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EMPIRICAL BAYES ESTIMATION OF THE MULTIVARIATE
NORMAL COVARIANCE MATRIX

By L. R. HAFF
University of California, San Diego, La Jolla

Let S, , have a Wishart distribution with scale matrix £ and k degrees of

freedom. Estimators of = are given for each of the loss_functions L(Z,
D) =tr (T —log det (Z=~) —p and L=, Z) = tr G=~! - I)%. The
obvious estimators of = are the scalar multiples of S, ie., aS where 0 <a <
1/k. (Recall that (1/k)S is unbiased.) For each problem (Z, 2, L)), i = 1, 2, we
provide empirical Bayes estimators which dominate @S by a substantial
amount. It is seen that the uniform reduction in the risk function determined by
L, is at least 100(p + 1)/(k + p + 1)%. Dominance results for L, and L, were
first given by James and Stein.

1. Introduction and summary. The problem under consideration here is that of
estimating the multi-normal covariance matrix =. Empirical Bayes (EB) alterna-
tives are derived which dominate all scalar multiples of the unbiased estimator. The
risk of the unbiased estimator is reduced by a significant amount in each case.

In [3] and [4], the author treated the problem of estimating =~!. An identity for
the Wishart distribution was derived and used to compute an unbiased estimator
for the risk function. Dominance results were then obtained by working with the
unbiased estimator. The same technique is widely used in the present paper. (The
Wishart identity is stated in line (2.4) below. Unknown to the author, Charles Stein
essentially derived it several years ago. His approach was different, however, and
his work remains unpublished—see [12].)

Our present results have the flavor of those given by James and Stein [6], pages
376, 377. We provide estimators which dominate the usual unbiased estimator for
each of two invariant loss functions. Our present methods, however, supersede
those of [6], and the implications are deeper. Whereas the estimator in [6] is only
slightly better than the usual one, the EB estimators are substantially better.

Let S,,, have a Wishart distribution with unknown matrix 2 and k degrees of
freedom, i.e.,
(1.1) S~W(EZ, k)fork—p—1>0.

Also, let $ be an estimator of =. We assume that the loss function is

(12) LE, 2 =tr (E="Y) —logdet(E=") —por L&, ) = tr ="' - 1)
(from [6]), and define the risk function by
R(Z,3) =E[LE, D)2 k], i=1lor2.
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(The latter is an average with respect to the W(Z, k) distribution.) If $ and 2,. are
competing estimators of X, then «% dominates ﬁ‘.,, (mod L)” will mean R,(ﬁ,
3) < R(E,, 3) (V3).

Our EB estimators have the form

(1.3) S =a[S + ur(u)C]

with 0 < a < 1/k, u = 1/tr (S”!C), #(-) nonincreasing, and C an arbitrary posi-
tive definite matrix. For #(-) =0, we have the obvious estimators, the scalar
multiples of S. In particular, note that E(1/k)S = =.

For loss function L,, Stein [6] derived a minimax estimator and proved that for
any B > 0, B(S/k) is not minimax. He obtained similar results for L,, but was
unable to get an explicit formula for a minimax estimator in this case. Selliah [10]
gave additional results for L,. Later, Perlman [8] showed that if (kp — 2)/(kp + 2)
< B < 1, then B(S/k) dominates S/k with respect to a general quadratic loss
function. All these estimators (from [6], [8], and [10]) are only slightly better than
the unbiased estimator. Finally, in the 1975 Rietz lecture [12], Stein described one
(for L,) which is substantially better. His methods were similar to those used in the
following.

A summary of the present work. Among the scalar multiples of S, we prove that
the best estimator (mod L,) is the unbiased estimator

(1-4) ﬁl = (l/k)S,

and the best estimator (mod L,) is
2, =[1/(k+p+1)]S.

Our main results concern the estimators in line (1.3). These, (1.3), are derived as
empirical Bayes estimators. Then, for each loss function, conditions are given
under which they dominate the best scalar multiple of S. Under L,, we have the
following numerical comparisons: it is seen that Rz(i,, 3) = p(p + 1)/k and
R2(2 ) < RE,, ) =p(p + 1)/(k +p + 1) (V). Thus R2(2 3) is less than
RZ(E,, 3) by at least 100 (p + 1)/(k + p + )% (V). For p = 3 and k = §, say,
the uniform improvement is at least 33%. In addition, our Monte Carlo results
(unpublished) indicate that Rz(i, 3) is less than Rz(ﬁz, 2) by as much as 16%
(p =3 and k = §).

