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MINIMUM CHI-SQUARE, NOT MAXIMUM LIKELIHOOD!

By JOSEPH BERKSON

Mayo Clinic, Rochester, Minnesota

The sovereignty of MLE is questioned. Minimum x3 yields the same
estimating equations as MLE. For many cases, as illustrated in presented
examples, and further algorithmic exploration in progress may show that for all
cases, minimum x? estiinates are available. In this sense minimum x? is the
basic principle of estimation. The criterion of asymptotic sufficiency which has
been called “second order efficiency” is rejected as a criterion of goodness of
estimate as against some loss function such as the mean squared error. The
relation between MLE and sufficiency is not assured, as illustrated in an
example in which MLE yields oo as estimate with samples that have different
values of the sufficient statistic. Other examples are cited in which minimal
sufficient statistics exist but where the MLE is not sufficient. The view is
advanced that statistics is a science, not mathematics or philosophy (inference)
and as such requires that any claimed attributes of the MLE must be testable
by a Monte Carlo experiment.

Some times some reflections which are presented in a tone which is simple and modest enclose the

truth and are as sure a guide to it as an accumulation of formulas which are in part a
trompe-1’ oeil-Emil Borel.

Some months ago I submitted a communication for publication in this journal
that took issue with part of a paper by Efron (1975). After deliberate consideration
the editor advised me to elaborate my views somewhat, and to comment on some
related other papers which he designated, and to provide illustrative numerical
material. This present notation is in response to that invitation.

In an unpublished paper, “An extended view of chi-square testing and estima-
tion,” Berkson (1976), I presented a view that the basic principle of estimation is
minimum chi-square, not maximum likelihood. A chi-square function is defined as
any function of the observed frequencies and their expectations (or estimates
of their expectations) that is asymptotically distributed in the tabular chi-
square distribution. Some of these when minimized yield RBAN estimates. Five
specific chi-square functions which have been used were presented; Pearson x‘,,2 =
S((0 — e)*/e), Neyman’s reduced x? = 3((0 — e)?/0), likelihood xi =
250 In(o/e), Kullback’s discrimination information x7 =2 X e In(e/0), logit
x? = Snpq(lgt p — gt P)?, where o is an observed frequency out of n trials, e is an
estimate of the expectation of the corresponding frequency, p =1— g =o0/n, P

=1-Q=e/nlgtp=1n(p/q) gt P = In(P/Q).
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An outline of this view with the observational basis of its discernment was
presented in Berkson (1972).

Minimizing x; yields the same estimate as the MLE. Minimizing any of the other
chi-squares yields asymptotically equivalent estimates, in the sense that they are
asymptotically consistent, normal, with the same minimum variance. Inasmuch as
minimizing x} yields the MLE, it is argued that since the MLE can be derived as a
minimum chi-square estimate, minimum chi-square is the primary principle of
estimation. It is to be noted that Cramér, (1946), page 426, derived the MLE as a
large sample approximation of the minimum xj estimate and refers to the derived
MLE as obtained by the “modified x> minimum method.”

Statistics is an applied science and deals with finite samples. Asymptotic theo-
rems refer to limits which, by definition, are never attained. There is no mathemati-
cal demonstration that there is any method of estimation that assures that the
estimate attained is best in an operational sense in all circumstances, particularly
not the method of maximum likelihood which was abandoned by Gauss. In this
writer’s experience there are situations in which sometimes the minimum x?
(maximum likelihood), sometimes one of the other minimum x? estimates is better.
The position here advanced is that every problem should be studied and if it is not
known which is best, the minimum chi-square estimate which is simplest to
compute for that case should be used.

In the course of time I have published opinions questioning the sovereignty of
maximum likelihood estimation. In commenting on one of these Rao, (1961a), page
440, said: “There has been a tendency to consider estimation as part of decision
theory, which requires as a datum of the problem the specification of the loss for a
given difference between estimate and the true value of the unknown parame-
ter ... . This may be appropriate in certain situations but I am not sure whether
one can support Berkson (ref.) when he wants to estimate the - - - regression line in
a bio-assay using the criterion of expected squared error, unless, of course, he
believes or makes us believe that the loss to society is proportional to the square of
the error in his estimate.”

Professor Rao’s expressed opinion, reflecting dissociation from a view of statis-
tics that may have operationally meaningful import, i.e., decision theory, as well as
his dismissal of the mean squared error as an appropriate criterion of goodness of
estimate, contrasts singularly with the. view expressed by Gauss as reported by
Plackett (1972). Gauss, Plackett noted, “anticipated ideas of decision theory”.
Gauss himself in a quoted letter to Bessel said: “...I must consider it less
important in every way to determine the value of an unknown parameter for which
the probability is largest, although still infinitely small, rather than that value, by
relying on which one is playing the least disadvantageous game . . . . The principle
for estimation emphatically rejected by Gauss—*“less important in every way”—is
that of maximizing a probability (or likelihood); he favored instead minimizing a
loss function, namely the expected squared error.
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With all due regard for latter day developments in statistics, it is not necessarily
a lack of insight that may prompt one to prefer the guidance of Gauss in contrast
with sponsors of subjective theories of “inference” in vogue at the moment in some
current statistical literature.

Mention of Gauss prompts the presentation of an example which contrasts
maximum likelihood with least squares and points up some paradoxical con-
sequences involved with application of maximum likelihood.

We consider a linear functional relation

(M (ulx) = p=a+ Bx

where g, is the value of pu at x; and a, B are parameters whose values are unknown.
The p, are measured with error ¢; as Y, ¢ being distributed N(0, o).

2) Y,=a+ Bx; + ¢.

We have an observation y; at each x; (i = 1, 2, - - - , n) and wish to estimate g,
which means to estimate a, 8.

If g, is the same at all i, independent of p,, it is well known that the ML and least
squares estimate of a, B, are identical. However, if g; is not constant but is
proportional to u, with 6, = Cp, where C, the coefficient of variation, is the same at
all x;, as is often reasonable, then the least squares and ML estimates are not the
same.

If all the observations y; fall on (1), then the least squares estimates, which are
determined by minimizing S(y, — Y,)?/o? will yield the true values & = a, 8 = 8.
The ML estimates will in these circumstances yield

a = aoF

B = BF

where

_(1+4cH'? -1

F
2¢C?

As an example
a=1, B=1, C=02

F = 0.962912.
We suppose observations at x = 0, 2, 4, 6, 8.

x y Y, In L, }7, In I:i
0 1 1 0.6905 0.9629 0.7283
2 3 3 —0.4081 2.8887 —0.3703
4 5 5 —0.9189 4.8146 —0.8812
6 7 7 —1.2554 6.7404 —-1.2176
8 9 9 —1.5067 8.6662 —1.4689

Total —3.3986 —3.2097

Likelihood with ¥ = 3.342 x 102 Likelihood with ¥ = 4.037 x 1072,
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Thus it is seen that the ML estimates, though they do not recover the true u’s do
have larger likelihood.

The question suggests itself as to whether this example reflects an inconsistency
of the ML estimate. Many years ago in conversation with the late “Jimmie”
Savage, discussing consistency, I mentioned examples of some empirical estimates
used in bioassay that had the awkward characteristic that they did not recover the
true values of the pertinent parameters even when the observation followed the
assumed function exactly. He commented, “That’s not inconsistent, that’s wrong.”
Barnard, in discussion of a paper by Rao, (1962), page 67, referred to the idea of
consistency used by Gauss which requires that if the observations are free from
error the estimate should give the true value of the parameter. Fisher (1922), (1925),
(1938), (1956), to whom the statistical term is due, gave several definitions of
“consistency”. In the last of these Fisher, (1956), page 144 , says: “A CON-
SISTENT STATISTIC may then be defined as: a function of the observed
frequencies which takes the exact parametric value when for these frequencies their
expectations are substituted.” By this definition the MLE in the present example is
not consistent.

Fisher, (1925), page 714, gives a definition of efficiency which may be
summarized as follows: if x represents an observation on a variable X whose
probability density is ¢(X) = f(x, #) which depends on a parameter 6, then the
efficiency of a statistic 7, that is based on n observations is the ratio of the
information per unit observation contained in 7, to the information contained in x.

