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CHI-SQUARE TESTS OF FIT FOR
TYPE II CENSORED DATA!

By DANIEL P. MIHALKO? AND DAVID S. MOORE
Purdue University

The theory of general chi-square statistics for testing fit to parametric
families of distributions is extended to samples censored at sample quantiles.
- Data-dependent cells with sample quantiles as cell boundaries are employed.
Asymptotic distribution theory is given for statistics in which unknown parame-
ters are estimated by estimators asymptotically equivalent to linear combina-
tions of functions of order statistics. Emphasis is placed on obtaining statistics
having a chi-square limiting null distribution. Examples of such statistics for
testing the fit of Type II censored samples to the negative exponential, normal,
two-parameter uniform and two-parameter Weibull families are given.

1. Introduction. Censored data occur frequently in engineering (life testing
and reliability) and medical studies. Since inference procedures for such data
commonly make distributional assumptions, a considerable body of recent litera-
ture concerns tests of fit for censored samples. When data are censored at fixed
points (Type I censoring), chi-square tests of fit apply, since the censored observa-
tions fall in one or more fixed cells. In this paper we extend the applicability of
chi-square tests to data censored on one or both sides at sample percentiles (T ype
IT censoring) by employing sample percentiles as cell boundaries. Type II censored
data arise in engineering settings. Medical data typically display more complex
random censoring, as when studies of survival after treatment encounter dropouts
and deaths from other causes. Such general random censoring is not considered
here. Moore and Spruill (1975), hereafter referred to as MS, provide a general
large sample theory for chi-square statistics using data-dependent cells, general
estimators of unknown parameters, and quadratic forms in the standardized cell
frequencies other than the Pearson sum of squares. We here extend that develop-
ment to the case of Type II censoring. Though the results are parallel, the proofs
are quite different due to the dependence of the observations in the present case.
Our goal, achieved in Section 4, is to provide tests of fit to common parametric
families of distributions having chi-square limiting null distributions. Such tests
require only standard tables, and in many cases the test statistic itself can be
computed by hand.
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Much of the literature on tests of fit for censored data considers the special case
of testing fit to a completely specified distribution (e.g., Lurie, Hartley and Stroud
(1974), Kozial and Byar (1975), Kozial and Green (1976)). Tests for the more useful
composite hypothesis case encounter the dependence of the large sample distribu-
tion on the family tested, so that separate tables of critical points are required for
each hypothesized family. This circumstance is familiar in the full sample case to
users of (among others) tests based on the empirical distribution function. For
censored samples, the distribution of most available tests of fit also depends on the
degree of censoring, as evidenced by the tables of critical points in Pettit (1976) and
Smith and Bain (1976). Thus a test of fit having a standard tabled distribution is
even more desirable than in the full sample case. Turnbull and Weiss (1978) offer a
generalized likelihood ratio test which not only has a chi-square distribution in
large samples but also applies to some types of more general random censoring.
However, they assume that the observed variables are discrete with finite range, and
their test statistics must usually be obtained by numerical solution of equations.

Suppose, then, that of a random sample X, - - - , X, we observe only the order
statistics
(1.1) X(na+1) < X(naj+2y < * * + < X(mp)

where 0 < a < 8 < 1 and [x] is the greatest integer in x. We form M cells having
boundaries

=00 =£, <£, < <Eyon <bpyp =0
where §, = X5 is the sample §; - quantile from X, - - - , X, and 0 = §, <9,
<+ - < 8y_y <8, = 1. To accommodate nontrivial left censoring (a > 0), right

censoring (B8 < 1), or both, with a single notation, we adopt the convention that
a = §, when a > 0 and otherwise a = §, = 0; similarly, 8 = §,,_, when B8 < 1
and otherwise 8 = §,, = 1. The observed frequency N,, in the ith cell E; =
(-1, »» &x] is nonrandom, N,, = [nd;] — [nd,_,]. In particular, the left-censored [na]
observations and the right-censored n-[nf] observations occupy the extreme cells.

We wish to test the composite null hypothesis that the distribution of the X; is a
member of the family of continuous distribution functions {F(x,8): 8 in Q},
where @ is an open set in Euclidean m-space R™. The parameter § must be
estimated by an estimator 8, which is a function of the observed order statistics
(1.1). Chi-square statistics for data-dependent cells are formed by “forgetting” that
the cells are functions of the data. The ith “estimated cell probability” under H,, is
therefore

(1'2) Pin = F(gin’ on) - F(gi—l,n’ 0n)'

These are random, unlike the cell frequencies. Chi-square statistics are nonnegative

definite quadratic forms in the standardized cell frequencies (N,, — np,,)/ (np,.,,)%.
The development in this paper follows the pattern of MS, except that where MS

treated the null hypothesis and sequences of local alternatives jointly, we first treat

the central case and then use contiguity methods to obtain the corresponding
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noncentral results. Section 2 establishes asymptotic multivariate normality of the
vector of standardized cell probabilities, in both the central and noncentral cases,
for a quite general class of estimators ,. Based on these results, Section 3 discusses
the large-sample behavior of several chi-square statistics for Type II censored data.
The specific statistics are censored-sample analogs of the classical Pearson-Fisher
statistic, the Pearson statistic using maximum likelihood estimation (studied in the
full sample case by Chernoff and Lehmann (1954)), the Rao-Robson (1974)
statistic for maximum likelihood estimation, and the Dzhaparidze-Nikulin (1974)
statistic for arbitrary ni-consistent estimators. As might be expected, the behavior
of these statistics for censored samples parallels that of their full sample analogs.
Section 4 applies the general results to obtain tests of fit for censored samples to
the negative exponential, normal, Weibull and uniform families of distributions.

We remark that the approach taken here applies also to “multiple Type II
censoring”, in which observations between several sets of sample percentiles are
unavailable. It is necessary only to take each unobserved inter-percentile group as a
cell. This is conceptually quite similar to the generality of censoring allowed in the
procedures of Turnbull and Weiss (1978).