Finally, there is a parallel between our results and those of Stein [6]. Roughly
speaking, the EB estimators which perform well (mod L,) also perform well (mod
L,). Although we give explicit estimators under L,, the calculations are difficult,
and the results lack the generality of the L, results.

2. A brief description of the mathematics. Let § be a real number, Voxp @
symmetric matrix. If we apply the expansion

Q1) log det(I + 8V) = ,,_,(—'—)i_la" i (V")
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to L,, then a relationship is obtained between L, and L,. (The series converges if
the spectral radius of ¥ is less than unity and 0 < § < 1.) In particular, set § = 1,
factor = ! as 27! = Q2 and expand

log det(2= 1) = log det(R2Q)
=logdet(I + V) (V =Q2Q —~ I)
22) =t (V) -Be @)+ G @) ----
=tr ' -0 -F)rE= -1+

From (2.2) loss function L, can be written as

(23) LED=03)LED-HrEz"'-n+. .-,
so it is plausible that estimators which perform well (mod L,) also perform well
(mod L,).

The series (2.1) is used to obtain an approximation for a,(Z) ER,(fI, 3) -
R,(i,, 3). This approximation, call it ,(Z), has the property that a(Z) < 0 (VZ)
implies a,(Z) < 0 (VZ). We shall force a,(Z) < 0 (VZ) by using an identity for the
Wishart distribution.

The identity and its application. For suitable choices of a matrix T =
T(S, Z),x,, a scalar h(S), and a constant r # 0; the identity is stated in terms of
the following:

(i) diag(T), a diagonal matrix with diagonal elements equal to those of T;

(i) T,y =rT + (1 — r) diag(T);

(i) D*T, = 3f_,0¢,/0s; + rZ,;0¢;/03s;; and

(iv) 0h/3S = (0h/3s;),xp-

The identity is given by

(2.9) E[h(S)tr (TZ"1)] = 2E[h(S)D‘T(%)] + 2Etr[ a’g(s) . T(%)]

+ (k —p — )E[h(S)tr (S™'T)].

First, we apply (2.4) to risk function R;. It happens that «,(Z) has terms under the
expectation of the form A(S)tr (T=~') with T = T(S) (see the left side of (2.4)).
Consequently, we readily obtain &,(Z), an unbiased estimator of a,(Z). Theorem
4.3 gives conditions under which g‘—l(E) < 0 (VS). The inequality implies a,(Z) < 0
(V). Risk function R, introduces additional difficulties. In particular, a,(Z) =
Rz(ﬁ, 3) - Rz(iz, %) has terms which are quadratic in =~! (not merely linear like
;). We obtain an unbiased estimaior for a,(Z) by a method involving repeated
application of (2.4).

Various combinations of A(S) and 7(S, Z) are used in the following. For each,
the identity (2.4) is verified by straightforward modification of [3], pages 377-379.
Most of these details are omitted. However, some general conditions for the
validity of (2.4) are established in Haff [5].
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3. Empirical Bayes estimators. In this section, we describe the empirical Bayes
character of the estimators
(3.1) $ = a[S + ur(u)C]

where 0 <a < 1/k, u=1/tr (§7'C), t(w) \, and C,,, > 0. Our dominance

results are stated in Section 4. Together, these sections provide a basis for choosing
a, t(u), and C.
Assume that

(32 S~ W,

pXp

(2, k)and =71 ~ W, [(1/¥)C L K]
with y unknown, C p.d. and known, and k' > 0 a known integer. It is seen that
(3.3) TS ~ W,,,[(S+ vO) "\ k + K]

and IS~ W,[S+C, (k+ k) +p+1].