3) Efficiency = L %
n I,
where
al T)\2
Informationin 7, = I, = E( %ﬁ)
2
Informationin x = I, = E( 9 lna‘g(x)) '

A statistic T is sufficient if, and only if, the value of (3) is unity. It cannot be
greater but if it is less than unity, (3) measures proportionately the departure from
sufficiency—*“the loss of information.” This definition, says Fisher, “. .. has the
advantage of applying to finite samples and to other cases where the distribution is not
normal.” (italics added).

Rao (1961a, 1961b, 1962) has used various versions of (3) in an effort to show the
superiority of the MLE. But he has considered it in its asymptotic aspects, not as it
applies to finite samples. That is, he has identified efficiency of an estimator with
asymptotic sufficiency of a statistic and called it “second order efficiency”. He
believes, or wishes us to believe, that an estimator is not measured by some index
of its closeness to the parameter estimated, such as the mean squared error, the
minimax criterion, or Pitman’s index of proportion of closer cases, but by some
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index of Fisher’s information. This view has not been embraced by mathematical
statisticians generally.

Bartlett, in discussion of the paper by Rao, (1962), page 64, remarked, “Professor
Rao has ... discussed properties of large-sample estimates and maximum likeli-
hood ones in particular ... . Now to do this comprehensively does . .. require
correct knowledge of their sampling properties as well as how asymptotically
‘sufficient’ they are.”

In the course of discussion on a paper by Stein (1962) which takes the mean
squared error as the central criterion in an estimation problem, and which has been
hailed as the most important statistical paper of the decade, Stein remarked, page
295, “I feel that the aim in a statistical analysis is to get as close to the true value,
or make as nearly correct a decision as can reasonably be expected, and I reject
any principle that conflicts with this.”

Pfanzagl (1973), page 1006, said forthrightly, ... any definition of second
order efficiency should be based on covering probabilities . . . . An unmotivated
concept of second order efficiency like that of C. R. Rao (1962) ... should be
abandoned.”

Aside from the questionable character of Rao’s “second order efficiency” as a
criterion of goodness of estimation, there appears to be some question as to the
technical validity of his claim for the necessary superiority of the MLE. Daniels, in
discussion on the paper of Rao (1962), page 65, challenged the superiority of the
MLE, in respect of second order efficiency, over estimation based on order
statistics. Also Rao’s putative proof, page 50, following Table 1, of the inferiority of
minimum chi-square estimates vis-a-vis MLE cannot be correct, since, for the
elementary binomial or multinomial parameter, the minimum chi-square estimates
are identical with the MLE. Then again, the second order efficiency cannot be the
critical criterion of estimation, as may be exemplified with the bioassay experiment
discussed by Berkson (1955). There are three “dosages” x, 10 animals exposed at
each, among which the number of deaths is observed. There are 1331 possible sets
of results. Suppose they are coded T in order of the deaths at the three doses. For
0,00 7T=1;,00,1, T=2;--.;10, 10, 10, T = 1331. Then T is in one-
to-one correspondence with the observations, therefore sufficient, and the second
order efficiency is unity. But 7" could not be used as an estimator.

Ghosh and Subramanyam (1974) in a detailed and mathematically rigorous
article deal with relevant questions respecting the MLE. They give serious consider-
ation specifically to the papers Berkson (1955) and Berkson and Hodges (1961). 1
deeply appreciate the attention they pay to my work. It is unusual. This is the first
time, to my knowledge, that these papers have been referred to in any statistical
journal. Similarly I am gratified with their remark: “Our second order expansions
seem to agree quite well with the Monte Carlo values in a few examples of Berkson
that we studied.” I may point out in this connection that I obtained similar results
in respect of the smaller mean squared error of the minimum normit chi-square
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estimate in comparison with the MLE (Berkson, 1957b) and a similar comparison
between the MLE and minimum logit chi-square estimation has been reported by
Little (1974). Corroboratory evidence is to be found also in Wetherill (1963), page
22. Recently Amemiya (1978) has investigated the mean squared error of the
minimum logit chi-square estimator and the MLE to the order of n~? in many
examples and found that in an overwhelming majority of cases the minimum
chi-square estimator has the smaller mean squared error.

Ghosh and Subramanyam defended Rao’s second order efficiency but acknowl-
edged, page 326, “ . .. its decision theoretic implications are far from clear.” They
go on to develop extensions and draw conclusions in favor of the MLE. My
reaction will be presented by some quotations from their article and comments
upon them.

They say, page 327: “It is shown that if a correction is made to the maximum
likelihood estimator so that the bias is the same as Berkson’s minimum logit
chi-square estimator up to terms O(1/n), then the maximum likelihood estimator
has lower variance up to terms of O(1/n?).”

I recognize the mathematical interest in a finding, if it can be validly established,
that the MLE can be modified in a way that other minimum chi-square estimators
cannot be, and which results in the MLE being better. But I hold that statistics is
an applied science, Berkson (1977), not mathematics or philosophy. A statistical
proposition must, in principle, be testable by a Monte Carlo experiment. Let us,
therefore, examine the matter from a perspective of application. In the first place, it
is unclear as to whether the correction is or is not a function of the parameter 4 to
be estimated, and hence there is a question whether it could be applied at all. Be
this as it may, if it is to be applied it must be calculable. For instance there are
given in column 1 of Table 1 the MLE (minimum X3) estimates for the data shown.
I wish to compare the Ghosh-Subramanyam modified MLE with them. This is not
possible with the information presently available. It would be helpful if the authors
issued an expository article explaining how the modified MLE is to be computed,
desirably with a numerical example as for the present data. It would then be
possible to carry out a Monte-Carlo investigation with the new modified MLE. We
might then discover hitherto unforeseen characteristics, as we did when we found
that the MLE itself yielded infinite estimates.

My reported experiment which Ghosh and Subramanyam commented on is a
bioassay experiment in which the probability of death at dose x is given by the
logistic function with which the scale parameter is 8 and the location parameter is
a. The experiments dealt with the case in which 8 known a to be estimated, a and
B both to be estimated. In each case the minimum logit chi-square estimate was
found superior to the MLE by the criterion of mean squared error.

Ghosh and Subramanyam consider the case with 8 known « to be estimated.
There is a minimal sufficient statistic for a, namely the total number of observed
deaths, Berkson (1955), page 142, Cox (1959), page 238, symbolized by them X p;".
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They symbolize the minimum logit chi-square estimate as 7)¥, the maximum
likelihood estimate as &, the Rao-Blackwellized estimator as 7,,. They say, page
351: “Here one has a complete sufficient statistic, namely Zp; but T¥ is not a
function of it. If one considers the so-called Rao-Blackwellized T, = E(T}|Z p/)
then it is indistinguishable from & up to Og(1/n).” These general remarks are in
tenuous relation with immediate reality. The MLE & is a function of the sufficient
statistic, but it is not a one-to-one function. There are groups of samples (called
“sufficiency groups,” each sample in the group having the same value of the
sufficient statistic) corresponding to different values of the sufficient statistic X p/”,
but with the same value of @ = oo, and a is, therefore, not sufficient. On the other
hand, the minimum logit chi-square estimate, 7}, is also not a one-to-one function
of the sufficient statistic, but survey of the sufficiency groups disclosed that while
there were some groups with more than one value of T}, there was no instance of
the same value of T, corresponding to different values of the sufficient statistic
3 p/. Therefore, T} is a function of the sufficient statistic and it is sufficient,
though not minimal.

The comparison between the estimates is briefly this: the minimum logit chi-
square estimate 7,F has lower mean squared error than the MLE 4, indeed, even
lower than the computed value of the Cramér-Rao lower bound of &. The
Rao-Blackwellized minimum logit chi-square estimate 7, has the same bias as T}
but smaller variance and it attains its lower bound, which distinguishes it from T3*
and from &, and the variance is lower than the lower bound of an unbiased estimator,
which was widely thought to be impossible. The contrast is attributable to the fact
that the bias function of the minimum logit chi-square estimate is negative, while
that of the MLE is positive, as explained in the article referred to. The example also
serves to refute the generalization enunciated by Fisher and others to the effect that
if an estimator exists which is sufficient, or if it attains the lower bound, the MLE
will be such. Fisher (1937-1938), page 151, said, “For example . . . when estimation
without loss of information is possible, maximizing the likelihood will always
furnish such an estimate.” The Rao- Blackwellized minimum logit chi-square estimate
is sufficient and attains the lower bound for variance and mean squared error (which
are less than 1/(1I)), but it is not the MLE, i.e., the estimate which maximizes the
likelihood, Berkson (1955), page 143, Table 7.