2. Asymptotic normality of standardized cell frequencies. We treat first the null
case in which X, - - - , X,, have distribution function F(x, §;), so that 8, is the
“true” parameter value. Our major conclusions will not depend on the particular
0y, as when statistics have the same limiting chi-square distribution for all §, in .
Similarly, assumptions made locally at §, must in practice hold everywhere in .
Denote by x; the population §;-quantile of F(x, ), so that x, =~ 00, x,, = 00 and

x; = min{x : F(x, 6) = §,} i=1---, M- 1.
For any vector of cell boundaries ¢ = (£, - - - , £,,_,)7, define the cell probabilities
pi(§6)=F(§,0) - F(§_,,0)
and the M X m matrix B(&, 8) having (i, j)th entry

_10p(& 0
rie 0) 20
J

Denote the vector of §, (the cell boundaries actually used) by £,, and the vector of
x; (their limits in probability under F(x, 8,)) by &, By convention, the arguments &, 6
will be suppressed whenever § = £y and 0 = . Thus B = B(£;, §,) and p; = p,(&,, 0,)
= §; — §,_,. In particular, all derivatives and expected values not otherwise identi-
fied are evaluated at (£, ;). All vectors are column vectors, and derivatives and
integrals of vectors are understood componentwise.

The following conditions on F(x, #) will be assumed to hold throughout this
paper.

(F-1) F(x, #) has density function f(x, §) which is continuous in (x, #) in a
neighborhood of (x;, 8y),i=1,---, M — 1.
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(F-2) 9F(x, A)/36; exists and is continuous in a neighborhood of (x;, ), i =
L---,M-1

(F-3) f(x)>0,i=1,--- , M- 1.
These conditions are sufficient for joint asymptotic normality of n%(g,.,, - Xx;), for
convergence in probability of the cells (§_, ,, §,] to the fixed cells (x;_,, x;], and
for convergence in probability of the p,, of (1.2) to p; whenever {6,} is a consistent
sequence of estimators of 4. Finally, let V,(8,) be the M-vector of standardized cell
frequencies (N,, — np;,)/ (npi,,)% using random cells and estimating 4 by 4,.

The following basic lemma relates the large sample behavior of V,(8,) to that of
the estimator 6, and the sample quantiles £,,. It is the analog of Theorem 4.1 of MS.
The proof is immediate from the mean value theorem with (F-1) and (F-2).

LemMa 2.1, If ni(, — 6p) = 0, (1) under F(x, 8), then

(2‘1) Vn(an) = Vn - Bn%(an - 00) + op(l)

where up to op (1)

(22) V =V, (00) = —n2 {f(X) (£m ) f( 1) (gl ,n xi—l)}'
p} P2

When §, itself is a finite linear combination of sample quantiles, as are many
short-cut estimators, asymptotic normality of ¥,(0,) follows at once from Lemma
2.1 and the joint asymptotic normality of sample quantiles. An estimator of
particular interest that is asymptotically a linear function of sample quantiles is the
grouped data mle 9—,, obtained by “forgetting” the dependence of the cells on the
data and solving the multinomial likelihood equations

u _No 9, 0)
“pE,0) 99
Watson (1958) observed that in the full sample case the use of random cells does

not alter the asymptotic form of 0_,, Similar methods show easily that under suitable
regularity conditions in the censored sample case it remains true that

=0.

(2.3) ni(6, — 8,) = (B"B)'BTV, + o (1),

which with (2.2) gives the desired representation. Let D denote the projection
B(B™B)"'BT and q = (p S ,pM)T Substituting into (2.1) and using £{V,} -
Ny, I,, — qq7) shows that under F(x, 8,)

(24) e{V.(6,)} > Nu(0, 1 - qq™ - D),

which is the same result obtained in the full sample fixed cell case.

A natural class of general estimators of § from the observations (1.1) are 8,
which are asymptotically equivalent to linear combinations of functions of order
statistics. For such 4,, asymptotic normality of V,(6,) will follow from Lemma 2.1
via any theorem on asymptotic normality of linear combinations of functions of
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order statistics which allows special weight to be given to a finite number of sample
quantiles. Such theorems appear in, e.g., Chernoff, Gastwirth and Johns (1967) and
Shorack (1972). A result more useful for our purposes is obtained by appealing to
the proof of Theorem 1 of Shorack (1972) rather than to the statement of that
theorem. This we now do.

Shorack shows the existence of a particular probability space (2, &, P) with
“very special random quantities” defined on it. These are independent Uniform
(0, 1) rv’s having order statistics 0 < ¢, < - - - <, < 1 and a Brownian bridge
process U such that every sample path of the empiric df process of the #,, converges
uniformly to the corresponding sample path of U. He (and we) operate in (2, @, P)
to draw conclusions about convergence in probability, from which there follow
conclusions about convergence in distribution for functions not necessarily defined
in this space.

Define then

T, = n"'27_,6,0(1,)
(2.5) e = JoQ(D)J,(¢) dt
where J,(?) is the function equal to ¢, for (i — 1)/n <t <i/nand 1 <i < n, with
J,(0) = c,,. For fixed b,, b,, M and y > O define
D) = Mt™(1 - £)™5 0<r<1
Dy(1) = Mt=5+0+7(1 — )"2%0%Y g <<,
The version of Shorack’s assumptions which we require is as follows.
(S-1) Q is left continuous on (0, 1), of bounded variation on (g, 1 — &) for all
€ > 0, and for some b, b,, M and y > 0, |Q(#)| < D,(¢) on (0, 1).
(S-2) Let |Q| denote the total variation measure associated with the signed
measure induced by Q. There is a function J such that except on a set of
r’s of |Q|-measure 0 both J is continuous at ¢ and J, — J uniformly in
some small neighborhood of ¢ as n — c0. Moreover, |J,(¢)] < D,(¢) and
[J(D] < Dy(t) on (0, 1). .
(S-3) Let r, and r be constants such that7, — r = o(n~2). Let 0 < A < 1, and R

be a function for which R’(A) exists.
The following result is contained in the proof of Theorem 1 of [22].

