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A NEW BOUND FOR THE EUCLIDEAN NORM OF THE
DIFFERENCE BETWEEN THE LEAST SQUARES AND THE BEST
LINEAR UNBIASED ESTIMATORS!

By J. K. BAKSALARY AND R. KALA
Academy of Agriculture in Poznan

A new bound is established for the Euclidean norm of the difference
between the least squares estimator and the best linear unbiased estimator of
the vector of expectations in the general linear model. The bound is valid
regardless of the rank of the dispersion matrix and is expressed in substantially
simpler terms than the bounds given earlier by Haberman and by Baksalary
and Kala.

1. Statement of the problem. Let the triplet
(1) (v, XB, V)

denote the general linear model in which y is an n X 1 observable random vector
with expectation E(y) = XB and with dispersion matrix D(y) = V; X is a known
n X p matrix, B is a p X 1 vector of unknown parameters and V is an n X n
nonnegative definite matrix, known or known except for a positive scalar multi-
plier. Further, let ji stand for the best linear unbiased estimator (BLUE) of p = X8,
and let p* stand for the least squares estimator (LSE) of u. The LSE is independent
of V and has the representation
p* =Py,

where P = XX* is the orthogonal projector on the column space of X, X*
denoting the Moore-Penrose inverse of X.

Under the assumption that the dispersion matrix of the model (1) is nonsingular,
in which case the BLUE of p may be written

A=XXVIX)"xXv-ly,

Haberman [5] has given a bound for an arbitrary norm of the vector pu* — j,
which, however, is inapplicable unless an additional condition involving the
matrices P and V is satisfied. For the case of the Euclidean vector norm, denoted

by || - |l,, Haberman’s result has recently been strengthened by Baksalary and Kala
[2]. The bound derived in [2],

) a* = fllz < (002 /A)lly — ¥l
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where , is the largest eigenvalue of PV™/(I — P)V™'P and A, is the smallest
nonzero eigenvalue of PV~ !P, is not only valid for any linear model with nonsingu-
lar V but is, in addition, sharper than the bound of Haberman.

Delete now the assumption that the dispersion matrix of the model (1) is
nonsingular. The BLUE of p admits then a representation (Rao and Mitra [6])

3) A=XXT*X)" X'T*y
where
T=V+ XX
It can easily be verified that the arguments used in [2] to establish the inequality (2)

are, without much change, applicable also to the present situation, leading, in
consequence, to the result stating that

@ e* = ll, < (D7/A)lly = g1l
where v is the largest eigenvalue of PT*(I — P)T*P and A is the smallest nonzero
eigenvalue of PT*P.

A weak point of the bounds specified in (2) and (4) is that they utilize the inverse
of V or the Moore-Penrose inverse of T, respectively. In the next section we will
present a new bound for ||p* — ||, which involves neither of these inverses and is
valid for any linear model whatsoever.

2. Result. The new bound is revealed in the following.

THEOREM. Let p* and ji be the LSE and the BLUE, respectively, of p = XB in
the general linear model (y, XB, V). Then

®) lw* = il < (N7/8)lly = w2l

where vy is the largest eigenvalue of PV(I — P)VP and & is the smallest nonzero
eigenvalue of (I — P)V(I — P). Moreover, with the convention that y% /8 =0 if
(I — P)V = 0, in which case y = § = 0, the right-hand side of (5) is equal to zero if
and only if p* = ji.

Proor. Using Albert’s [1] formula (4), the BLUE of p may be written
(6) i=Py—-PVI-P)(I-P)VI-P)]" (I~ Py.

(The reader interested in a relationship between the representations of fi given in
(3) and (6) is referred to Baksalary and Kala [3]). Since Py = p*, it follows from (6)
that

™ I — Gl = [PV ~ P - PV~ P)]* (v - p)l

It is known that the matrix norm corresponding to the Euclidean vector norm is the
spectral norm defined as

(8) IAll, = max{a?: « € o(AA)),
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where o(-) denotes the spectrum of the matrix argument. Since this norm is
consistent and multiplicative (see, e.g., Ben-Israel and Greville [4], pages 33-34), it
follows from (7) that

) le* = All, < IPY( = P)|I[(X = P)VA = P)]™ [l,]ly — p*]l,-

On the other hand, from the spectral representation of the Moore-Penrose inverse,
it is clear that for a nonnegative definite matrix A #* 0,

(10) |[A*|l, =[min{a : « € 6(A), « > 0}]".

The application of (8) and (10) to (9) proves (5). To establish the remainder of the
theorem, we refer to the result of Zyskind and Martin [7] which states that

(11) p* = i< VP = PV.

Observing that the condition on the right-hand side of (11) can equivalently be
written VP = PVP, it follows immediately that p* = i if and only if y = 0, thus
completing the proof.

It should be noted, in the conclusion, that examples can be constructed to show
that the bounds in (2) and (4) are not sharper then the bound in (5), nor,
unfortunately, is the reverse true. Nevertheless, the computational simplicity and
unrestricted applicability motivate the recommendation of (5) as a substantially
more convenient tool in investigating the problem “BLUE versus LSE”.
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