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ESTIMATES DERIVED FROM ROBUST TESTS!

By HELMUT RIEDER

University of Freiburg and University of California, Berkeley

In this paper, an asymptotic minimax theory for robust estimation of a
one-dimensional parameter is derived, which is an asymptotic counterpart, and
generalization to an arbitrary parameter, of Huber’s finite sample minimax
theory for the location case. A particular variability measure and results from
robust asymptotic testing are employed. The results show a relationship of this
approach to Hampel’s local theory of robustness.

0. Introduction. The problem studied in this paper is the estimation of the
one-dimensional parameter § of a parametric family of probability measures {P,},
when the laws of the N independent observations need not exactly coincide with
some member P,, but are only known to lie in a neighborhood ?, of P, that is
defined in terms of e-contamination and total variation. The variability of an
estimate shall be assessed by the maximum probability that the true parameter falls
below, or exceeds, an interval of prescribed width, 27,, that is laid around the
estimate. In this generality, only asymptotic approximations, as N — co, will be
available. So we assume the family {P,} to be locally asymptotically normal and
let the neighborhoods and the intervals shrink at the rate N -3, Furthermore, the
estimates under consideration are supposed to be regular in a certain sense
(Definition 1.1).

Our first aim is the explicit determination of the risk of an estimate (Theorem
2.2), in order to obtain a quantitative expression for the influence of outliers, upon
which, for example, a measure of asymptotic relative efficiency may be based.
Second, a minimax result is derived (Theorem 3.1). We come out with an (M)-
estimate defined by a truncated likelihood function.

The minimax result may be viewed as an asymptotic analog, and generalization
to an arbitrary parameter and arbitrary sample space, of Huber’s (1968) finite
sample minimax result for the location case and unimodal Lebesgue densities. The
idea he employs there is to carry out a minimax test between the shifted neighbor-
hoods ¥,_,, P4, .,, and then to derive an estimate from this test in the manner of
Hodges and Lehmann (1963). However, for a general parameter, this method does
not work any longer. Nevertheless, as Huber (1972), pages 1060, 1061, conjectures,
the (M)-estimate based upon the likelihood ratio of least favorable pairs is still a
candidate for a minimax property in the general case. A tentative asymptotic study
has been made by Huber-Carol (1970) who, under heavy assumptions and by an
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apparently different technique, shows that the asymptotic confidence level of the
interval associated with the above mentioned estimate is bounded away from zero.
An explicit expression for this bound is derived there only in special cases, but can
be obtained in general as a by-product of our results. Moreover, it should be noted
that she neither formulates nor proves any optimality of the estimate to which her
study is restricted.

In deriving an asymptotic minimax result some care is needed. First, even in the
location case, it would be objectionable merely to translate Huber’s finite sample
result into asymptotic terms, for his result requires the formation of the supremum
over the whole parameter space of the pointwise risk, whereas, as Hajek (1972),
page 176, points out, an asymptotic study has to be local. One should then note
that even in the location case our asymptotic minimax result is not implied by
Huber’s finite one. Second, in the noninvariant case, the risk of an estimate can no
longer be transformed into the risk of a test between ¥,_, and ¥, .

It is remarkable, however, that for regular estimates the connection with testing
shows up at least asymptotically and formally in the expression for the risk.
Furthermore, in deriving this expression and in solving the resulting optimization
problem, the asymptotic testing results of Rieder (1978) can be used.

A slight modification of these results becomes necessary due to our present
restriction to contiguous sequences, which bears some mathematical convenience
and may be justified by the fact that an estimate attains, or comes arbitrarily close
to, its worst possible behavior even under contiguous sequences (Lemma 2.1).

A relationship of this approach and Hampel’s local robustness theory is implied
by the fact that the risk of an estimate turns out to depend on both its asymptotic
variance and the extreme values of its influence curve at the model { P;}. Accord-
ingly, the minimax estimate also minimizes the asymptotic variance subject to
bounds on the influence curve (Theorem 3.2).

1. The model. Let (2, B ) be a measurable space and denote by 9L the set of
probability measures on %®. Let a family {P,} C 9 be given, which is parame-
trized by an open subset ® of the real line, and parameter functions ¢, § and
T : © - [0, o) satisfying ¢ + 8 > 0 and 7, > O for all # € ©. The family {P,} is
assumed to be of the following regular kind.

(1.1) For each § € O there exists a neighborhood U, C ®
of 6, such that P, < P, forall ¢ € U,.

Denote by p, the density of P, with respect to some o-finite measure that
dominates the family {P,}.

For each § € O there exists a nondegenerate function
Ay € L*(dP,), such that
12 ¢ € LXdRy), such tha
2 — 2
2—£—ﬂ';T — A, inL¥dP,) as{— 0.
& - 0)p;
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The parameters are subject to the following boundedness condition.
(1.3) & + 28, < 27,f{AjdP, forall 0 € ©.

Let N denote the set of positive integers, and let the symbol ® denote stochastic
product. For N € N, which always tends to oo, let the Cartesian product QF be
endowed with the product o-field %" . Let the real line R be endowed with its Borel
o-field. Then the following definitions complete the distributional framework.