LemMa 2.2. (Shorack [22]) If (S-1) and (S-2) hold, then
(2.6) ni(T, — p,) > — [SJU dQ (P).
If (S-3) holds, then
(2.7) n2(r,R(tnay, ) — rR(8)) > — rR'(A) U(8) (P).

Convergence here is convergence in probability in (2, &, P).
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We now show that Lemma 2.2 can be applied to V,(6,) when 6§, has the
following asymptotic form under F(x, 6,)

(2.8) ”%(0,. — ) = n_%{zlr'f][na]-f-lh(x(r))
+c,(a, B)g(Xnpp) + kn(a, ﬂ)d(X([na]H))} + 0,(1).

Here A, g and d are functions from R! to R™; in accordance with our convention
their dependence on 6, is suppressed. We require that ¢,(a, 1) = 0 and k,(0, B) =
0. Estimators putting special weight on sample quantiles other than the point(s) of
censoring could be accommodated, but (2.8) covers all estimators used in the
examples of Section 4.

Define now for 0 < ¢ < 1 the inverse function of F(-, ,),

b(?) = min{x : F(x, 8,) = ¢},
and H(t) = h(b(?)), G(t) = g(b(?)), L(¢) = d(b(?)). The following assumptions will
be made.
(A-1) There are numbers cy(a, 8) and ky(a, 8) such that ¢,(a, B)/n — c(a, B)
= o(n~%) and k,(a, B)/n — ke(a, B) = o(n™?).

(A-2) —[BH(s) ds = co(a, BYG(B) + kofa, B)L().
(A-3) The jth component of H, H, is continuous at a and B, left continuous on

(0, 1), and of bounded variationon (¢, 1 — ¢)foralle >0,/ =1, -, m.
(A-4) Hj’ existsa.e.on (0, 1)j=1,-- -, m

G existsataifa >0,j=1,---,m

Liexistsat Bif < 1,j=1,---,m.

(A-5) For some M >0,y > 0, b, and b, (where b, > 0 if a = 0 and b, > O if
B = 1), [H(0)] < Dy(1) on (0, 1).
Assumptions 1, 3, 4 and 5 reflect the assumptions of Lemma 2.2. Assumption 2 is
an asymptotic unbiasedness condition on ,. To express the asymptotic variance of
V,(8,), let U(¢) be a Brownian bridge process on (0, 1) and define the m-vector

S = [EH' () U(2) dt + coa, BYG'(B)U(B) + ko(a, B)L'(a) U(a)
and the M-vector W having ith component W, = [U(§;) — U(5,_))]/ p,zl .

THEOREM 2.1. Let G, satisfy (2.8) and suppose that (A-1)—(A-5) hold. Then under
F(x, 6,) '

where
S=171—-gq"+ BAT+ ABT + BCBT
C=E[SST], 4=E[WwWS"].

PrOOF. Substituting (2.8) into (2.1) and using the inverse df transformation
x = b(#) shows that the ith component of V,(,) differs by 9,(1) from a quantity
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having the same distribution as the sum of
S, = ni{n 'SVBY 1 (— BiH(1,)) — ¢B,G(B) — ko(a, B)B,L()}
Z,, = —nip if(x)(b(%,) — b(8)
Z,, = n3pi (3 )(b(8i-,) — b(3i_y))
(222 5,6(5,) - eolw B)BG(B)

1
Z3= n2

n

1
Z4= n2

n

e e BL(,) - ke, BBL(@).
Here B; is the ith row of B, ¢, is the rth order statistic from Shorack’s special
uniform rv’s on (R, &, P), §,, is the sample §;-quantile of these rv’s, and ¢, $pn are
the sample a- and B-quantiles.

First consider S,,. Set in (2.5) Q = B,H and ¢,, = — 1 for [na] + 1 < r < [nB]
and O otherwise. Then

~[(21/"BH(1) dt = ~ [EB.H(1) dt + o(n™7)

= co(e, B)B,G(B) + kola, B)B,L(a) + o(n~2)
by (A-3) and (A-2). Thus in the notation of (2.5), S, = nil(T,l — u,) + o(1). The
assumptions (S-1) and (S-2) of Lemma 2.2 are satisfied. For (A-3) and (A-5) imply
(8-1), and (S-2) is clearly true for the function J(f) = — 1 for a <t < B8 and 0
elsewhere. (Note that this J is bounded by D, for any b,, b, satisfying the
restrictions stated in A-5.) So by (2.6),

M

2.9 S, — (BB.H'(1)U(t) dt (P).

Each of the terms Z;, has the form n‘;(r,,R(t[nA], ) — rR(Q)) of (2.7), and (A-1),
(A-4) and the relation b'(¢) = 1/f(b(¢)) imply that (S-3) holds in each case. Hence
the sum of the Z,, converges in probability on (£, &, P)to

PiIf(x)B(8)U(8) = pi2f(x,_)b'(8,_ ) U(5,_,)
+co(a, B)B,G'(B)U(B) + kole, B)B,L'(a) U(a).

Simplifying by using the fact that f(x;)b'(§;) = 1 and combining with (2.9), S, +
E?Zj,, converges in probability to the rv Y, = B,S + W,. Hence the version of
V,(6,) defined on (2, @, P) converges in probability to Y = (Y, - - -, Y,,)7. Now
Y has the Np(0, =) distribution, where = = E[YY”]. Computation using E[W, W)
= (ppj)z for i #j and E[W?] =1 — p, reduces = to the form stated in the
theorem. This is therefore the limiting law of any version of V,(4,).