Here WP;L indicates the inverse Wishart distribution—see Press [9], pages 109-112

for a useful description. From (3.3), the posterior mean of 2 is
(34) EZ|S,y)=a(S+YC), a=1/(k+k —p—1).
Our estimator in (3.1) is a modification of the posterior mean—being “empirical

Bayes” in the sense that uz(u) is an estimator of y. We now derive ¥ = u#(u) as a
generalized maximum likelihood estimator. From (3.2), the marginal density of S is

(3.5) f(S|y) o yP72S|k=P=D/2§ + yC|~*k*+K)/2 for § > 0;
hence, the likelihood function is
I(y|S) = y”"'/z[det(l + yCS"')]_(k*'kl)/z.
Let
1* = log I(+]S)

= ﬂc—log y — —(—k—t—k—llog det(I + yCS 1)

2 2
Pk (k + k) 1t
= Tlog Y- ———-2———log det (I + yC2 S ‘Cz)
’ ’ _ n-—1
= I%log Y~ (k -’2- £) -1 ( ln) y"tr (Ci'S"C%)"

[see (2.1)]. We shall proceed on a formal basis and discuss convergence later on.

The first order approximation
K+ K e (crs-ich)

v 2 PK ey -
(3.6) / 2 log v 5

has a maximum at

(3.7) 3= c*/tr (C187'C?)

= c*u
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where c* = pk/(k + k') and u = 1/tr (S ~'C). Because of the approximation in
(3.6), it is plausible that the constant c* may be improved upon. Actually, functions
t(u) are given for which $ dominates the best scalar multiple of S. Among these are
constant functions which outperform #(u) = c*. (See Theorem 4.3 and 4.4.)

We note that the expansion of /* converges at any y = ut(u), 0 < #(u) < 1; i.e,

crs-Ice

o O e (chs ety = 55 (__%2’"(“)“ « (Cts-ich)
tr (C287'C2

n=1 n n=1
and the series converges since ¢"(#) \y 0 and the matrix inside brackets has spectral
radius less than 1.

4. The main results. We now state the main results of this paper. The proofs
are given in Section 5.

THEOREM 4.1. Under loss function L,, the best estimator of the form aS is
2, = (1/k)S.

THEOREM 4.2. Under loss function L,, the best estimator of the form aS is
2, =[1/(k +p+ DS

Our main results concern the estimators

(4.1) 2=a[S+ut(u)C], a=1/(k+k —p—1).

For the purpose of comparing $ with ﬁl, i =1, 2, we shall set k" equal to p + 1
and 2(p + 1). Note that each problem (Z, 2, L)), i = 1, 2, is invariant under the
transformations S — ASA’, 2 — A3A', 32 — AZA’, where A is an arbitrary non-

1 A A

singular matrix. In particular, let 4 = C ~2. Since R(2, =) = R(A3A4’, AZA), we
assume without loss in generality that C = 1.

THEOREM 4.3. In (4.1), let 3 be given by
OK=p+1
(ii) C an arbitrary p.d. matrix; and
(iii) #(u) an absolutely continuous and nonincreasing function, 0 < t(u) < 2(p —

1)/k.
Then S dominates S, (mod L)), ie., R,E, 2) < R,E,, 2) (V3).

If ¢ is a constant, then an optimal value of ¢ is (p — 1)/k (as seen from the proof).
Corollary 4.4 is useful when we have an a priori upper bound on v, say ¥.

COROLLARY 4.4, Assume the conditions of Theorem 4.3 with

(4.2) t(w) = ¥/uforu > ky/ (p — 1)
= (p — 1)/ k otherwise.
Then R(Z, =) < R,(Z,, ) (V).
According to (4.2), the estimator uf(u) never exceeds y. Theorems 4.5 and
4.6 concern loss function L,.
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THEOREM 4.5. Let 3 (see equation 4.1) be given by
@ k' =2p+ 1)
(ii) C an arbitrary p.d. matrix; and
(111) 0<r< 2(p - 1/(k—p+3),t¢t a constant.
Then 3 dominates 22 (mod L,), i.e., R2(E 3) < Rz(Ez, 3) (V).

The choice ¢ = (p — 1)/(k — p + 3) is optimal (again, see the proof). As men-
tioned before, the R, calculations are relatively difficult, so our present Theorem
4.5 lacks the generality of Theorem 4.3. The univariate case of Theorem 4.5 is
interesting. For p = 1, our estimator becomes 2 = 22 = S/(k + 2), the unique
admissable minimax estimator of = (see Lehmann [7], pages 4-15).

