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OPTIMAL DESIGNS FOR SECOND ORDER PROCESSES WITH
GENERAL LINEAR MEANS

By CARL SPRUILL'
Georgia Institute of Technology

For each x in some factor space X an experiment can be performed whose
outcome is { Y(x, ) : t € T] where Y(x, ) = m (8, t) + &(?). The zero mean
error process &(#) has known covariance function K and the maps m, (of known
form) are linear from the parameter space © to the rkhs generated by K.
Expressions for the variance of the umvlue of 7(@) (where 7 is linear) are given
which are analogous to the formulas in the finite dimensional © case. An
Elfving’s theorem is proved and a number of examples are given.

1. Introduction. The action of an unknown variable force {8(¢) : ¢t € [0, 1]}
on a particle of known mass x € [a, b] which is initially at rest may be observed
repeatedly. The results are marred by an observational error of zero mean and
known covariance. In an experiment with N uncorrelated observations { Y(x;, ¢) : ¢
€ [0, 1]}, of the position function of the particle over time, what is the “best”
selection of masses {x,, - - - , x,} for estimating [30(s) ds (see Example 2.1)?

The problem described above is a particular case of a type of design problem
whose solution is characterized below. In the case of the general problem, for each
x in a set X of possible levels of feasible experiments, an experiment can be
performed whose outcome is a stochastic process { Y(x, t) : t € T}. It is assumed
that the process has a mean function m(x, 0, t) of known form, linear in the
unknown parameter §. The parameter 8 is an element of a linear, but otherwise
arbitrary, space ®. For each x in X and # in © the function m(x,0) on T is a
member of the reproducing kernel Hilbert space H(K) generated by the known
covariance kernel K(s, ) = Cov[Y(x, s), Y(x, ¢)], x € X, s, t € T. The value 7(9),
where 7 is a linear (not necessarily continuous) functional on 0, is to be estimated
on the basis of N uncorrelated observations { Y(x,,#) : t € T,i=1,- - - , N}. The
problem to be solved is to find the experimental design which minimizes the
variance of the best linear unbiased estimator of 7(8).

The following publications and references therein contain information on related
optimum design problems: Fedorov (1972), Kiefer (1974), Mehra (1974), Pazman
(1978), Spruill and Studden (1978), and Wahba (1976).

The model given above generalizes the model considered in Spruill and Studden
(1978) by allowing a more general mean and parameter space. For the most part,
the development below parallels that in Spruill and Studden. There is at least one
major difference however. Under assumptions similar to those in the finite-dimen-

Received April 1978; revised September 1978.

!Research support was provided by NSF Grant No. MCS 76-11040-A01.

AMS 1970 subject classifications. Primary, 62J05, 62K05; secondary 62M99.

Key words and phrases. Linear operator, linear space, mvlue, optimum designs, kernel Hilbert space.

652

I3

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr }?"}

The Annals of Statistics. NIK®IN
WWw.jstor.org




OPTIMAL DESIGNS 653

sional case, the variance of the blue may fail to be minimized by any probability
measure on the factor space which concentrates on a finite number of points. A
design is called optimal below only if it minimizes the variance of the blue and is
supported on a finite number of points.

2. Preliminary results. Consider the discrete design ¢ which places masses
b= _]nv, atx, i=1,---,r, where x; € X and {n;}}_., are integers with X’_,p, =
1. The experiment consists of taking N uncorrelated observations of the process, »;
at x. Set T = {(x;, 1),(x},2),---,(x,n)} X T and define the process
{Z(y) : v €T} by Z(y) = Y,(x;, 1), the jth observation at x;, where y = ((x;, ), ?).
The covariance kernel of Z is given by

B(y1, v2) = K(t, 1) (xi071) = (x5 42)

=0 otherwise
where y = ((x;, j), %), ! =1,2. Denote by <(Z, g)p the random variable in
L,[Z(y) : y € T] which is the image of g in the reproducing kernel Hilbert space
H(B) associated with B. The class of linear estimators of 7(0) is {<Z,g); : g €
H(B)}. The functional 7(8) is said to be (linearly) estimable with respect to this
design if there is a g € H(B) such that E,(Z, g>p = 7(#). Denote by (- , -); the
inner product on H(B) and for £ as given above fixed, by m the map from © to
H(B) defined by m(0)(y) = m(x;, 8, t) if vy = ((x;, j), ¥). Parzen (1959) proved the
following.