The authors mentioned that Silverstone and also Rao, in indicated papers, have
defended the use of the maximum likelihood estimator from certain other points of
view. I must note that as regards Silverstone, a reply was published by Berkson
(1960) in which some of the counter-considerations outlined here were presented.
Similarly as regards Rao, I commented at the meeting at which his paper was
presented, and the discussion was published, Berkson (1961).

I now turn to the paper by Efron (1975) which is projected on the premise of the
sovereignty of maximum likelihood estimation. In the course of the discussion
following the presentation, Lucien Le Cam referred to a paper of mine, Berkson
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(1951), which presented contravening evidence. In reply Efron said, “A function of
the MLE may be better than the MLE itself for any specific estimation problem.
This is the case in the Berkson example quoted. Berkson finds a ‘better’ estimator
than the MLE which eventually is improved by Rao-Blackwellizing it on the
sufficient statistic. This gives a function of the MLE!” Efron did not cite any
reference to support his general assertion, which is surprizing. His remark about
Berkson’s finding does not refer to the article mentioned, but presumably it refers
to Berkson (1955), the substance of which has been briefly discussed above. The
Rao-Blackwellized estimate is the expected value of the estimate conditioned on
the sufficient statistic. It is possible to Rao-Blackwellize the minimum logit chi-
square estimate because, as was mentioned earlier, this estimate is not always the
same in each sufficiency group. The MLE on the other hand is the same in each
sample of the sufficiency group, or it is co. Hence the Rao-Blackwellized MLE is
the same as the MLE, or it is infinite. The Rao-Blackwellized estimate which was
computed is therefore a modified minimum logit chi-square estimate, not a MLE.

Efron stated that “Le Cam’s criticism of the MLE as a point estimator should
not be confused with Fisher’s preference for it as an information gatherer.” As a
matter of fact the MLE, in the experiment referred to, loses information, whereas
the minimum logit chi-square estimator does not because the same value of the
MLE, namely oo, corresponds to different values of the sufficient statistic and the
loss of information by a formula of Fisher is directly related to the variance of
the sufficient statistic, conditioned on a particular value of the estimate. The
information lost is small when the experimental dosages x are disposed symmetri-
cally around x,, but increases toward 100 percent as the dosages are asymmetri-
cally located. With central dosage at x4, in the experiment referred to, the loss with
the MLE was estimated to be about 90 percent. In these circumstances, to say that
the Rao-Blackwellized minimum logit chi-square estimate, which itself, of course, is
sufficient is a function of the MLE is patently incorrect.

Pervading these arguments on behalf of maximum likelihood estimation are two
assumptions with respect to sufficiency that are untenable. The first is the idea that
a sufficient statistic contains all the information in the observations required for
statistical inference. We find this strongly stated in the posthumous article by
Savage (1976), page 453: “I know of no disagreement that when an experiment
admits a given statistic as sufficient then observation of that statistic is tantamount
for all purposes to observation of all the data of the experiment.” The invalidity of
this notion is exemplified in the investigation of the present writer into whether
radioactive disintegration events follow the Poisson exponential function as they
are said to, Berkson (1966) (1975). In this case there is only a single parameter and
the observed mean is minimal sufficient. The mean was not actually sufficient for
the investigation. A variety of chi-square tests were carried out, and the entire body
of observations was necessary.

That the sufficient statistic is not enough for a problem of this kind is elementary
and is usually expressed by saying that it is only when the model can be assumed to
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be true, that a sufficient statistic is sufficient. De Finetti in the discussion, page 487,
corrects his friend and disciple: “ . . . sufficiency for a statistic, is a property which
can hold (only) on the hypothesis of a given model . . . ”. Pearson (1974), page 7,
said: “Let me go a little more into detail about my . . . disagreement with Fisher’s
views. The discovery of the property of sufficiency was a brilliant one, yet it
seemed to me that it could be dangerous ... . One or more than one statistic will
contain all the information to be extracted from the data if and only if the
probability density law in the population has the assumed mathematical form.”

But even assuming the model, and even in consideration of estimation alone, it is
still an abuse of language to say that a sufficient statistic contains all the
information in the data, unless the only permissible estimate is the MLE.

The other mistaken idea is that if a minimal sufficient statistic exists the MLE
will be sufficient. We have noted that in the bioassay experiment referred to with
the logistic function for which the parameters have sufficient statistics, the MLE is
not sufficient. But this is not an isolated case. With the elementary exponential
distribution itself, it was pointed out by Berkson and Elveback (1960), page 420,
that while there are minimal sufficient statistics for the parameter, the MLE is not
sufficient. Simplified, the case is as follows.

(4) Prob{T =z ¢} = e A

where T is time of death, 8 the parameter. N individuals are followed for various
periods from some defined origin and 4 have been observed to die at times
t(i=12---,d)and s = N — d last observed livingat 7, (j =1,2,- - -, 5).
The density is

5) & = Bl BEU+T),
From (5), d and 2(; + T)) are jointly sufficient for 8. The MLE of B is

A d
6 =—
The MLE is not sufficient because there may be more than one sample with the
same value of 8, but these may not have identical values of the sufficient statistics.

Indeed a similar situation exists, even in situations where it is frequently stated
that the MLE is sufficient, as with the normal function N(y, 1) where the density is

(ST

S (x — p) Tx?—2u3x + np.z)

M o= (2'”)- CXP(— "——2—) = (2W)_§exp(— 3

From (7) 2 x, n are jointly sufficient for p. If n is constant in all samples the MLE
estimate i = 3x/n is sufficient. But in a sequential experiment n may vary and the
mean is not in general sufficient.
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For similar reasons the observed relative frequency p which is the MLE of the
binomial parameter is not in general sufficient, and the question is raised whether
the MLE is ever completely sufficient for all experiments.

How the viewpoint advanced here works in practice can be conveyed by
presentation of some illustrative examples with the computed values of the various
minimum chi-square estimates provided. Methods of fitting used to obtain the
estimates are presented in Berkson (1949) (1957a) (1957b) (1972) and in Berkson
and Nagnur (1974). For a bioassay experiment with the logistic model Table 1
shows the five minimum chi-square estimates, minimum X3, (maximum likeli-
hood) followed in the successive columns by the minimum x7/, x7, x3, x2. To be
noted is that the respective x?’s are smallest for the corresponding estimates, which
serves as a check on the theory and computations. The computations for all the
estimators except the minimum x; require iterative procedures; the number of
cycles needed are shown in parentheses at the tops of the columns. The minimum
logit chi-square estimates here require no iterative procedures but instead are given
directly in definitive form. It is therefore the estimate preferred.

Table 2 shows a contingency table testing the hypothesis of “no interaction.”
The data are those used by Bartlett (1935) in the article which launched the
statistical problem of “interaction,” but the model assumes linear additivity as
defining “no interaction” instead of logit additivity which is the Fisher-Bartlett
model. The five minimum chi-square estimates are shown together with the five
x?'s corresponding to each estimate. Again we note that the respective x’s are
smallest for the corresponding estimates. All the estimates except the minimum x?
(Neyman) require iterative procedures. The minimum x? estimate here is obtained
explicitly without iteration and is therefore preferred for this case.

I will terminate this brief exposition by referring to an episode that bears on the
questions considered. In the winter of 1967 I was invited to present a paper at a
conference on the future of statistics to be held in Madison, Wisconsin, and noting

TaABLE 1
Bioassay, logistic model.
Dead
Dose Minimum chi-square estimates

x Total ~ Observed ) x3 O x? @) x} 10) x3 ) x}
0 10 1 1.901432 2.132060 1.692677 1.569061 2.165845
1 10 6 3.445099 3.650354 3.249082 3.111830 3.645872
2 10 3 5.405506 5.494770 5.320097 5.230441 5.435554
3 10 8 7.247963 7.212541 7.286402 7.269252 7.119426
Total 40 18 18.000000 18.489725 17.548258 17.180584 18.366697
x3 5.985436 6.040200 6.036494 6.128020 6.053979
x? 5.564378 5.523352 5.684914 5.814846 5.528284
2DF. x2 6.209156 6.389490 6.153299 6.177290 6.421971
X3 6.731597 7.075613 6.567784 6.538177 7.128706

X2 6.031680 5.968458 6.210858 6.399564 5.962296
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TABLE 2
Data of Bartlett
Estimates, no interaction, linear model.
Dead

Time of Minimim chi-square estimates
planting  Type Total Observed (4) x? ©) x? @) x? M x} @x2
At once Long 240 84 82.888682 82.882860 82.885142  82.890240  82.889880