An analogue of Corollary 4.4 is

THEOREM 4.6. Let S be given by
ODk=2(p+1),k—p—-3>0;
(ii) C an arbitrary p.d. matrix; and

(iii) t(w)=Y/u for u>y(k —p+3)/(p —1)=(p — 1)/(k — p + 3) other-
wise.
Then Ry(2,, 2) < Ry(Z,, =) (V).

5. Mathematical details.
PROOF OF THEOREM 4.1. Let 3, = (1/k)Y1 + oS, || < 1, and 5?1 = (1/k)S.
We show that
R, 2) - R(Z,2) = E[(c/k) tr (SZ71) — plog(1 + ¢)] >0 (VZ),
This inequality is true if ¢ — S ,(—1)"*!(c"/n) = S2_,(—1)*(c"/n) > 0. The

latter holds because each positive term dominates its successor; and the proof is
complete. []

PrOOF OF THEOREM 4.2. A scalar multiple of S has risk R,(aS, )= E
tr(aS=~! — I? = a®> trE(V?) — 2kpa + p in which V = S"3SZ~1~ W(I, k).
Thus R,(aS, =) = kp(k + p + 1)a® — 2kpa + 2, and the latter is minimized at
a=1/(k+p+ 1.

The remaining calculations depend on special cases of (2.4). In particular, we
shall need

() E[A(S) tr(Q=~ ] = tr E[(k — p — DA(S)S™'Q + 2(3h(S)/
aS) - @, 1 )] where Q. , is a matrix of constants,

(5.1)
(i) E[h(S) tr(SE~Y] = E[pkh(S) + 2 tr(3h(S)/3S - S(1))] and

(iii) E[A(S) tr(ST'QE"N] = E{(k — p — 2)h(S) t(S7?Q) —
A(S) (tr S™H(tr S7!Q) + 2 tr[oA(S)/3S - (S~ 1Q)( )]} with
Q as in part (i).
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ProOF OF THEOREM 4.3. Write (4.1) as s = 1/K)S + gS)I, gS) =
(1/k)ut(u), and set a;(Z) = R|(Z, Z) — R(Z), 2) = E[g(S)tr=""! — log det (I +
kg(S)S™1)]. We must show that a; < 0 (VZ). From (5.1(i)) with Q = I, we have

a,(2) = E|(k — p— 1)g(S)tr S™' + 2 tr (3g(8S)/3S)

( — l)n -! n -1 -1\~
B Sl (wtr (S~!/tr S7H)"|.
This series is bounded below by a quadratic; i.e.,

_1\n—1
;,w_,(—‘—n)—:"(u)u (S~1/tr 71" > () — 1/2¢(u),
because the terms are in decreasing magnitude. A sufficient condition for a,(Z) <
0 (V) is
(52) (k—p— Dg(S)tr S™! + 2tr (39g(S)/3S) — t(u) + 1/2 (u)

— —(p + Dt(u) + 2[trais{u:(u)}] + (k/2)f(u) < 0.

From [4], it can be seen that

trais{ut(u)} =[ut'(u) + t(u)][tr S™2/ (ir S—l)z],

Finally, since #(u) < 0 and tr S~2/(tr S™')? < 1, it is easily seen that 0 < ¢#(u) <
2(p — 1)/k is sufficient for (5.2). []

If ¢ is a constant, then (5.2) is bounded above by

—(p = Dt + (k/2)7,
and the latter is minimized at ¢ = (p — 1)/k.
Theorems 4.5 and 4.6 concern comparisons between 3 = g[S + ur(u)/] and
2,=aS,a=1/(k + p + 1). In particular, for
Rz(f:: 3) = Rz(ﬁz’ 3) + a(2)
(53)  and
a,(Z) = E[2ag(S)tr (S=72) — 2g(S)="" + g¥(S)r=7?],
they give conditions under which a,(Z) < 0 (V).
We need the following properties of D*(see the definition above line (2.4)):
(i) For a matrix F(S),,, and a scalar ¢(S),
D*(¢F) = @D*F + tr [(3p(S)/9S) - F];
54 (ii)) For a matrix Q of constants,
p+1

pxS)y) =(E5—) wes
(iii) D*S() = —(3) tr $72 = G)r ST
(v) D*S(f)= —tr §7> = (ir S ~')(tr S 7).
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The calculation (5.4(i)) is routine, hence omitted. See the Appendix for verification
of (ii) and (iv).
Identities for the terms in (5.3) are given by

LEMMA 5.1.  Assume that g,(S) = 9g(S)/ sy (4,4, + + , p) satisfy the conditions of
Stoke’s theorem—see Haff [3] and [4].