Halperin (1952) shows that the mle from the censored data (1.1) has the form
(2.8) in regular cases. He treats only the right-censored (a = 0) case, but his work
extends easily to two-sided censoring. Let x, and x; be the population a- and
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B-quantiles from F(x, 8,). The Fisher information matrix for the data (1.1) is
_ af of dlog f\(/dlogf
— = 1 rx, Xy X,
K= K(00’ Xas xﬁ) a (f—oo 30 )(f © 80 X) + fxi( 30 )( 30 ) fdx

(1= )12 gy )12y dx) .

(Here 3f/30 denotes the m-vector of derivatives df/d6,.) Then in suitably regular
cases, the mle 6, satisfies

(2'10) n%(én - 00) = n—%{zlrlin][na]+1K_ a logf(X(,))
_,0log(l — F
+ (n = [nB])K '——‘g‘(a—g—)(x([nﬁl))
dlog F
+[na]K™! og (X(lmxlﬂ))} + 0,(1)

under F(x, 6,). It is easy to check that (A-1) and (A-2) are satisfied with cy(a, 8) =
1 — B and ky(a, B) = a. When (A-3)—(A-5) hold, Theorem 2.1 therefore applies to
the mle 0:'. Calculation (details appear in Mihalko (1977)) shows that in this case

(2.11) L{V,(6,)} = Np(0, 1 — g9 — BK~'B7),

a result identical to that for the full sample case except that K has replaced the full
sample information matrix.

To introduce local alternatives, consider (as in MS) a family F(x, 8, n) of
distribution functions defined for # € Q@ and n € E, a neighborhood of 7, in R,
such that F(x, 8, no) = F(x, 8). This is consistent with the convention, which we
now adopt, that the argument n is suppressed whenever n = 7. Assumption (F-1) is
now replaced by

(F-1) F(x, 8, n) has a density function f(x, 8, ) which is continuous in (x, 4, 7)

in a neighborhood of (x;, 8y, ), i =1,---, M — 1. For each 4 in a
neighborhood of §,, the support of f(x, 8, n) is the same for all n € E
and the following condition is also imposed

(F-4) 0F(x, 8, mn)/dm; exists and is continuous in a neighborhood of (x,, 8, 7¢)

and (xgs 0o, Mo), J = <L k.
The local alternatives to w, = (00, Mo) are w, = (6y, m,) for n, =g+ yn~ 2,y =
(Yl’ T Yk)T € R~

Johnson (1974) gives an extensive treatment of contiguity and related topics
for right-censored samples. His results extend routinely to two-sided censoring.
We apply them with w = (8, n) replacing his #, and his 4 set equal to
@©,---,0,v, -+, ). The quantity A, = A,(w,) defined (for a = 0, 8 = p) by
(1.4) of Johnson (1974) is of particular importance. With 4 as above, we require
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only the last k components. Define therefore the k-vector

By = 14 50y L () + (= (8] LD ()

dlog F
+ [ na] an (X([na]+l))}'

To extend Theorem 2.1 to local alternatives, we apply Lemma 2.2 and Johnson’s
results. The following assumptions are required.
(C-1) The quadratic mean derivative ¢(x, 8, n) of ¢ =1log f with respect to 7
exists at (6p, no) and equals the point derivative 3(3f(x, 8, n)/3n)/
f(x, 8, m). The matrix E, , [¢¢T] is positive definite.
(C-2) 2¢(b(2)) satisfies the same conditions as H in (A-3)—(A-5).
(C-3) For6 = a, B,

Fxg) = 5 Flxs, Oy )l = S826(5(0) .

(C-4) Assumption (B1) of Johnson (1974) holds.
Assumption (C-2) allows application of Lemma 2.2 to A,, and with the others
implies Johnson’s remaining assumptions. Assumption (C-4) and the existence of
the q.m. derivative ¢ are similar to modern conditions for asymptotic normality of
the mle. They are weaker than conditions of the older type, such as Halperin’s. For
comments on such assumptions, see LeCam (1970) and Roussas (1972) in addition
to Johnson (1974).

THEOREM 2.2. Let 8, satisfy (2.8) and (A-1)-(A-5), and suppose that (C-1)—(C-4)
hold. Then under (8, n,)
E{ Vn(on)} - NM( M, E)

where 2 is as in Theorem 2.1 and p. = (B,, — BA)Y for B, the M X k matrix with
(i, )Hth entry

—12%:

i anj
and A the m X k matrix

A4=-{H(B)+ COG'(,B)}F(xB)’T — {koL'(a) — H(a)}E(x,)"
+ [BH(1){29(b(2))} 7 dt.

PrOOF. Johnson shows (page 1149) that the measures induced by F(-, 8, )
and F(-, 8,, m,) are contiguous, and (Theorem 3.1) that the log likelihood ratio A,
for these distributions satisfies

An = YTAn - %‘YTK22‘Y + op(l)

under (8, 7o), where K,, is the information matrix of F(x, 8, n) with respect to 5
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at n=m,. Applying Lemma 2.2 to A, following the model of Theorem 2.1 shows that
the version of A, defined on Shorack’s space (2, @, P) satisfies A, — A, (P) under
(8¢, M), Where

4 = fo(i)-g;M(b(t)) dt + (1 = B)G'(B)U(B) + aL'(a)U(a).

Combining this with the proof of Theorem 2.1, we have that (V,(8,), A,) — (Y, N)
(P) on (2, @, P) under (8, no), where Y is as in the proof of Theorem 2.1 and
A = yTAy — 3v"K,y. But (Y, A) has the N,,, ,(u*, =*) distribution, for

we=(0---, 0’—%7TK227)T

( \ ; )
2* = T T
u Y Kyny

and p = E(AY). Therefore any version satisfies
B{( Vn(an)’ An)} - NM+ 1( H'*9 2*)

under (, no). LeCam’s third lemma therefore implies that under (4, M)
£{V,(8,)} > Np(p, Z), and calculation shows that u = (B,, — BA)y.