Short 240 133 134212435 134213297 134.213137 134.213064 134.212704

Long 240 156 157.112743 157.117138 157.114858 157.110216 157.110120

Inspring ot 240 209 208436496 208.447574 208.442843 208.433040 208.432944

08195635  .08196044 .08195726  .08195735 .08195740
08185052  .08184496  .08184597 .08185471 .08185475
1D.F. 08190230 .08190150  .08190054 .08190490 .08190489
08200855  .08201615  .08201363 .08200630 .08201033
08201216  .08202095 .08201583 .08201159 .08201158

that L. J. Savage and G. Barnard were scheduled for the program, I suggested that
they be invited to discuss my paper, and the suggestion was accepted. As it
happened, I was unable to attend the meeting, but unknown to me, Dr. Marvin
Kastenbaum read my submitted paper, and both Savage and Barnard discussed it.
The following are some excerpts from their remarks, Berkson (1968), page 197,
page 200. Said Savage; “It was hotly contested whether, in this particular case,
Berkson’s estimate was better, but there is no categorical reason why the maximum
likelihood estimate should be absolutely the best. Indeed, it is hardly to be
expected ... . The truly amazing thing about this dispute is that maximum
likelihood should ever have been so entrenched in some minds as to make
Berkson’s contention surprizing . . . ”. Barnard said: “I agree that Berkson’s early
work was badly treated and it is, I think, quite a useful idea to have something even
in computing days, which one can work out on paper. It’s not the only method like

this.”
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Before tearing into the paper, let me first applaud Professor Berkson’s skeptical
attitude toward asymptotics and fancy theory in general. Throughout his produc-
tive career he has always been primarily concerned with the practical, the comput-
able and the verifiable—the right attitude for a good scientist doing good science.
His mistake is not crediting Fisher (and Rao, Savage, Ghosh, Subramanyam, and
me) with some of the same good sense.

Why is maximum likelihood estimation so popular? Certainly not because of any
mystique connected with maximizing likelihoods. This process is actually rather
unintuitive compared with, say, the method of moments, as teachers of elementary
courses soon discover, and it is computationally more difficult to boot. The appeal
of maximum likelihood stems from its universal applicability, good mathematical
properties, by which I refer to the standard asymptotic and exponential family
results, and generally good track record as a tool in applied statistics, a record
accumulated over fifty years of heavy usage. If this last point were not true, the
first two would be irrelevant, and we would not be having this discussion.

Consider Berkson’s censored exponential example (4). None of the chi-square
methods Berkson lists even give an answer in this situation, unless some artificial
grouping is imposed on the data. The MLE (6) is intuitively reasonable ( B equals
the observed intensity of deaths), asymptotically wonderful, and automatic; the
applied statistician in the field faced with model (4) does not have to know any
fancy theory at all to get a quite good estimate. Maximum likelihood is the original
“jackknife”, a dependable tool for almost any estimation purpose. These comments
in no way forbid criticism of the method in specific cases, or in general for that
matter, but they do underline the temerity of this paper’s title. [Incidentally, the
density (5) represents a “curved exponential family”, Efron 1975 (Berkson’s refer-
ences), in which the MLE is well known not to be sufficient.]
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Now for some specific points:

1. It is misleading to say, as Berkson does in regard to his logistic regression
example, that the MLE is not minimal sufficient in an exponential family. The
difficulties Berkson alludes to are semantic in nature, and can be avoided by not
calling the MLE the same name (such as “c0”) for values of the sufficient statistic
vector outside the range of the expectation space, see Efron (1978).

2. Berkson’s 1955 example to which I referred is a logistic regression with three
independently observed biniomial proportions p; ~ Bi(10, 7;)/10,

(1) 7, =1/[1 + exp{~ (a + Bx,)}] i=123.

The regression variable x; takes on values —1,0, 1 for i = 1,2, 3, and B is fixed
and known to equal .84730. It is desired to estimate « on the basis of the
observations p,, p,, p;. This situation is a one-parameter exponential family with
sufficient statistic =3_, p;. The MLE & is indeed a minimal sufficient statistic here,
while the minimum logit chi-square estimator & is not.

Berkson considers a sampling experiment with the true value a = 0, and notes
that @ has smaller mean square error of estimation than & in this case (and in
several others). Efron and Holland (1968) show that this is due to the different
biases of @ and &; both estimators are unbiased at a =0, but, to a good
approximation,

) E,a =1027a, E,i = .936a

for a near 0. (No extra observational data is required to calculate (2), of course.) If
& is adjusted to have the same bias structure as &, by defining &’ = (.936/1.027)a4,
then &’ has smaller M.S.E. than & for values of a near 0, as it must by the
Rao-Blackwell theorem. The important point here is that it is the bias structure,
and not the particular method of estimation, that is determining the comparison;
a/1.1 has smaller M.S.E. than either & or & over a large range of « values near 0,
but that does not mean we should always use @ /1.1 to estimate a.

3. The James-Stein estimator of a multivariate normal mean vector is an
example where deliberately induced biases give impressive global improvements
over the MLE. A systematic theory of biased estimation would be of the greatest
importance, but does not yet exist. See Efron (1975).

4. Fisher and Rao hardly need my protection, but second order efficiency was
certainly not an “unmotivated concept”. It was based on a deep and subtle
understanding of the estimation process. Decision theory is a powerful weapon,
and in the hands of masters like Neyman, Wald and Stein has subdued some
formidable problems, but the inference school of statistics has many valuable
trophies hung upon its wall too. Hard line decision theorists like Berkson and
Pfanzagl are useful policemen in the often chaotic world of statistical theory, but
the rest of us must be vigilant for signs of police brutality.
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It appears that Professor Berkson has revived an old debate about the MLE at
least partly because of the recent interest in the results of Fisher and Rao on
second order efficiency. In view of this it may be worth recording here what second
order efficiency does and does not mean for Berkson’s famous example from
bioassay.

Adopting the notations of Ghosh and Subramanyam (1974 Section 3) (but
writing E for the rather pedantic EY) one may write

E(T,) =a+ b(a)/n+ o(n™1)
E(a&,) = a + b(a)/n + o(n™?)
where T, is the minimum logit chi-square estimate, &, is the MLE,
b(a) = Za,(1 — 7)Q2m — 1)/1* — SkQm, — 1)/21
b(a) = Zm(1 — m)(2m, — 1) /21>
The corrected MLE may be taken to be a truncated version of

&n = &n + {b(&n) - bo(&n)}/n'

To truncate &, one must choose some d > 0, such that the true a may be assumed
to lie in (—d, d) and then replace ¢§,, by d or —d according as it exceeds d or falls
below —d. (The asymptotic theory is insensitive to the choice of d). Let the
estimate 7, be truncated in a similar way. Then the mean squared error of the
truncated &,, is strictly smaller than that of the truncated T, if terms of o(n~?) are
neglected. This result remains true for quite general loss functions, see Ghosh,
Sinha and Wieand (1977). As explained in Ghosh and Subramanyam (1974,
Section 4) the reason for this is that the MLE approximates Bayes estimates better
than its common rivals. When Subramanyam and I started studying second order
properties of the MLE we were looking for a Bayes estimate which would be better
than the MLE. It came as a surprise to us that this is impossible (up to o(n~?) in
the mean squared error).
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A general result of this sort should make one prefer the MLE to the other BAN
estimates commonly used as alternatives provided two rather strong conditions
hold. First, the assumption about the form of the likelihood function is correct.
Secondly, the terms of o(n ~2) are negligible for actual samples. It seems to me the
first assumption is the more serious one and consequently the main criticism of the
MLE should be based on its lack of robustness.

If Berkson’s object is to provoke us into a critical reappraisal of the MLE, then I
am in complete agreement with him. However, if he means all that he says in his
provocative title then we must part ways at some point. Minimum chi-square
estimates may be all right in certain forms of data analysis when very little is
known about the data. In all other cases the likelihood is too useful a part of the
data to be ignored. We should be looking for an estimate which makes use of the
likelihood but in a more robust way than the MLE.

I will end by making a few comments on Professor Berkson’s examples.

