_,R,, = {(a, B)|T(a)/T(a — p + 1)
(5.1) >pr~3/c;,a >p, B >0},

G = lim 4G, = {(a B)1 = ¢,°PT(a)/T(a —p + 1)

—B*PT(a+1)/T(a —p + 1) < 0,a >p, B >0},
s = limt—>0 st T {(a9 B)'l - czﬁz-pr(a + 1)/r(a -p+ l)
<0,a>p,B >0}

which are the cdrresponding optimum boundaries derived by Shapiro and Wardrop
in their continuous time approach. It can be shown that as ¢ — 0 the Bayes risk of
the optimum discrete time procedure converges to the risk of the continuous time
Bayes sequential procedure, a result needed to rigorously prove that the limit of the
optimal discrete time solution yields the solution to the limiting problem.

When p =3 and ¢, = 0, or when p =2 and ¢, > 0, an exact solution to the
discrete time problem was not obtainable. However, one can identify in each case a

stopping region, a continuation region, and a region separating the above two in
which the optimal procedure is unknown. It should be noted that as the length 7 of

S
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the sampling interval decreases, the size of the region within which the procedure is
unknown decreases. Taking the limit as # — O this region vanishes and one again
obtains the optimum boundaries for the continuous time problem given by Shapiro
and Wardrop.

When p = 1 and ¢, = 0 the optimal procedure is again a fixed time procedure
with optimum stopping region

_1
= {(@ BB > (c)77a>1}.
If (ag, B,) is the prior parameter point, the optimal procedure in this case is to
1
sample for exactly * = max{0, (c,)”z — B,} units of time.
In contrast, the optimal procedure when p =3 and ¢, = 0 is an “inverse”
sampling scheme with optimum stopping region.

, = {(a, B)(a = 1)(a@ = 2) > 1/cp,a >3, 8 >0}

Hence, the optimal procedure in this case is to sample until exactly k£ events occur,
where k is the smallest nonnegative integer such that (ay + k& — 1)(ag + £ — 2) >

1/c,.

When p = 2 the optimal procedure is characterized by the stopping region

{(a,B)IB> ,a>2,8 >0}.

( -1
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