THEOREM (10A). Given that 7(0) is estimable, there is a unique linear estimator
{Z, go>p Which is the uniformly minimum variance linear unbiased estimator
(umvlue) of (@) with variance || g,||%. Furthermore {Z, g>p is the umvlue of 7(8) if
and only if g is the unique function in the closure of R(m)= {m(9):0 € 6}
satisfying 1(0) = (m(0), g)g, § € 6.

Using the methods of Parzen (1959), one can prove the following.

LEMMA 2.1. The element g is in H(B) if and only if g((x;, ), -) € H(K) for
(xpg)i=1,---,rj=1,---,n. Furthermore, if g and h are in H(B)

(g, h)p = ELlZ}".l(g(xi,j), h(xi’j))l{'
Let m’ be the map from H(B) to the space of linear functionals ® on © defined
by
(1 m'(v)(8) = (v, m(8))s.

The map m’ is the restriction of the usual transpose to H(K) (see Taylor (1958)).
Setting

) M=N"'mm

it will be shown below that an expression for the variance of the umvlue of 7(8)
may be obtained which is analogous to that obtained for ® = R**! in Spruill and
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Studden (1978). If ® = R**! the variance of the umvlue of 7(#) is N ~'v'M *7
where M * is the Moore-Penrose generalized inverse of M.

The notion of a generalized inverse extends to mappings between arbitrary linear
spaces (see Nashed and Votruba (1976)). In particular, we use the notion of an
algebraic generalized inverse (A.G.I.). The reader is referred to Proposition 1.16
and the material preceding Proposition 1.17 of Nashed and Votruba (1976) which
shows that given the linear operator L : ® — ®’ there are (algebraic) projectors P
and Q, P defined on ©® and Q on ©’, such that

0 = (L) + 9,

3) 0 =R(L)+ S,

R(P) = N(L), BRI — P) = M,

R(Q) = R(L), and RUI-Q)=5.
The symbol + means algebraic direct sum so that P and Q are not necessarily
continuous projectors. Indeed, we should emphasize that no topological assump-
tions have been made, or will be made in this section. For a mapping 4, R (A4)
denotes the range of 4 and 9U(4) denotes the null space of A. Nashed and

Votruba demonstrate the existence of a unique (for P and Q fixed) linear operator
L¥ : ® — O called the A.G.I. of L which satisfies

LL¥L =L
(4) L*LL* = L*
L*L=1-P
LL* = Q.
We note that if 9" = L then § — L¥#9’ = (I — L¥L)f or
) 9= L*0 + (I —L*L)f.

If the form 7(@), 1 € ©’, is estimable then there is a umvlue which corresponds
to, say g, € R(m) (the closure of R (m)). Let 8, € O be such that lim,_, . ||m(8,)
— 8oll 5 = 0 and define §, = L§,, where L = NM.

THEOREM 2.1. (i) The form 1(0) is estimable if and only if T € R.(m').
(ii) If 7(8) is estimable then || g||% = N ~'lim,_ 0/(M *8)).

ProOF. (i) 7(8) = (m(8), gy); if and only if 7(8) = m’g(9).
W) | g% = lim,_.[m(8,)I3
= lim, _, ,m'm(86,)(6,)

= lim,_,0,(L*0; + (I — L¥L)8,)

= lim,_,..0,(L¥8)) + 0,(1 — L¥L)§,.
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The result will follow as soon as it is shown that 8,(1 — L*#L)d, = 0. To see this,
suppose u € 9U(L). Then for all y € ©, 0 = Lu(y) = N(m(u), m(y)). In particu-
lar, m(u) = 0 so N(L) C N(m). Since (I — L¥L)§, € N (L) and

6,(1 — L¥L)8, = N(m(8,), m(I — L*L)6,),

the lemma has been proved.

COROLLARY. If 7(8) is estimable and R.(m) is closed in H(B) the variance of the
umvlue of 7(9) is given by
V = N""r(M*r).
Denote by Z the set of all probability measures on X with finite support. Let H,

be the Hilbert space of real valued functions f on S(§)xT, where S(£) is the support
of £, such that f(x;, -) € H(K) for x; € S(§). The inner product of f and g is

(f 8= zxes(e)ﬁ(x)(f(x), 8(x))x.

Denote by m, the map from © to H, defined by my(0)(x; 1) = m(x,, 8, r) for
x; € S¢),t €T Let

(6) M($) = mym,.