Consider first the bioassay example treated above. The following three state-
ments are easily verified. If all the subjects are killed, i.e., 2 p," = k, the MLE is co.
If all the subjects survive, i.e., Zp” = 0, the MLE is co. In all other cases, i.e., if
0 < 2 p” < k, the MLE is the unique solution of the likelihood equation. Thus, the
MLE is a one-one function of the minimal sufficient statistic 2 p;”, contrary to a
claim of Berkson. On the other hand, the definition of the minimum logit chi-
square estimate becomes ambiguous if p” = 0 or 1 for any i.

In his first example Professor Berkson wants an estimate to be equal to the
estimated parameter if all the observations are equal to their expectations. I shall
call it Berkson consistency (with respect to the Y’s) to distinguish it from Fisher
consistency which requires equality of estimate and parameter when the sample
distribution function coincides with the true distribution function. (Thus Fisher
consistency is Berkson consistency with respect to the sample distribution func-
tion.) I will now give an example where no estimate which is admissible with
respect to the squared error loss can be Berkson consistent with respect to Y.

Let Y be a single observation from N(#, 1) and assume a <8 < b where a < b
are known constants. To be Berkson consistent an estimate 7(Y) must equal Y if
a < Y < b. A standard argument involving analyticity of Bayes estimates then
shows T cannot be proper Bayes and hence T is inadmissible. Surely in this
example Berkson consistency (with respect to Y') should be repugnant to Bayesians
as well an Neyman-Pearsonians.

"Here is another example which is instructive in a different way. Consider a single
observation Y from N(u, 0?) and assume that u = o In this case ji is not Berkson
consistent with respect to Y but it is Berkson consistent with respect to Y2 which is
minimal sufficient. In the example given by Berkson something of this sort
happens. If at each dose =Y as well as 2 Y2 equals its expected value, then the
MLE would recover the true values. Of course it is impossible to get such data if
one has only one observation for each dose. However, even for Berkson’s example
the match between y? and Y2 is no worse than that between y? and Y2
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1. Introduction. It is a pleasure and a priviledge to have been asked to com-
ment on the paper by our distinguished colleague, J. Berkson. One may readily
disagree, as the present writer does, with certain details of Dr. Berkson’s article.
However, in view of the accumulated knowledge and experience in these matters
one is forced to conclude that Dr. Berkson is right. In fact one wonders why
standard texts continue to peddle the m.l.e. instead of more sensible procedures.

Since the facts seem to be so easily forgotten, we recall some of them below, but
first present some general comments.

One comment concerns Dr. Berkson’s assertion that: “There is no mathematical
demonstration that there is any method of estimation that assures that the estimate
attained is best in an operational seuse in all circumstances.”

When the “circumstances” are sufficiently circumscribed one may have recourse
to Wald’s theory of decision functions, but that theory does not offer any criteria
for selection between several admissible estimates. Various “principles” such as
minimax, unbiasedness, have long ago been shown to lead to unacceptable or even
ludicrous results in suitable frameworks.

In fact one could argue that it is a virtue of Wald’s theory that it does not tell us
exactly what to do. In each particular practical case the “circumstances” are
various and difficult to define in straight mathematical terms. Thus it seems that
unless somebody comes along with a precise definition of what is a “method of
estimation” and what are “circumstances”, one will have to resign oneself to the
idea that, in Dr. Berkson’s words, “every problem should be studied”. We have no
mathematical demonstration that this is the best course to follow, but this seems to
be what scientists do when they can and where they care.

In practical settings the working statistician should certainly beware of any and
all so-called “principles”, even the principle of sufficiency.

For instance, in fitting a two-parameters gamma distribution, “sufficiency” would
tell us to use the sum of the observations and the sum of their logarithms. This may
be highly irresponsible if the small observations are not measured with extreme
precision. In such cases one may be led to accept procedures which are less than
optimal under the ideal model, but remain reasonable under the particular circum-
stances at hand (see Huber [8]). Such a remark may not merit a Nobel prize in

!This research was supported by the National Science Foundation Grant MCS75-10376-A02.
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economics, but it certainly should be kept in mind in general and when reading the
statements which follow.

2. Some facts about maximum likelihood. It has been observed long ago that
maximum likelihood does not always lead to estimates which are “best” in some
desirable sense.

For instance if one takes n independent observations from a uniform distribution
on [0, 8] the m.l.e. is the maximum, say Z,, of the observations. One has

- 0)%0] = 202[(n n -1
- E[(Z, - 6)’18] = 202[(n + 2)(n + 1)]

E[(6F — 6)*0] = 8%(n + 1)

for@* = (n+2)(n + 1)7'Z,.

Some authors have observed that the m.l.e. technique is unproductive in estimat-
ing parameters of mixtures of Gaussian distributions [9] or even in the three
parameter log normal distribution (that is, X = a + b exp{cY}, with £(Y) =
9(0, 1)), even though these families fall in the category to which some of the
asymptotic results given below can be made applicable.

Neyman and Scott [12] gave a very smooth example in which m.lLe. tends to be
about half of what any reasonable estimate should be.

Dr. Berkson provided us with the first example of a “straight” exponential family
in which a very easily obtainable estimate is definitely better than the m.le. (see
[4], [5] and [6)).

We are indebted to R. R. Bahadur [2] for the first example of a family in which
the m.l.e. always exists, but tends to infinity almost surely, no matter what is the
true value of the parameter. Bahadur’s example is perhaps hard to grasp intuitively.
Here is a variation of it where the reason for the misbehavior of m.le. is visible.
Take g(x) = exp(1/x?) for x € (0, 1) and let ¢ be fixed number 0 < ¢ < 1. Define
recursively values @, in (0, 1] by a, =1 and by [%-'[g(x) — cldx =1 — c. For
6 =1,2,- - - let f, be that density with respect to Lebesgue measure which is equal
to ¢ for x € (0, 1) but x & [ay, a,_,) and to the average [a,_, — a,]"fj’,"-'g(x)dx
for x € [ay, a5_))-

This family has properties which show that reliance on the m.l.e. principle is
rationally untenable. Assume that the observations X; taken are i.i.d. from some f;.
Then the m.le. of # will almost surely go to infinity no matter what 8 is. However
one could imbed this family in a larger‘one, take the m.l.e. there ignoring the fact
that we assume that the observations do come from one of the f,. A suitable
imbedding can make the new m.le. consistent! If one flattens out a good part of
the information contained in the X; by recording instead of X; a sum Z, = X; + Y,
where the Y, are iid. independent of the X; and IU(0, 6%, 0 = 10, an m.le.
computed from the distribution of the Z; becomes consistent!

In the family f, described above one can transform # into a continuous parame-
ter, interpolating smoothly between the successive integer values of §. One can do
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so in such a way as to get a family which satisfies conditions of the Cramér type,
but where m.l.e. always tends to infinity almost surely.

In the preceding example we have mentioned “inconsistency” properties of the
m.l.e. This is of an asymptotic nature, but the reader can easily verify that even for
moderate sample sizes m.l.e. is very badly behaved indeed and does not capture
much of the “information” contained in the observations, contrary to what seems
to be a prevailing belief.

One should perhaps also mention “Fisher consistency”. This is another one of
these principles which cannot be justified on any reasonable grounds. For instance,
in the uniform [0, #] example given above Z, is “Fisher consistent” but 8 is not.
Furthermore, 6* depends on the number n of observations, while it seems to be a
tenet of faith in some quarters that estimates should have a form independent of n,
whatever that may mean. See [15].

In view of examples of the kind listed above, one wonders why some authors still
claim that m.Le. is “best” in some sense. It seems that the reason is that occasion-
ally and under severe restrictions m.l.e. happens to be close to estimates which have
desirable properties. In the recent past there has been a considerable body of
literature devoted to second or third order efficiency properties. We shall now
discuss this subject briefly to point out that it really does not imply much about the
m.le. itself.

3. Higher order efficiency. A most careful, delicate and highly creditable de-
scription of the situation can be found in the papers of Pfanzagl and his collabora-
tors. (See, for instance, Pfanzagl and Wefelmeyer [14] and the references given
there.)

Pfanzagl considers estimates #™ which are called asymptotically maximum
likelihood of order n~',(2) (as m.l. of order n~ ' (2)), and shows that they, or
functions of them, are asymptotically better than any one of the estimates of a
fairly wide class.

One first remark, for the theoretically minded, is that the m.le. itself satisfies
Pfanzagl’s conditions only under fairly restrictive assumptions. A more important
remark, for the practically minded, is that, as shown by Pfanzagl, the as m.L
estimates are often easily obtainable, starting with a good auxiliary estimate and
using a Newton-Ralphson method just twice. (The cruder method proposed by the
present author [10], using differences instead of derivatives, will also work if
iterated just the same way.)