(i) For h(S) = 2ag(S), we have
E[h(S) tr(S=7?)] = E{k(k —p— DA(S) tr S™' + 2(2k — p — 1) tr(dh(S)/3S)
+4D*[(ah(S)/8S)(%) - S]
(ii) For h(S) = — 2g(S), we have
E[RS)u 2 ' =E[(k—p— DAS) tr ™' + 2trdh(S)/as].
(iii) For h(S) = g*(S), we have
E[h(S) r="2] = E{4D*[ah(s)/as]

(%)}'

) o |
+2k - p — 1)h(S)D*S(“l‘) + (k — p — 1)*4(S) trs-2}.

+4k-p—1) tr[ah(S)/as- S

PROOF OF (i). Set T = S=~!. From (2.4) we have

E[h(S) t(T="Y)] = E{Zh(S)D*T(l) + 2 tr [9(S)/0S - T(l)]
+ (k= p — DA(S) tr =71}

= E{kh(S)tr ="' + 2 tr[(ah(S)/SS)(%)SE_'] }-

(Use (5.4(i1)) and combine terms.) From the last equation, the result follows by
applying (5.1(1)) to the first term and then Lemma 5.1 to the second (T =
On(S)/ 98)d) - S).

PrOOF OF (ii). In (5.1(i)), set Q = I.
PROOF OF (iii). Set 7 = =~!. From (2.4) we have

E[h(S) t(T=™Y)] = E{2 tr[ah(S)/GS](l)E" + (k= p = DA(S) tr(ST'=7}.
“\2

Our result follows by applying (2.4) to the first term under the expectation with
T = [ah(S)/3S ](%) and applying it to the second with T = S,

Now we specialize Lemma 5.1 by taking g(S) = aut(u), u =1/ tr (S™"). The
matrix

ou/dS = u’S;}?

follows from standard perturbation results—see [4]. Thus we obtain

(5.5) 9g(S)/3S = a[wr'(u) + v’(u)]SG}.
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Let us introduce the notation

(5.6) b, = (tr §~™)/ (tr S~1)™, m=1,23,---.

Our specialization of Lemma 5.1 is

LEMMA 5.1*.  For g(S) = aut(u) and r(u) = w’t'(u) + w’t(u),

() E[2a%ut(u) tr (S=72)] = E[2a%(k — p — Dt — da*(r/w) + 4a°Rk — p —

2(r/w)p, + 8a%( /wps,

(i) E[—2aut(u) tr="') = E[—2a(k — p — 1)t — 4a(r/u)p,),
and

(i) Ea?u¥*(u) = E{[(k —p — 1)’t — (k — p — Dt — 8(7/ud)]a%p, + 8(k — p

— 2)at(x/w)ps + 8[(r/W) + t(¥ /w)a’p, — (k — p — 1)a’t).

ProoF. In part (i), A(S) = 2ag(S) = 2a%ut(u). We shall compute
D*[(0h(S)/ 38)c, - Sy and leave the remaining details for the reader. Part (ii) is
immediate. Also, we omit the details of part (iii). The latter calculation is lengthy;
nevertheless, it is straightforward from (5.4), (5.5), and (5.6). We have

D*[(ah(S)/aS)(%) . S](%) = 2aD*[ (3ur(u) /as)(%)- S] )

= 2a2p*[ {T(u)s(‘%')} (from(5.5))

= 2a2{1-(u)D*S(_%l) +tr[8'r(u)/8S-S(_%l) ]} (from (5.4(1)))

= 22 r(w) ~ (3)r$ 72 = (3)(rs ™)’
+'r’(u)tr[(8u/8S)-S(-%l) ]} (from (5.4(iii)))

= 2a*{(=3)[7(w)/w*][p, + 1]
e sii-sg) )

= 2°((=3)[7(@)/#][p + 1] +[7(w)/u]os}. 0

Finally, the proofs of Theorems 4.5 and 4.6 depend on a result from Bellman [1],
page 137, namely,

LEMMA 5.2. We have the inequality
(l/p)m_l<pm<19 m=0,1,2,"'.
PrROOF. Omitted. []

In addition, it is convenient to note that p,, = tr [S ~!/(tr § ~1)]" decreases in
m.