If £ has all its mass at a point x € X write m, rather than m,.

When § has rational probabilities at its support points, (2) and (6) coincide. We
are now in a position to make the following definitions for £ € =.

DEFINITION.  The linear form 7(#) is estimable with respect to the design ¢ € =
if 7 € R(my).

Let M, = {_m€(0) :0 € ©). Then M, C H, and if 7() is estimable there is a
unique g € M, (the closure of M,) such that (m(8), g); = 7(f) and a sequence
{6,} C © such that ||m,(8,) — g|l; > 0 as n — o0. Let §, = M(£)8, and define

If 7 is not estimable let d(7, {) = + .

DErFINITION.  The design £, € Z is said to be optimal for estimating 7(8) if
d(r, &) = infzd(r, §).

LEMMA 2.3.  For § € X the operator M(£) is given by M(§) = | m.m, d§(x).
Proor. For u and v in ®
(M(&u)o = (mimu)v = (my(u), m(v)),
= [(m(x, u), m(x, v))x dé(x)
= J(m(mu))v d§(x).
LemMA 24. Forany 0,,0, €®and ¢t € =

(M©)8,)8,] < (M(©)6,)6,)*((M(©)6,)6,)*
with equality if and only if mg(0,) = km(8,) for some constant k.
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PROOF. Set ||my(6,) — sm,(8,)|]? = f(s). Then the real valued function f defined
on (— o0, +o0) has a minimum at
_ (M8,
° (M(£)6,)6,
Using the fact that f(s) > 0, with equality if and only if mg(8,) = km(6,), the
result is proved as in the usual finite dimensional case.

In addition to the algebraic generalized inverse of a linear operator 7, it is useful
to have another notion of the transpose. It differs somewhat from both the usual
transpose (see Taylor (1958), Chapter 1) and the transpose defined above. In
particular, we suppose that 7 : ® — ©’, where as above, © is a linear space and ®’
is the space of all linear functionals on ©.

if m,(6,) # 0.

DEFINITION. The z-transpose of T, written 77, is the linear operator mapping ©
into ©’ defined by Tx(y) = T'y(x), for all x,y in ©.

The following lemma is true for 7* but is not in general true for the usual
transpose. Some additional notation is required. For an arbitrary subset 4 C © let
A+ ={0"Cc® :6'(@) =0 for all ® € A}. For an arbitrary subset B C O let
B+ ={0€0:0'(0)=0foralld’ € B}.

LemMMa 2.5.

@) RH(T) = (T

() |(T) = N(T)

(iii) R(T*) = N*(T)

@iv) R(T) = N-(T).

PrOOF. Parts (i) and (ii) are proved in a similar manner, so we only prove (i).
Let x € RL(T). Then (Ty)x = 0 for all y € ©. Thus T*x(y) = 0 for all y € .
Therefore T'x = 0. The reverse inclusion follows from the same argument.

If W is any subspace contained in © then W = W'+ (see Taylor (1958),
Theorem 1.9-A). Parts (iii) and (iv) follow immediately.

LeMMA 2.7. Forany ' € @,0' #+0,and { € =

’ 2
®) A0, 8) = supoeu(%é‘f’)—?)—g,

where U = {0 : (M(§)6)8 + 0}.
PrROOF. As in (3), write ® = 9L (M) + 9. First, suppose §’ € R(M). Then
6’ = MM *#9’ since MM ¥ is the projection onto R.(M). Thus
(0°(8)) =[(MM*0)8]°
= (M(M*0)0)
<[M(M*9)M*6'][(M0)8)]
=[0(M*9") ][ (M0)6],
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for any 4. If § € U then (M8)8 # 0 so

GO (pregyp.

©) (M8
Setting # = M #9’, which is in U, equality is achieved in (9), proving the result for
0’ € R(M).

If ¢ € GJle') — R, (M) then #'(f) is estimable with umvlue corresponding to
some g, € M, C H(§. Let {6,} C © be such that ||m(8,) — goll; >0 and set
0, = M@,. The linear form 8,(@) is estimable and its umvlue corresponds to m(6,)
since

8,(6) = (m(8,), m(8)),

and m(6,) € M,. Furthermore 4, € ®R.(M), so by the above argument
= (6,(6))°
(10) d(on’ g) = SUPgey (Ma)o
d(6,, §) = |m(8,)I* = || &l* = d(6", §).