The mean p has the same form as in MS, where Ay appeared in the assumed
asymptotic form of 6, as the asymptotic mean under (6, 1,). The contiguity
approach used here requires no explicit assumption on the behavior of 6, in the
noncentral case, but it can be shown that this interpretation of 4y remains true.

3. Chi-square statistics. A statistic of chi-square type is a nonnegative definite
form in V,@,), T, = V,(6,)7Q,V,(6,), where the possibly random M X M
matrices Q, converge in probability to a nonnegative definite matrix Q = Q(6,).
The limiting distribution of 7,, follows from Theorems 2.1 and 2.2 as in Theorem
4.2 of MS. We are concerned here with several useful special cases. The results of
this section are analogous to those for corresponding statistics in the full-sample
case, and their proofs are similar. Proofs and detailed regularity conditions are
therefore omitted. Some of these details appear in Mihalko (1977).

The Pearson statistic. In regular cases, the grouped data mle 67,, satisfies (2.3)
and the assumptions of Theorem 2.1 hold. Noncentral results require the additional
assumptions of Theorem 2.2. Then from (24), £{V,(8,)} = Ny(1;, =,) under
(09, m,), where p, = (I — D)B,,y and £, = I — gq” — D. So the Pearson-Fisher
statistic T, = ¥,(6,)"V,(0,) has the noncentral chi-square x*(M — m — 1, pTp,)
limiting distribution. Chernoff and Lehmann (1954) studied the full sample case of
the Pearson statistic with raw data mle’s, T,, = V,(8,)"V,(4,). In regular cases, the
censored sample mle satisfies (2.10), and £{ V,,(é,,)} — Np(y, Z5) under (6, 1,),
where u, = (B — BK"'K;)Y, 2, =1 — qq" — BK~'BT and K, is the upper
right m X k submatrix of the (m + k) X (m + k) information matrix of F(x, 8, n)
at (fp, ng)- The Chernoff-Lehmann statistic T,, has as its limiting distribution
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under (é,, 7,) the law of
XM = m — 1, p]w) + Z7Ax(L vP/A)

where the x?’s are independent rv’s with the indicated distributions, the A; are the m
characteristic roots of X, satisfying 0 < A; < 1, and the »; are the components of
v = u, — p, = Dp,. Large sample critical points of T,, therefore fall between those
of x¥(M — m — 1) and x*(M — 1), bounds which make T,, often useful despite
the dependence of the A; on 6. Finally, we remark that if F(x, 8) is a location-scale
family, the A; do not depend on 6.

The Rao-Robson statistic. Rao and Robson (1974) discovered the quadratic
form in V,,(0:,) having the x*(M — 1) limiting null distribution. They showed by
simulation that this statistic is generally more powerful than T,, or T,,. Their
proofs apply only in restricted situations, but a general proof is given in Moore
(1977). Let B, = B(£,, 6,) and K, = K@, X nay+1y X@npp)- Then the censored
sample analog of the Rao-Robson statistic is

A\NT -1 A
T3n = T2n + Vn(on) Bn(Kn - BnTBn) BnTVn(on)‘
Under (8, m,), the limiting law of T3, is
XM = 1, puy + ZILF/N).
As with T, and T,,, the noncentrality parameter is O in the null case.

The D:zhaparidze-Nikulin statistic. Suppose that 6, is any estimator satisfying
1
n%(, — 8,) = O,(1) under F(x, 6,). Whenever the rank of B is m, (2.1) implies that

(I = D)V,(6,) = (I~ D)V, + g(1)

under (8y, no)- If D, = B,(BTB,)"'B7, where now B, = B(¢,, §,), continuity of p,
and dp;/9d, imply that the statistic T,, = V.(8,)"(I — D,)V,(8,) satisfies T,, =
vI(I - D)V, + 0,(1) since V,(8,) is O,(1) by (2.1). But this is exactly the asymp-
totic form of the Pearson-Fisher statistic T}, obtained from (2.3) and (2.1). Thus
T,, — T, = 0,(1) under (8, no) and mild regularity conditions. If (C-1), (C-3),
(C-4) hold, the same result follows under (6, 1,) by contiguity. Note that 8, need
not have the form (2.8). Dzhaparidze and Nikulin (1974) discovered the asymptotic
distribution of T,, in the full sample case, giving an indirect proof. Use of Lemma
2.1 (or the analogous Theorem 4.1 of MS for full samples) shows how this universal
chi-square statistic is obtained by projecting orthogonal to B.

Comparison of statistics. . Chibisov (1971) gives examples in which (1) p; = 0 but
some vj’ /A; >0, and (2) p; # 0 but all , = 0 in the full-sample case. Computation
shows that obvious variations of these examples apply in the censored case. It
therefore follows as in Section 7 of MS that T, (and T,,) can be either more or
less powerful than both T,, and T3, in terms of limiting power against contiguous
alternatives. Spruill (1976) has shown that the Rao-Robson statistic T;, dominates
the Chernoff-Lehmann statistic 7,, in terms of approximate Bahadur efficiency
when both employ the same cells in the full sample case. This comparison can also
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be extended to censored samples. It is desirable to compare the performance of
censored sample tests to that of the corresponding full sample tests. When the cells
used in the two cases have the same set of limiting cell boundaries &;, 7, and T,
have the same asymptotic distributions in both full and censored samples, under
either (8, ny) or (0y, m,). This is expected, since 0—,, depends only on the cell
frequencies. We conjecture that 7, for full samples has Pitman efficiency at least
as great as that of T}, for censored samples when the cells employed have the same
boundaries in the limit, but we are unable to prove this.

ReMARK 1. The second terms of both T3, and T,, are quadratic forms in the
m-vector BV, (6,), which has jth component

. — np, ap, N,, dp;
(31) 21-] "' lp"lp’;% Pin =n" 2l-l = ﬁ
(npin)E aoj in aoj

whenever 3f(x, 8)/36; is continuous so that Z}p(#) = 1 and differentiation of
p/(#) under the integral imply =%9p,(9)/ 06, = 0. This holds in the examples of
Section 4, where (3.1) simplifies the form of T3, and T,,.