At first sight the complete class result of Pfanzagl, et al is at variance with
previous results of Pfanzagl which shows that the as m.l.e. or similar objects are
not asymptotically sufficient at the desired rate of approximation. For instance,
Pfanzagl [13] has shown, in an unmistakable manner, that for testing purposes and
for the desired rate of approximation one needs to involve more than one
logarithmic derivative.
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Pfanzagl’s arguments in [13] and those of Pfanzagl and Wefelmeyer in [14] are
very delicate. Thus it may not be out of bounds to suggest here a heuristic
argument, similar to that proposed by Ghosh and Subramanyam in [7]. This does
not replace proofs, but will lead us back to Berkson’s article and a better view of
the problem.

Suppose that we have i.i.d. observations from a density f(x, ) which depends in
a smooth way on the one dimensional parameter §. (The k-dimensional situation
introduces mostly notational problems but also some other phenomena, such as the
one described by C. Stein [16].)

Take functions W such that 0 < W < 1 and such that the sets {u; W(u) < a}
are convex, symmetric around zero and bounded when a < 1. If 7, is an estimate
based on n observations, let W[n%(T,, — 0)] be the loss and let R(T,, 8) be the
corresponding risk.

Let 9 be a class of prior distributions for §. Assume that ? is convex, compact
for the ordinary convergence of distributions and such that all members of & have,
with respect to Lebesgue measure, nonvanishing densities which are bounded and
have fourth derivatives bounded by some given constant b.

If a given estimate 7, is not a Bayes estimate with respect to some member of ¥,
then there is an ¢ > 0 and some other estimate 7, (which is a Bayes estimate
relative to ) such that

J[R(T,,0) — R(T;,0)]u(df) >¢  forall peP.

Thus if one is not too worried about behavior of risks for large values of 8 and
does not relish local rapid variations of risks, the Bayes estimates obtainable from
? look like acceptable candidates.

Under the conditions given, and some other conditions which are not too terrible
(see ([11]), the Bayes estimates, say B,, will be such that B{n%( B, — )8} is
relatively compact. By contrast, m.l.e. may not even be consistent.

Now assume that §, = 0 is the true value of the parameter. The posterior density
of 8 will have a local maximum, say 8}, situated near zero. Taking as new variable
s = n%(0 — 8¥), the posterior density takes a form of the type

{4+ sB,(s) ”

3n1

where 4, and B, are random, but not overly large. To minimize the posterior risk,
one would minimize the expression [W(s — f)f,(s)ds with respect to z. We can
already assume (from [11] for instance) that the minimizing value 7, will stay
bounded in probability. Substituting for f, approximations of the type C,
exp{ — 3 4,5%(1 + &)} with |¢| small, independent of s and using T. W. Anderson’s
lemma [1], one can even argue that #, will tend to zero in probability. Then one
may proceed in the manner of Laplace, using Taylor expansions near zero to
obtain asymptotic expansions. One sees then that #, is approximately equal to

f(s) =G, exp{ —34,5°
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D,/ 6n%) where D, is the product of (B,(0)/4,) by a term of the type

[ EGE — £9W(8/ (4,)7) ][ B> - )W(E/ (4,)7)] "

for a variable £ which is 90(0, 1).

In these expressions, 4,, B, and D, depend on the observations in a complex
manner. However, one may follow the suggestion of Ghosh and Subramanyam [7],
and replace D, by an estimated value which is a function of §* alone. This modifies
t, by terms of higher order only.

Thus, in this sense, the Bayes estimate 8 + (z,/ n%) can be approximated by
functions of the type 8} + n~'F,(6}). Since 6* itself differs from the n~'(2) as
m.le. ™ of Pfanzagl only by terms of order n~! one can substitute # in the
above conclusion.

Note, however, that at this order of approximation 8* does depend on the prior
distribution u € & used for the computation. The correction term z, depends in
addition on the function W used to define the loss. (A similar remark could be
made about Wolfowitz maximum probability estimates [18] obtainable here by
replacing 1 — W by the indicator of an interval [—r, + r]. The maximizing value
will depend on r.)

Thus to use this approach effectively one would need to specify both u and W.
Otherwise the correction terms remain arbitrary.

The same feature is also present in Theorem 1 of [14]. At the order of magnitude
considered there, the as. m.l.e. of order n~ ' (2) differ mostly by a term which is
analogous to the “bias” terms one meets in other circumstances. To say that one
can match or better any regularly behaved estimate by a function of #™ does not
resolve the problem of deciding what to match, or if one wants, of selecting the

“bias” term.
This is precisely the type of endeavor which is carried out by Berkson and

Hodges in [6].

Another approach, using linear combinations of several “minimum chi-square”
estimates was shown to this author by K. Sutrick [17]. The scope of this latter
method is more limited, but it appears useful.

It is interesting that the above described procedure of estimating terms like D,
fails for testing problems [13]. A heuristic explanation is as follows. For the
estimation problems with loss function of the type considered above, the “best”
estimates depend on second derivatives of the likelihood function only in a
“minor” way, thanks to T. W. Anderson’s lemma. However, for testing problems
the Neyman-Pearson lemma cannot be ignored.

Take, then, likelihood ratios A, ; for densities at 8, + (s;/ n%), i=1,2,and at §,.
Let R, be the combination n%[(An’ 1/51) — (A, 2/5,)] centered at its median.

Except for “straight” exponential families, the joint limiting distribution of R,
and n3 (0™ — 6,) is a nondegenerate bivariate Gaussian distribution. Thus, at the
order of approximation desired A, is not a function of 8™ for all values of s.
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Finally all the arguments described in the present section depend very strongly
on the validity of the parametric model used in the derivations.

Recent results of R. Beran [3] show that one can modify the Newton-Ralphson
type techniques to yield a certain amount of “robustness” in small Hellinger tubes
around the assumed parametric models. However, as far as this author knows,
none of the techniques proposed have been shown to be able to cope with one of
the most dispiriting features of large sample theories. It is not unusual in our days
to have samples of size n = 5105 or 10° or even 10%, for instance in automated
biological measurements on blood cells. Typically, this should make asymptotic
arguments very applicable, but instead crude checks of the validity of the hypothe-
sized models, for instance by Kolmogorov-Smirnov tests, show that they are
disastrously far from reality, some of differences being “highly significant” statisti-
cally but invisible on standard graph paper and sometimes due to minute, trivial or
indescribable features of the measurement processes. Thus the asymptotics fail
precisely when one would feel that they are applicable.
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I am in full agreement with Mr. Berkson’s basic attitude to judge the quality of
an estimator by the concentration of its distribution about the true parameter
value. In particular, any claim for the superiority of the maximum likelihood
estimator has to be based on this criterion.

Since the exact distributions of estimators are not accessible in general, the last
recourse is numerical comparison. But numerical comparisons hold out no pros-
pects of obtaining general insights (like the superiority of the maximum likelihood
estimator). A reasonable way out of this dilemma is, perhaps, to approximate the
distributions of the estimators by probability measures of sufficiently simple
structure, for instance, by Edgeworth-expansions, to draw general conclusions, and
to check the validity of these conclusions by numerical examples.

Since the discussion is on differences between efficient estimators, the normal
approximation is too crude. For estimators with stochastic expansion—the maxi-
mum likelihood estimator as well as the minimum chi-square estimators are of this
type—a refined analysis is relatively easy. The first outcome of such an analysis is
that efficient estimators differ mainly by a median-bias of order n-i (resp. a bias
of order n~"). Hence it is meaningless to compare different efficient estimators
without eliminating their difference in bias prior to the comparison. This point was
already raised by Ghosh and Subramanyam (1974, page 321), but not fully
recognized by Berkson.

A refined investigation for the case of i.i.d. observations reveals that, after the
elimination of the bias-difference, the distributions of the estimators differ at most
by an amount of order n™'.

For the particular case of one real parameter these results can be stated as
follows:

If the estimator §™ is asymptotically efficient, then ni(§®(x) — ) =
I(0)~'"(x, 8) + R,(x), where I(8) = [I'(x, 8)*Py(dx) and ['(x, ) =
n'%Eﬁ_,l’(x,,, 9) with ['(x, 8) = (d/d9) log p(x, #). R, is an error term which
converges to zero stochastically.