Notice that for fixed 6
[, [0
(M6)0 (M6)6

and

(m(8,). m(6)); — (80 m(6))¢
Im(6)113

- (m(gn) — 8o m(g))f(m(on) + 8o m(a))f
lm(8)1}

< |m(8,) — gollgllm(8,) + gollg»

so that given ¢ > 0 it follows from (11) that for »n sufficiently large
9'(0)7?

d,, £ — supaeu[—(ﬁ%))—;— < &/2 and from (10) that |d(8,, {) — d(0’, §)| <e/2.

Hence for n sufficiently large

(11)

[0°O)]°

d’, §) - SUPseu” hrp)g

<e

This proves the lemma for 8’ € R.(m’).

If 9’ & A(m') then 8’ = 85, + 05 where @ = R(m’) + T and 95+ 0. If
05(0) = 0 for § € N (M) then 05 € N (M). By lemma 2.5 85 € R(M"). Since
M8,(6,) = (m(8,), m(8,)), and M9,(6,) = M8,(0,) = (m(8,), m(,)); we observe
that M = M’ and hence that R(M*) = R(M). Since R(M) C R(m’), we have
arrived at the contradictory conclusion that 85 € R (m’) unless 6, in 9L(M) can be

found for which 645(8,) # 0. Fix 6, € O and let 6, = 4, + 7‘ Then

n
m’h for some h € H(B) one has g ,.\(8) = (h, m(8y),. The latter expression is

9
(M8,)8, = ;1;(m1)9l and 8'(6,) = 04, ,)(0p) + 05 (8) + 0'( ‘). Since 85, (y =
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zero by virtue of its being in 9UL(M), so

(0'8))" _ nz[ (05(8y)"

6,8, ~ " | o, 0(”—1)]

and the theorem is proved. []
ExaMPLE 2.1. With reference to the introduction, let the unknown variable
force be {8(¢) : t €[0, 1]}. The observation is {Y(x, ¢): ¢ €[0, 1]} when mass
X € [a, b] is used, where Y(#) = [}(t — u)+£(f)- du + N(t) and N(¢) is a zero
mean process with covariance K(s, #) = [o(t — u),(s — u), du. As usual a, =
max{0, a}. The quantity to be estimated is [30(s) ds = 7(8). The space H(K) is the
set of all functions f on [0, 1] for which f(0) = f'(0) = 0 and f” € L,[0, 1]. The
inner product is
(f, &)k = Jof"(s)g"(s) ds.
Forany##0in ® = C[0,1]and { € =
(M(§)8)8 = S£(x))l|m, (8)I%
£( ;)

.I

1002( )ds >0

SO

(136(s) ds)’

;‘lg(x )foﬂz( ) ds

J

d(t, §) = supy.o

From the Schwarz inequality one has

d(r,§) =

so the optimal design takes all observations at x = a.

ExaMPLE 2.2. Assume the same conditions as in example 2.1 except that we
wish to estimate (). We shall show that §(3) is not estimable with respect to any
design £ € =.

First we observe that for any £ € Z and 6 € C[0, 1]

2
Ime(0)1IF = 2 xcswé(x)/o (2S)

< (=% o)

so that m, is continuous from C[0, 1] to H(K). Thus m; is actually the adjoint m}
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mapping H(K) into the topological dual of C[0, 1]. Therefore, given v € H(K)
there is a function g of bounded variation on [0, 1] such that for all § € C[0, 1]

(mEv)8 = [o0(s) dg(s).
If 6(3) were estimable one would have v € H(K) such that mgv corresponds to

(12) g(s) =0 s<3
=1 3 <.

However, using the facts that

(mEv)8 = (v, my(8)) = 2x€S(e)5(x)f<l>””(s)_0Ec—S) @
(13)
_ (zé(xi)) Lo"(5)8(s) ds

and [g(v”(s))* ds < oo it is clear that (13) implies m}v can not correspond to the g
in (12).

3. Characterization of optimal designs. In this section we shall use certain
assumptions.

(A1) The parameter space © is a real Hilbert space.

(A2) The mappings {m, },cx from © to H(K) are all linear and continuous and
R (m,) is closed for £ € E. Since for each £ € Z the assumption (A2) implies that
m; has values in ©*, the topological dual of ©, we shall write m} rather than m;.
Let & be the set of all maps ¢ from X into H(K) for which ||¢(x)|| < 1 for all x
and

R = {/m(x)dé(x): ¢ €EE o€ F}.