REMARK 2. Suppose that F(x,8) = F((x — 6,)/8,) is a location-scale family.
Then the matrices

Q,=1I,+ B(K— B'B) 'BT
Q4= Iy — B(BTB)_]BT

estimated to form T, and T,,, which are evaluated at #, and the population
quantiles x; of F(x, 6,), do not depend on §, and can be evaluated at §, = 0, 4, =

For the remainder of this section we drop the convention that , is assumed, so
that F(x) and f(x) are the § = (0, 1)7 distribution and density functions in the
location-scale case. Let z; be the population §;-quantile of F (so x; = 8, + z,0,,),

pi=206—08_,9=fz)— fz;_) and v, = z;/(z)) — z,_, f(z;_})- Then 3p,/00, =
— @, 9p;/30, = — v, and the ith row of B(&y, 8,) is —(@» ,)/084yP7. S0
3.2) BB = 05> =9 /p; z?l(piyi/l’i)'

l¢1 /px 211”",2/17,

Similarly, letting z, and z; be the population a- and B-quantiles of F, K(8y, x,, xg)
= 0,,°J, where J has entries (see (3.17) of [2])

n = 12O/ d + fAz,) /o + fAz5)/ (1 = B)
(33) T =121+ 3 ())& + 2.fHz,)/ a + 25f(z5)/ (1 = B)

T = [2[1 + 3 W)/ fO) A y) dv + 22fN(z,) /e + 23X (25)/ (1 — B).

Relations (3.2) and (3.3) with the expression for B(§,, 6,) show that Q3 and Q, are
f,-free. They can also be used to compute both K, B’B and K, B”B,, replacing §,
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and z; by their estimates in the latter case.
In location-scale cases, we have therefore alternative statistics

T;n Vn(én) Q3 Vn(én)
T:n Vn(on)Q4Vn(0n)
which are asymptotically equivalent under H, to T,, and T,,, respectively. Note
that the simplification provided by (3.1) does not apply to T7, and T7%,, for the term
1
n2Z(p,,/p;)op;/ 96;, which vanished when p,, replaced p,, is not o9,(1).

4. Examples. The statistics described in Section 3 will now be applied to
derive usable tests of fit for censored data to each of four parametric families of
distributions. In each case, the regularity conditions required for application of our
theory are met. For example, the negative exponential family satisfies Halperin’s
conditions [7] for the mle to have the asymptotic form (2.10), and the estimator in
this form satisfies (A-3) through (A-5). This justifies the use of the Rao-Robson
statistic in Example 1 below. Regularity conditions are not checked in detail here;
this work can be found in Mihalko (1977).

EXAMPLE 1. The negative exponential family. It is desired to test the fit of
right-censored data 0 < X(;) < * -+ < X(,5) to the scale-parameter family F(x, 8)
=1-e*(x>0,2=(0:0<0< oo }. Epstein and Sobel (1953) show that
the mle is

. e
0, =[nB]"(ZUE)X () + (n — [1B]) X tnpD)-

Substituting f(y) = e, z, = 0 and z; = — log(l — B) into (3.3) gives J,, = B

and K = 6, ?B. From (3.2) we see that BB = 4, 2=My? /p, where

v, = — (1 — §)log(1 — &) + (1 — &_)log(l — §,_,)
and p, = 8, — 8,_,. Hence setting A = 8 — =7 /p,
V.V,

Q3=1M+A*l( ”1)
(p"pf)2 MXM

When sample §-quantiles 0 < §, < -+ <&, , = X, are the cell
boundaries,

P, = e tirn/b — o=tu/b,

K

n

9‘”—2(1 - e—x(["p],/é,)
and setting
v, = gn—l(g e Sn/b — giﬂl’ne—e,_l,,/o,)

gives BTB, = 6,72=M,2 /p. . Thus the two versions of the Rao-Robson statistic are

[]vin - ”pin]z — ]vin — np;, N'n - hpj, ViV
13, = 1iv!=1 ) +A lE}gj=l T 5 11 jl
in (np;y)? (m)? ) (pp))?
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and (using (3.1))

Mn - n in 2 -
T;, = Eﬁn[—@L]— + (n8,) " (ZM N,/ D)

i=1""in"in
in

An = 1 - e_X(["ﬁD/é - Eﬁlyx‘i/pin'
A slight simplification of T, is obtained by replacing A, by its limit in probability
A. Both T, and T}, have the x*(M — 1) limiting null distribution.

EXAMPLE 2. The Normal family. We will test the fit of right-censored data to
the location-scale family of normal distributions N( p, 6?). The mle’s satisfy (2.10),
but the likelihood equations cannot be solved in closed form. Chernoff, Gastwirth
and Johns (1967) give linear combinations of order statistics for estimating location
and scale parameters from censored data which are asymptotically equivalent to
the mle’s. For the normal case, these estimators are (fi,, 6,) = (E,,, E,,)J ~! where

E,= ”_12[,"51)((,) + (_zﬂ(p(zﬁ) +(1- .3)_1<P2(2p))X([np])

I nB 1 a — r
Eyy = 207"~ — )Xo,

+ (1 - zg + (1 - ﬁ)_lzpw(zp))x([nﬁl)

and J is the matrix of (3.3) having entries

Ju = (.3 - Zﬂq’(zp) + (1 - B)_I(Pz(zﬁ))
Jp= (— 1+ Zp)zq’(zp) +(1- B)_lzpq?z(zﬁ))
Iy = (2,8 - zﬂ(l + zg)(p(zﬁ) + (1 - B)_lzztpz(zﬁ)).

Here ¢ and @ are the standard normal density and distribution functions, and
D(zp) = B.