Assume now that the estimator admits a stochastic expansion, i.e.,

(x) (") - 8) = 1(8)"'7'(x, 0) + n=20,(I"(x, 8), f(x, 8); §)

+n"Q2(f’(x, 8), fi(x, 8), f(x, 8); 8) + n~'R,(x)

where Q, are polynomials, f;(x, 8) are vector-valued functions with [f(x, 8)Py(dx)
=0, and f(x, 0) = n~1Z"_, f(x,, ).

To simplify our diction, we shall say: an estimator-sequence with stochastic
expansion (*) has property S if Ql(i'(x, 9), f](x, 9); 8) with i’(x, #) replaced by
zero becomes independent of x.
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Among the estimators sharing property S are the maximum likelihood estimator
and Bayes-estimators with respect to symmetric loss functions.

If an estimator-sequence §™ has property S, and only in this case, it is
asymptotically optimal of order o(n~") in the following sense: if # is any other
estimator-sequence with a stochastic expansion () (in general with different
polynomials Q; and different functions f), then there exists a function g of the
parameter such that—simultaneously for all sufficiently smooth symmetric loss
functions L which are bounded by polynomials—

FL(n2(8™(x) + n~'q(6(x)) — 8))Ps(dx)

() < JL(n2(8°)(x) ~ 0))P;(dx) + o(n™Y).
%* %
(The function g is determined such that the median-bias of §™(x) + n~'q(6 ™ (x))
agrees up to o(n~7) with the median-bias of ).

If both estimators, 8™ and 6, are regular in the sense that Q, is even and Q,
odd, then (**) even holds for nonsymmetric loss functions. (See Pfanzagl and
Wefelmeyer 1978, Theorem 1’ and Remarks 3.15, 3.24; see 1979 for regular
estimators.)

Such a result enables us to compare risks of estimators up to error terms of order
o(n~!) without computing their distributions. Regrettably, they are, so far, avail-
able only for the i.i.d. case and are, therefore, not applicable to Berkson’s bioassay
experiments, presuming the probability of death under dosage d; equal to

7(a, B) =1/ (1 + exp[ —a — Bd}]).

They become applicable in the special case 8 = 0.

Specializing formulas (3.4) and (3.5) of Ghosh and Subramanyam (1974) (which
presume an equal number of animals for each dosage) to this case, we obtain that
the m.l. estimator for a, as well as the minimum logit chi-square estimator, have a
regular stochastic expansion (*) with

27 - 1 k
0, = 7712 En( p —m)’  for the m.L estimator

and

1 n for the minimum
k(n(p — 7 =357 (p = m?)  logit chi-square
estimator

27 —
12

O =

where k is the number of dosages, p; the fraction of deaths under dosage d;, and p
the average of p;,, i = 1, - - - , k. Alone, the fact that the minimum logit chi-square
estimator depends on p,, - - - , p, (and not on p only, even though p is sufficient)
generates bad feelings. Since /’(x, #) becomes n%(p — «) in this case, the m.lL
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estimator has property S (which is true in general), whereas the minimum logit
chi-square estimator does not. Replacing n%( p — ) by zero leaves the second term
which depends on the observations.

Hence, the result obtained by Ghosh and Subramanyam (1974, page 351) for the
truncated quadratic loss function is true for arbitrary (i.e., not necessarily symmet-
ric) loss functions which are sufficiently smooth and bounded by a polynomial. If
the maximum likelihood estimator is corrected so that its median-bias matches the
median-bias of the minimum logit chi-square estimator up to o(n'%), its risk
(defined as in (**)) falls short of the risk of the minimum logit chi-square estimator
by an amount of order n~'. (On the other hand, the minimum logit chi-square
estimator, lacking property S, cannot be adjusted so as to match, let alone
underbid the m.l. estimator.)

Are these theoretical results really conclusive? Of course not. First of all, they are
limited to the case 8 = 0. This is, however, not essential. The general results cited
above can certainly be extended to also cover regression models. A more serious
objection is the asymptotic nature of these results. Strictly speaking, asymptotic
results, however refined they might be, do not tell anything about samples of fixed
size. Numerical computations in connection with other applications show, however,
that asymptotic expansions of order o(n~') render in many cases excellent ap-
proximations to the actual performance. Hence, one can be confident that our final
recourse, the numerical computations, will also in this case confirm the conclusion
obtained by asymptotic expansions.

It is essential in our conception that this conclusion is not contingent on a
particular loss function (such as the quadratic), but holds for a rather wide class of
loss functions.

If the reference to a historical authority is a valid argument at all, it is certainly
unwarranted to take Gauss as an advocate of the quadratic loss function, favored
by Mr. Berkson. Gauss introduced the quadratic loss function for technical rea-
sons! which are not essential any more for recent results.
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Berkson raises several important issues in the theory of estimation, presumably
based on his experience in using different methods of estimation in a bioassay
problem. Such feedback from practical applications is extremely important for
evaluating existing statistical techniques and making amendments and improve-
ments, if necessary. Statistical inference has been a controversial subject and,
depending as it does on inductive logic, will remain so. Any valid criticism of
statistical methods will, no doubt, serve a useful purpose.

In advocating the method of minimum chi-square (MC) in preference to maxi-
mum likelihood (ML), Berkson makes some misleading statements and emphasizes
some principles which may not be acceptable in all situations. One of the principles
is consistency and another is minimization of mean square error. We shall examine
how good these principles are through some examples.

Berkson gives an example where “ML did not recover the true value of the
pertinent parameters even when the observations followed the assumed function
exactly.” He quotes Savage and Barnard in defense. Let X = 6 + & where @ is an
unknown parameter and the error ¢ is such that E(¢) = 0 and V(e) = 6. Accord-
ing to Berkson X is a consistent estimator of § since X = # when ¢ = 0. Obviously
X /2 is not consistent, but

(1) E(§ - 0)2 < E(X — 0)

uniformly for all . Then X /2 is better than X by the principle of minimum mean
square error. The two principles seem to give contradictory results.

Consider independent random variables X; ~ N(6,, 1), i = 1,- - - , p. The unbi-
ased estimator X; of 6, is consistent and the James-Stein estimator ¢, = X[1 — (p —
2)(ZX») ' is not in Berkson’s sense. But

(2) Ez(ti - 0;')2 < EE(Xi - 0.')2

uniformly for all 4,, - - -, 01,. Which alternatives would Berkson recommend in the
situations (1) and (2)?

Berkson defines Fisher consistency properly but applies it wrongly. Fisher’s
claim regarding the consistency of an ML estimator is the following. Let
m(0), - - -, m(0) define a k-cell multinomial distribution and 0,, - - - , 0, be the
observed frequencies. If §, is the true value, then

(©) Zm(6p)log m,(6,) > Zm,(8o)log 7(0)

so that when 0, < 7,(,), the ML estimate of 8 is 6, and is, therefore, Fisher
consistent.
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Is the quadratic loss function appropriate in all situations? Let X ~ N(0, 0?).
Then

X2 2
(4) E(X? - 6% > E(—3— ~ 02)
for all 6> > 0 so that X2/3 is better than X2 as an estimator of ¢2. Does it imply

that X2/3 is closer to the true value of o> than X 2? For instance

(5) Pr(|X? - o? < |37'X%2 - 06%) > 05
for all 0% Should one prefer X2/3 to X2 as an estimator of ¢>?

How good is the principle of minimum asymptotic variance? Let X and X,
denote the average and the median of a sample of size n from N(8, 6?). Consider
the Hodge type estimator

R

©) oo edn T

=X if |X|>n"%.

If a is sufficiently small X is inadmissible compared with ¢ on the criterion of

asymptotic variance. Should one prefer 7 to X as an estimator of 8 in large samples?

How robust is the minimum mean square criterion? Consider the James-Stein

estimator for p = 3. Moran pointed out (see Rao and Shinozaki, 1978) that
although

if |X|<n”

ENE

(7) ES}(, - 6)" <EZY(X, - 6)’
uniformly for all 8,, 6,, 0,,

(8) Ez:l;(ti - 01')4 = oo, EZ?(X, - 0:')4 =9

so that ¢ stand in no comparison with X; on the basis of a quadratic loss function.
This is not an artificial example and shows the danger of pinning one’s faith to a
" quadratic loss function. (The James-Stein estimator can be, however, modified to
make the expectation of the fourth moment finite, but this is a different issue.)
Berkson has obviously misunderstood the criterion of second order efficiency.
He seems to have relied on hasty opinions expressed by mathematical statisticians
like Pfanzagl] that the concept of second order efficiency (SOE) was not properly
motivated. On the contrary, SOE is more basic than any other proposed criterion
as it refers to the performance of an estimator when used as a substitute for the
sample in drawing inferences on unknown parameters. One should not be led to
believe that a problem is highly motivated simply because it is formulated in terms
of quadratic loss function. No research worker engaged in a practical investigation
or a business executive who makes decisions based on forecasts has ever specified
his loss as a quadratic function of the error in an estimate. It is chosen by the
mathematical statistician for convenience of mathematical investigation, and with
the hope that an estimator with a smaller mean square error is closer to the true
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value in some sense and is also robust with respect to a wider class of convex loss
functions. As the examples considered show, such hopes are not always realized.