(A3) There is a proper closed supporting hyperplane to %} at each of its
boundary points.

(A4) For each 8 € 0, 8 # 0, supy||m(8)|| > 0.

Results corresponding to those below have been obtained for © a linear topologi-
cal space in Spruill (1978).

Since Hilbert spaces are reflexive, we shall as usual identify ®* with ®. Fix
0* € O and let v, = infz d(6*, £).

LeMMA 3.1. Let A1-A4 hold. Then
(a) BO* € R implies vy < EIE’ and

(b) BO* € R  implies v, > —,31—2

Proor. (a) If B = O the result is trivially true. Otherwise

* n *
Bo - 2j=lajmxj¢xj.
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One has for any § € © that

(8% 0] _ [Saey my©@), ]
B? B*

) za,uﬂfzo, )

_ (M(9)9, 6)

B>

1

Therefore, by lemma 2.7, v, < —-

(b) Since B0* € 0R thereis a § € O, § # 0, such that B(8*, 9) > |(r, 8)| for all
r € R. This is a consequence of (A3). Let x, € X be such that |m, (0)|| -

sup||m,(0). Let
[ m®
? =\ lm, (D)l
to obtain

(14) B(6*,8) > |(r,, 0)] = [Im, (0)].

We conclude that B(8*, 8) > supy||m,.(#)]|]. Also, since R is symmetric and con-
vex, for ¢ > 0 sufficiently small (8 — €)8* € R (B > 0 by (14) and (A4)). One
has (B — €)0* = Eajm;(rpj) so B(6*, ) — &(6*, 0) = Za ¢, mxj(O))

(6%, 0)" =

(15) < Zoyllm, (9)]| < supxllm,(0)].
Combining (14) and (15) we have
(16) B(6*, 8) = supy|lmy(0)].

Let £, be such that d(8*, £,) —> v,. If vy is + oo the result is trivially true. Assume,
therefore that 8* € R (m} ) for each n. Then § must be such that (M(£,)8, §) > 0
for all n. To see this, suppose that it is not for some n. Then 8 € MN[M(E,)] =
RE[M(£,)], and since M(£,) = M'(£,) (see lemma 2.7) one has § € R-[M(£)].
From the argument in lemma 2.7 there is a sequence 8} € R[M(£,)] such that
lim, _, |d(6F, &) — d(6*, £)| = 0. But 8¢(d) =0 by definition of R-[M(£,)] so
that 8*(@) = 0. This, with (16) contradicts (A4). Since (M (£,)8, 8) > O for all n one
has '

1 (e _(6n0)

B2 supylm,(O)l ~ (M(,)6,6)

THEOREM 3.1. Let (0*, 8) be estimable with respect to some design and Al1-A4
hold. The design &, is optimal for the estimation of (8*, @) if and only if there is a
Sfunction ¢ : X — H(K) such that ||¢(x)|| = 1 and

Jmzo(x) déo(x)
is (i) proportional to 6* and (ii) in R N OR..

< d(6%¢,). 0
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PROOF. Suppose &, is optimal. Then setting Ay, = M *(£,)0* one has MyA, = 6*
1
and (MyAg, Ag) = vy Let {z : (A, z — vy 20%) = 0 be a supporting hyperplane to R
1 1
at v, 20* where A # 0. From above (8*, v, 2A) = sup,||m,(A)||. Since MyA, = 0*
1
one has (v 2MyA, ) = supy||m,(A)||. Therefore
sup[|m W)I? = v5 ' (MoAg, V)
(17) < vy (Mo(Mg6*), M 0*)(MyA, A)
= vy 1(0%, M%) (MyA, N) = (MyA, A)
with strict inequality unless m (Ag) = kmy (A) for some scalar k. Since one always
has (MyA, A) < supy|/m,(A)||> equality holds in (17) and we have ||m (N =

A
supy|/m,(A)|| on the support S(§;) of &, Set ¢(x) = —”%:W for x € S(¢;). Then

M)A My,
sup(|m (M) & sup|lm M)~

JmEo(x) déy(x) =
From above
00 = (MoAg, Ag) = k(MoA, Ag) = k(Mohg, Ag))*((MA, N))?
= ko supy|m (M)

so that [m*¢(x) d&y(x) = vy 36*.
If (i) and (ii) hold then for any § € ©

05 (6%, 8)” = (J(my(8), $(x)), d£x(x))’