We will give only the original version T;, of the Rao-Robson statistic. Let
Zip = (& — )/ 6,, so that p, = ¥(z,) — B(z;,_, ). If we set ¢, = ¢(z,) —
P(z;-y,,) and v, = z,9(z,) — zi—l,n(p(zi—l,n)’ then BB, is given by (3.2) if
60 9> ¥, p; are replaced by 6,, ¢,,, ¥, p;,- Moreover, K, = 6%, where J, is J with
zz and B replaced by their estimates z,,_,; , and ®(z,,_, ,). Thus K, — B'B, =
6, %D,, where the entries of D, are

D“ = (I)(ZM—I, ,,) ~ VMmn — Efi_l l(ple/Pin
D|2 = - (1 + ZM—l, n)z(pMn - Z?i_l l(pinVin/pin
Dy =20(zyy_1,,) = (1 + Ziy_ 1, ) ¥atm — 2130/ Pine
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Inverting D, and using (3.1) gives

Nin — hp;, 2
T;, = E?in[—np—i

in

- 2D12(211‘£ l]\[in(pin/pin)(z?il]vinvin/pin)

+ D”(E?{_ l]vinvin/pin)z]

where A, = D,,D,, — D} is the determinant of D,. Once again A, can be replaced
by its limit in probability without affecting the x2(M — 1) limiting null distribution
of T,,. This statistic appears complex, but note that once the z,, have been
obtained, the successive-difference form of p,,, ¢,, and »,, makes T}, quite easily
computable on a programmable calculator.

When the data are symmetrically doubly censored (a« = 1— 8 = p), the estimators
(i, 6,) and the statistic T}, simplify considerably because K and B”B are diagonal
matrices. Since this case is less often met than is right censoring, we do not give the
specific results here. They are easily derived from Section 3 of [2] and the general
recipe for T,.

+ (nAn) - 1[ D22(211u- l]Vin(pin/pin)2

ExaMPLE 3. The two-parameter uniform family. Doubly censored data (1.1)
with 0 < a < 8 < 1 will be tested for fit to the family with density function

f(x,0) =6, 0, —10, <x <0, +36,

Q={0=(0,0)": —0<8,<0,0<8,< o).

Sarhan (1955) derives the asymptotically best linear unbiased estimator of 4, 6, =
(8,,, 0,,)T where

01, = (bui- )X rag+1y + bmxX([nB]))/zrnaﬁ
05, = (n + (X g~ Xtna)+ 1))/ Trap
by,=n—2[np] — LT, p=[nB] —[na] — L

It is easy to check that the coefficients of the sample quantiles approach their limits

an = —é‘((—;‘_‘%[‘;‘)‘, ap = 2(1,8——2?;)’ ay = —ap=(B - a)_l
at rate o(n_%). That V,(6,) has a N(O, 2)/ limiting null distribution follows from
Lemma 2.1, and the covariance matrix £ can be computed from Lemma 2.1 and
the limiting law of X,441) X(qnp) and the sample quantiles £, chosen as cell
boundaries. These computations show that the M X M matrix X has 0’s in the 1st
and Mth row and column, with the central (M — 2) X (M — 2) matrix having
entries §; — (pipj)%/(ﬁ —a)fori,j=2,---,M— 1. (Hered; =1if i =,and 0
otherwise.) Since = has rank M — 3, no quadratic form in V,(6,) can have a
limiting chi-square distribution with more than M — 3 degrees of freedom. This
upper limit is attained by the Dzhaparidze-Nikulin statistic, which can therefore be
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employed without loss of degrees of freedom.
From the results in Remark 2 of Section 3 it follows that

~pi7 pii(3-a)

B = 031
0 —PMm*i
_1 _1 .
Pm? PM’( B—3
and that B”B has entries [ga(1 — B)]'B;, where

By=1-B+a By=3(a+B-1)

Bp=a(3~ B + (1~ B3~ «) +a(l = BB - a).
Since Q, is algebraically complicated (though easy to compute numerically), we
give only T,,. The matrix B, is obtained from B by substituting 8, and p,, =
F¢,,0,)— F¢_, ,,0,) for 8, and p. For i=2,--- , M- 1,p, =(, —
§_1,)/0,, For p, = a and p,, = 1 — B, this process yields a, = 02;1(Xam]+,) -
8,,) + 3 and B, = 0,,' (X sy — 01,) + 3. From (3.1) we then obtain

V1(6,)B, = n"10;,(4,, A,,)
Ay, = (n~[nB))/ (1 = B,) —[na]/a,
Ay = —A1,/2 —[nB] + Bi(n ~[nB])/ (1 = B,)

and finally, inverting BB,,

[Ni - npin]2 an(l - Bn)
Ten = 2114 o, T A, (A4}, Baan — 241, A2,B 12, + A3,B11)
where By, results from substituting a,, 8, in B; and A, is the determinant of the

matrix (By,).

The uniform family is less often encountered in censored-data situations than
our other examples, but it offers an interesting contrast between full and censored
samples. In a full sample, the BLUE’s of 6 are based on the extreme order statistics
and approach §, at a rate faster than n?. Thus V,(8,) is asymptotically equivalent
to ¥, and the Pearson statistic V,(6,)"V,(6,) has the x*(M — 1) limiting null
distribution. Censoring deletes the most informative part of the sample, leaving
M — 3 as the greatest obtainable number of degrees of freedom. In Examples 1
and 2, tests from censored samples attained the same number of degrees of

freedom possible for full samples.

EXAMPLE 4. The Weibull family. Once again the mle’s for this common family
are obtainable only by numerical approximation. Bain (1972) transforms the
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Weibull to an extreme value distribution and gives a simple but quite efficient
estimator for the scale parameter of the transformed distribution. Engelhardt and
Bain (1974) give a corresponding estimator of the location parameter. Suppose then
that (after the monotonic transformation X = log Y from the original data) we
have a right-censored sample X, < - -+ < X, to be tested for fit to the
extreme value family

F(x,0) =1—exp{—exp[(x —u)/b]} —o0 <x< o0
Q={0=(ub): —0<u<0,0<b< w0}
Bain’s estimator of b is
N
b, = (nkg,)” ZVEI"N(X () — X 1np))
where the sequence of constants kg, can be expressed in terms of order statistics
v; < - -+ <y, from the standardized distribution F(r) = 1 — e as
kﬁn = n_lzlrnf{_lE(O, - U[,,B]).