Fisher considered his information measure as a more intrinsic property of an
estimator than its bias and variance, and suggested the choice of an estimator
which preserves the maximum information. Fisher did not claim that the ML
estimator has the maximum information in small samples, although in many cases
he found that ML estimator fared better than others. He, however, suggested a
method of examining the information in a statistic as the sample size n — oo, but
did not'develop the theory fully. Following Fisher’s ideas, I introduced SOE to
measure the amount of information up to terms of order (1/7?) and showed that in
the case of the multinomial distribution the ML estimator contains the maximum
information in large samples (Rao, 1961). In two later papers (Rao, 1962, 1963), I
showed that SOE also provides a comparison of variances (up to terms of O(1/n?))
of alternative estimators. The ML estimator scored better than the MC even with
respect to asymptotic variance (up to terms of O(1/n?%). The recent work of Efron,
Ghosh and Subramanyam quoted in Berkson’s paper has thrown further light on
SOE and stressed its importance in statistical inference.

Berkson says that “Rao’s putative proof, page 51, following Table 1, of the
inferiority of MCE vis-a-vis MLE cannot be correct, since for the elementary
binomial . . . the MCE’s are identical with MLE’s.” I wish Berkson had not
questioned the correctness of my expressions for SOE for various methods of
estimation. In the case of the elementary binomial, the expression A in my table has
the value zero so that ML and MC have the same SOE and there is no contradic-
tion. ML is better than MC when A 5 0. For instance, if we have a multinomial
distribution in (k + 1) classes with probabilities specified by a binomial distribu-
tion with index k and unknown probability 7, the ML and MC estimators of =
differ in SOE. I hope Berkson would not prefer MC to ML estimator in this case.

Large sample theory cannot be brushed aside as irrelevant in practice. Generally
a point estimate provided for use in a variety of situations in the place of an
unknown parameter has to be very precise and a large sample may be necessary to
achieve the desired precision. In such cases techniques which are efficient in large
samples, and generally robust with respect to the choice of a loss function and prior
information, have to be used. There may be situations where a point estimator has
to be made from a small sample. In such cases one has to be careful in the choice
of a loss function, use of prior information and selection of a particular technique.

Although Fisher expressed strong views against certain techniques, he advocated
the use of different methods in different situations and mentioned the need to
develop other methods of inference. Berkson might have chosen the appropriate
technique in his problem, although his arguments based on consistency and
minimum mean square error are not very convincing, as the examples considered
in this note show. But in view of the general applicability of ML, its large sample
properties and its superiority in small samples in a variety of situations, a better
title to Berkson’s paper might be “ML, sometimes MC” and not “MC, not ML.”
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REPLY TO DISCUSSANTS
By JOosEPH BERKSON

Professor Efron is right in emphasizing the relatively broad applicability of
maximum likelihood estimation. Minimum chi-square is, in general, limited to
discrete or grouped data, though not always so. He also is right in saying that the
MLE is sometimes difficult to compute. An example of a practical problem in
which no algorithm for its computation has been put forward is dealt with by
Ireland and Kullback (1968). These authors provide two minimum chi-square
estimates, the minimum x7 and minimum x?.

However, the chief reason that the MLE is so widely advocated is that the
academic and editorial establishments hold it to be virtually sacrosanct on princi-
ple. An example from my own experience is that when I submitted an article, later
published (Berkson (1972)) advancing essentially the present viewpoint, it was
found unacceptable unless I limited it to the MLE. Bradley Efron will recall this
incident, since he was the editor of JASA at the time. Other statisticians have
reported similar experiences.

He taxes me with being insufficiently appreciative of the inference school of
statistics. I have to admit that I do not comprehend what inference is. In this I am
at one with LeCam (1977), page 134. A recent formulation of its theory, Wilkinson
(1977), discloses that it is irreconcilable with Kolmogorov, which will make it
unacceptable to most mathematicians, and it is not subjectable to testing by a
Monte Carlo experiment, which obviously excludes it from science.

With regard to Professor Ghosh’s remarks, I respectfully assure him that I did
not mean to provoke him with my title. As I explained in the text, I had observed
that minimizing x? yields the estimating equations for the MLE, a fact that I do
not know has been noted before. I argued that therefore the MLE can be thought
of as a particular minimum chi-square estimator. This does not mean that every
MLE can now be derived as a minimum x; estimate, as my title may have
appeared to imply, and it is to be conceded that the title may have been too
enthusiastic.

As for the MLE’s failure to attain full sufficiency, Ghosh cites two examples with
different values of the sufficient statistic that have the same value, infinity, for the
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MLE. The examples cited in Berkson (1955), page 156, footnote, may be recalled.
We deal with the logistic function, parameters a = 0, 8 = logit 0.99 ~ 4.595,
y = L.D.sy = — a/B. The statistics Znp,;, Zn,p,x; are jointly sufficient for a B, and
for y, where p; is the observed relative frequency among n; exposed at dose x;. In
the 3 dose experiment with n, = 10 at each, the following are the MLE’s of 8 y for
the class of samples 0, p, 1.

Sufficient
patx; statistic MLE
-1 0 +1 Snp; Snpx; B y
0 0.1 1.0 11 10 0 0
0 0.2 1.0 12 10 0 0
0 03 1.0 13 10 0 0
0 04 1.0 14 10 0 0
0 0.5 1.0 15 10 0 0
0 0.6 1.0 16 10 oo 0
0 0.7 1.0 17 10 o0 0
0 0.8 1.0 18 10 oo 0
0 0.9 1.0 19 10 ) 0
0 1.0 1.0 20 10 o0 0

The MLE’s are not in one-to-one relation with the sufficient statistics. Considering
that the probability of this set of samples is about 65 percent and a similar situation
exists with other sample sets suchas 00p,p11,p00,1p 0, 11 p, the MLE loses
a large fraction of the available information.

Professor Rao poses a number of conundrums that call into question use of the
quadratic loss function as a definitive criterion of goodness of an estimator. I have
not advocated what he ridicules. I have advanced the use of RBAN estimators
which include the MLE, and among these the simplest to compute. If among these
one has smaller mean squared error than the MLE, I favor that one and so do
other statisticians as reflected in the applied literature.

I questioned Rao’s proof that the minimum x? estimate is inferior to the MLE,
since for the elementary binomial and also for the unconstrained multinomial,
these are identical. This was based on the text and Table 1 of Rao (1962). The table
lists an index of inefficiency of the MLE as u and that of the minimum x? estimate
as pu + A. Rao explains that for the elementary binomial A = 0, so that the
efficiency of the minimum x? is also p. Perhaps A = 0 also for the elementary
multinomial. Rao did not indicate anywhere in his text that A could equal 0 and I
failed to explore this possibility.

In regard to consistency of the MLE, Fisher gave several definitions of con-
sistency. By the definition quoted the MLE in the example cited is to be interpreted
as inconsistent. Whether this interpretation is reasonable will have to be judged by
the reader.

To say, as Mr. Pfanzagl does, that it is meaningless to compare the MLE with
the minimum logit chi-square estimate without correcting for the bias, is incompre-
hensible to me. The mean squared error is, for biased estimators, a natural
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extension of the variance as a measure of closeness for unbiased estimators. In any
case, in the reported experiments Berkson (1955), the variances as well as the mean
squared errors are smaller for the minimum logit chi-square estimator than for the
MLE.

The bias corrected MLE is apparently not computable. However elegant the
mathematics of Ghosh and Subramanyan is, until computed values of the modified
MLE are provided, enabling their Monte Carlo testing, it remains pure mathemat-
ics, outside of the science of statistics. In science a proposition is considered
meaningless if it is not testable experimentally, Bridgman (1928).
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