< [im (8)I? dé(x) = (M0, )
showing £, to be optimal. []
There are other theorems of possible interest. One of these, whose proof we leave
to the reader (see Studden and Tsay (1976)), is the following. Let % € © be fixed
and A= {6 €0 :(6},6) =1}

THEOREM 3.2. Under A1-AA4, if §, € A satisfies
(i) inf, supyllm,(8)]| = supyim, (8ol
(i) SE) C {x : [1m(8)]| = supyllm (3o}, and
(ii)) [m}m (8y) d&y(x) is proportional to 6F then &, is optimal for estimating 03
and vy = (supx||mx(60)||)—2. Furthermore, if there is an optimal design &, then there
is a &, satisfying (i), (ii), and (iii).

4. Some examples. Verification of assumption (A3) may be a nontrivial task
unless ® = R” for some n. We digress briefly in order to provide an easily verified
sufficient condition for (A3).

The point a is said to be an internal (not necessarily interior) point of the set
A C ©if a € A and for each 8 € O there is an ap > 0 such that af + (1 — a)a €
A for 0 € a < a,. Since R is symmetric, @ has an internal point if and only if 0 is
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an internal point. Furthermore, since © is a Banach space, an application of the
Baire category theorem shows that R has an internal point if and only if it has an
interior point. It is well known (see, for example, Holmes (1975)) that if 4 C © is
convex and A4 contains an interior point then there is a supporting hyperplane to A4
at each of its boundary points.

THEOREM 4.1.  If m, is continuous for each x € X, there is a constant k > 0 such
that for all 0 € ©
(18) supy||m.(8)I| > k|61,
and (A1) holds, then (A3) holds.

Proor. It suffices to prove that 0 is an internal point of R. Let 0, € © be
nonzero and suppose af, is not in R. Then there is a A, € © such that ||A ]| = 1,

and (afy, A) > a(a) > b(a) > (r,A,) for all r € R (see Dunford and Schwarz
(1959) V.2.10). Therefore

(19) a”00” > a(o()’ Aa) > ”mx(Aa)”
for all x € X such that |Im, )| > 0. This may be seen by choosing
A
r=m} ”L"EX%” In view of our assumptions, (19) implies 0 is an internal point of
mx a

ExampLE 4.1. Let X = [0, 27], ® = L,[0, 1], and
Y(x,t) = [o8(s)sin(2ms — x) ds + W(¢)
for ¢t € [0, 1]. Since
llm (0)11* = fo0°(2) sin*(2mt — x) dt < ||0]3
(A1) and (A2) are satisfied. Let ¢(x) = —il;x(x)[o’ 27 Then
2 27 2 — ”0”%
Sup0<x<21r”mx(0)” > fO ”mx(o)” ¢(X) dx - T

so (A3) and (A4) are satisfied. We shall use Theorem 3.2 to solve the design
problem for estimating [38(s) ds. If we view X as the parameter space [0, 1] as the
outcome space, R as the action space, and #(-) a decision rule in a statistical
decision problem then 8,(s) = 1 results in a constant risk of % Viewing ¢ as a prior
on the parameter space, it is easily seen that 6, is Bayes among those § € L, such
that [30(s) ds = 1. That is; it is minimax,

info: { f540(s) ds= l}sup0<x<27r”mx(0)”2 = SupO(x(Zw”mx(oO)”z = %'
It remains to find a design for which
(20) [Zé(x)mEm, (6,)](¢) = 1.

Since m¥m (8p)(£) = 0() sin*(2mt — x) the design which places masses 3 at x = 0
and % at x = 7 /2 satisfies (20) and is optimal for estimating [30(s) ds with v = 2.
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We close with an example in which @ is the convex hull of a closed bounded set
but an estimable functional fails to have an associated optimal design.
ExaMPLE 42. Let ©® = /,, T be a one point set x € /, and
Y(x) = (6, x) + e

+®
Let X = {*(®+®):/j>1} U {—5—9} where {®,, ®,,- -} is a complete
orthonormal system in /,. Since m*u = ux one finds that R = co(X). We observe

that (®,, #) is estimable since mg ,,(2) = @, Also @, € & since taking @ =
j=1,-+--,none has

- 0.

Do + 2?-1%(1),' — @ =

S |-

It is easily seen that @, is not in % so that there is no optimal design for estimating
(q)o, 0)

S. Acknowledgement. I would like to thank S. Demko and H. Engl for their
helpful conversations.
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