Bain gives a table of kg, for various B and n. The estimator b, is unbiased and for
the choices of B and » studied by Bain has asymptotic efficiency between 0.89 and
1 relative to the much more complicated BLUE. Since u = E(X,z;) — DE(0,g)s
Engelhardt and Bain propose the estimator

Uy = Xinpp) ~ OnE(01np)-
We shall take 8, = (u,, b,).
The asymptotic behavior of §, must be investigated. If 7, = kg,b, and
1) ug = [Elog{ —log(1 — 1)} dt — B log{ —log(l — B)},
then Bain shows that £{n3(T, — byus)} — N(0, b303) under F(x, fy), where the

form of oj does not concern us. We will show below that kg, — pg = o(n ‘%), from
which 1t follows that

1 1
n2(b, — bo) = n*(T, — boug)/ug + 0,(1)
and
1 1 1
n2(u, — ug) = n2(Xqng) — E(X((npp) + 12(b, — bo) E(vpup))
1 . 1
= n2(Xqnpp — %) + n2(b, — bo)vg + 0,(1)

where xg(vg) is the population B-quantile of F(x, 8y)(F(x)). Thus n%(ﬁ,, -6y is
asymptotically normal and Theorem 2.1 applies. The “natural” chi-square statistic
is then V,,(6,)"=7V,(8,) where =~ is a generalized inverse of the = of Theorem 2.1
or a consistent estimator of such. This statistic has the x*(k) limiting null distribu-
tion, where & is the rank of =. When £k = M — 1, =7 is relatively easy to compute
(Moore (1977), Section 4). But in this case, k < M — 1 and we are unable to obtain

27. We therefore accept the possible loss of one degree of freedom and use the
1
Dzhaparidze-Nikulin statistic. The required fact that n2(8, — 6p) = O,(1) follows
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as above from kg, — pg = o(n_%). This we now establish.
LemMA 4.1. Forany B,0< B < 1, kg — pg = o(n_%) as n— co.

ProoF. Corresponding to the two terms of (4.1), write

kg, = n~'S"E(v) — @E(U[,‘m)

r=1

= n"'E[ZPlq(1)] - [n—’;B]E[Q(t[nﬁ])

where g(#) = log{ —log(l1 — #)} and #, < -+ - < li.p) are order statistics from n
ii.d. Uniform (0, 1) rv’s. We first show that

(4.2) n~'E[2"1q(1)] — j§a(r) di = o(n™ 7).

r=1

Using the fact that the distribution of #,, - - -, ¢4 conditional on ¢,,, , is that of
the order statistics from [#8] iid. Uniform (0, ling1+1) TV's (this technique was
suggested by Burgess Davis),

n~'E[Z"®lq(1)] = n—lE[E{[r’fl]q(tr)It[nﬁ]+l}]
= n_lE[[nB]E{q(T)It[nﬁ]+l}]

where the conditional distribution of T given #,4,,., is Uniform (0, Ying1+1)- SO

n e[ 50210()] = V2L B[ (pprsatt) d) 0101 ]

= E[ 5q(1) dt]
where Y, is a Beta([nB], n — [nB]) rv. Letting ¢(») = [3q(?) dt, (4.2) now states
that E[e(Y,) — @(B)] = o(n_%). Note that ¢’(y) = q(y) and that

¢"(») =q'(») =[(1 = y)log(1/ (1 —»))] ™"
<[ya-=-»]"
since log x > 1 — x~ ! for x > 1. We have
E[(Y,) — 9(B)] = E[a(B)Y, = B)] +3E[4(¥})(¥Y, — B)*]

for some Y} between Y, and B. Since E[Y,] = [nB]/n, the first term is o(n ~ %). The
second term is bounded by
(n—ﬁf”

(Y, - B)?
B(1 - B)

The expected values on the right in (4.3) can be explicitly computed and shown to
1
be o(n~2). Thus (4.2) holds.

(43) 1E E

(v, - B)
Yn(l - Yn)

—2 7 <! E
YA — ¥¥) 2““*{
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It remains only to show that in addition

n
(&4) L] Bl ] - Ba(B) = o(n™)
Since {5, is a Beta([nB] + 1, n — [nB]) rv, arguments similar to those applied to ¢
above demonstrate (4.4).

The statistic T,, will now be computed. In the notation of Remark 2 in Section
3, f(z) = e’e™, z; = log{ —log(l — §)} and f(z;) = — (1 — §)log(l — §;). From
this @, », and BB are easily computed. Let ¢,, and »,, have the same expressions
as do ¢; and »,, but with §, replaced by

Sin =1- exp{ —exp[(&,-,, - un)/bn]}'

.n — 0,_1 - Then B, and BB, have the expressions found at (3.2)

Of course, p;, = §,
with 8, p;, @, »; replaced by 8, p,,., ¢; . The resulting statistic is, using (3.1) once

more,
Nin - npin g
—21=l% {(21-1 n/pm)(zl-l mq‘)in/pin)z
_z(zt—l(pm m/pm)(zt-l mq‘)m/pm)(zx—l in m/pm)
+ (zl-l(p"l/p"l)(zl-l Vm/pm) }
where

= (M, 02/Pn) EM 2 /D) — (ZM@isVin/ Pin) -

Once again A, may be replaced by its limit in probability, obtained by substituting
@, »; and p;. And once again the successive difference form of p,,, ¢,, and »,, makes
T,, more easily computable in practice than may at first appear.
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