ProoF oF THEOREM 4.5. The function a,(Z) is given by Lemma 5.1*, being the
sum of (i), (i) and (iii). Let #(x) be a constant, say ¢. Then 7(u)/u* =t and
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7'(u)/u = 2t. The unbiased estimator of a,(Z) is
a,(2) = {Zak{k —p— 1+ 2p,]
+4a[(k—p —2p, +4p; — 1] —2[k—p —1 +2p2]}at
+{[(k—p =1’ —(k—p—1) = 8]o, + 8[k —p — 2]p; + 24p,
—(k—p—1)}a%
Recall that a = 1/(k + p + 1). The above coefficient of af(u) can be written as
(5.7 —2a[2 +k(p+1)—(p+ 1)2] + 4a(k — 2p — 3)p, + 16ap;.

In (5.7), the first term is negative because k > p + 1. Thus the entire quantity is
bounded above by

(58) —2ap,[2 + k(p + 1) — (p + 1)’] + 4apy(k — 2p + 3) + 16ap,

= —2apy)(k —p + 1)(p — 1). (since0 < p, < landp, \)
The coefficient of a*? is bounded above by
(59 [(k—p =17 =(k—p—1)=8]p,+8(k —p —2)p, + 2p,

=pk—p+3)(k—p+]1).
Finally, from (5.8) and (5.9), a sufficient condition for ay(Z) < 0 (VZ) is
(5.10) —2d%,(k—p+ 1)(p—Dt+a%py(k—p+3)(k—p+1)*<0
which is equivalent to
0<t<2(p—-1/(k—p+3) 0

With respect to (5.10), the optimal zis ¢ = (p — 1) /(k — p + 3).

PrOOF OF THEOREM 4.6. We have assumed that 0 <t < (p — 1)/(k —p + 3)
and '

Hu)=Y/uforu>y(k—p+3)/(p—-1)
=(p—-1)/(k —p+ 3) otherwise.

Recall that 7(u) = u’'(u) + u’(u). (Again, see Lemma 5.1*.) Let M = {u: u >
y(k —p + 3)/(p — 1)}. Foru € 9N, 7(u) = 7'(u) = 0. In this case, simple algebra
shows that @,(Z) < 0 if 0 <t < (p + 1)/(k — p — 3). The latter inequality is
satisfied by hypothesis. For u & M, t = (p — 1)/(k — p + 3), and again a,(Z) <
0. The proof is complete. []
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APPENDIX
THE CALCULATIONS IN LINE (5.4).

Calculation (5.4(i1))). We show that

D*(QS )( )= trQ
LetS=(S),---,8)and @ =(Qy, - -, Qp); thus QS = [Q/S ;. We have
D*(QS)(1) = Zi(8/85:)0/S; + (5)2.(3/35,) QIS
=2 + (1) Zindy
= (3)2i + (3)Z6.9
=(p+1)/2tQ.
Calculation (5.4(iv)). We show that
D*S(_%)z = —tr (§73) — (trS ") (trS ~2).

Let S~ !'=4= (aij) We have

D*Al) =323, 75, Yl +(3 )2,#2 5,

.2 2a,(3a,/3s;) + (3 )2,#2 [a,(3a,/0s,) + a,(3a,/ds;)]

= -2 .22a,a,a, — (5)2 i 2 (aa; + aga;)

- (1)2 i (a,(a,a; + a;a;)

- (2.2 ,a,02 + =, % ,a;a,a,)

- (2,-2 a,a: + (5)2,-#2 ,q,iaﬁ + (%)E i ,a,jz-a,.,.)

—tr(S73) = (tr S~ H(tr S 3. . 0
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