(14) e, 9 = N_';e,,, Oy.o = N_7|80, NG = N_%'ro
@N’0={QE%:Q>(1_8N,0)P0—6N’00n%}
PNe = {®§V-1QM~ :Oni € Py,p fori=1,--- ,N}

Hy = {(Wy4) : Wy, € PV, forall N, (Wy ) contiguous to (")}

where P)Y = ®¥_,P,. The objects of this study are estimates of the parameter §

that are regular in the sense of the following definition.

DerINITION 1.1. A sequence (Ty) of measurable functions Ty : Q¥ SR is
called a regular estimate, iff for each 8§ € O there exists a function IC, € Lz(dPo),
Such tha.t fICOdPO = 0, fICvodPo = 1, alld

(1.5) N2(Ty — 8) = N™7SY,ICy(x;) + opp(1).

i=1
For convenience, call IC, IC-function of (Ty) at 8, and write (Ty) = T(IC).

ReMARKS. For Fréchet differentiable von Mises functionals, Huber (1977),
pages 10, 23, derives these properties with /C, equal to the influence curve at P,
thereby summarizing the variety of asymptotic normality proofs, which, under
weaker assumptions and in special cases, are nevertheless concerned with the
verification of these properties. The condition [ICyA,dP, = 1 is related to Fisher
consistency, but can also be interpreted as the regularity condition used by Hajek
(1970) in order to rule out super-efficient estimates, as can easily be seen by an
application of LeCam’s third lemma, in view of (1.5), and the log-likelihood
expansion implied by (1.2).

2. The risk of an estimate. Given a regular estimate (Ty) = T(IC), we assess its
variability in the following way. Consider a partition of 27, by means of two
functions 7, 7”7 : ® - R, i.e. .

2.1) Ty + 19 =27, forall 6 €6,

and assume that 7;, 7, can be estimated consistently, i.e.

22) there exist estimates Ty, 7y : ¥ — R, such that for all
' 9 €06, 1y =15 + opp(1), iy = 75 + 0pp(1).

Then look at the intervals [Ty — N _%TI/V, Ty + N _%'r{(,], which are laid around Ty

and may be used as confidence intervals for the parameter # that are of prescribed

stochastic width 27y ,. It is only reasonable to let the width shrink at an ap-

propriate rate, since with increasing N even the contaminated sample provides
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more and more information to estimate 8. The possible dependence of the width on
@ allows us to cover certain values of # with higher precision than others. The
partition of the width is to compensate possible asymmetries of T,, which, in
general, render the use of T as the strict midpoint unoptimal, in the sense defined
subsequently. For § € ® and W, = (Wy 4) € H,, consider the limiting error
probabilities

(23) ag(W,) = lim supy Wy, o(8 < Ty — N2,

ag (Wp) = lim sup, Wy, ,(0 >Ty+ N“il»r,’(, .
Define the risk at , which still depends on the particular choice of 7, 7;, to be
(24 R(T(IC), 7', "5 8) = sup{ag(Wp) \V a5 (W,) : W, € Hy).

Subject to (2.1), (2.2), the functions 7/, 7" will be chosen in favor of the estimate,
i.e., we define the risk R(T(IC); 8) of T(IC) at 8 to be

(2.5) R(T(IC); 8) = inf{ R(T(IC), 7', 7"; 8) : 7/, 7" subject to (2.1), (2.2)}.

For the explicit determination of this risk, fix § € 0. Note that, corresponding to
Proposition 3.1 of [12], the following asymptotic normality holds for every W, =
(Wh,9) € Hy.

(2.6) Ro ([ NH(Ty — 8) — Sy(IC,; Wy)) = (0, 03(1Cy)),

where 07(ICy) = [IC}dP,. If Wy o = ®). 0y, then the centering constants are of
the form

1
2.7) Sy(ICy; Wy) = N~ ’Z)LII ICy, ¢dQp;

for any sequence (ICy, ) C L*(dP,) satisfying [(IC, — ICy ¢)dPy —0, Cy, pll o
= o(N '?) JICy, 4dPy = 0, cf. Behnen and Neuhaus (1975). Let inf;,,/C, denote
the essential infimum and sup;,,/C, the essential supremum of IC, with respect to
P,, and define the quantities s3(1Cy), s4(IC,) by

8 . + 8 ” /
(28) s(IC) = —7:mf[p,11co + Zsuppp, ICy  55(IC) = si(—ICy).

Then the following lemma, which corresponds to Lemma 3.2, Lemma 3.3 of [12],
yields the extreme shifts of the limiting normals occurring in (2.6).

LeMMA 2.1. We have
sup{lim supy Sy(ICy; Wp) : Wy € H,} > 7y55(1C,)

(29)
inf{ lim inf y Sy(ICy; Wp) : W, € Hy} < —1o57(IC,),

with equalities holding in (2.9), if inf; p,/Cy and sup; p,ICy are finite.
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ProoOF. Because of symmetry it suffices to prove the assertions concerning the
sup. Drop 4 as an index in this proof. Choose numbers a,, a,, such that inf; pHC <
al < a, < sup;p)/C. Introduce the sets 4, = {IC < a,}, A, = {IC > a,} and put

= P(A4)), j = 1, 2. Then, with = = m; I 4+, define probability measures Qy by
dQN = (1 + (= — 1))dP, for N suff1c1ent1y large. Again, put my = Qun(4)), j =
1,2, define the functions A, = — 7L 4, + anl 4, and then the probability
measure Ry by dRy = (1 + 6,A,)d0Qy, for N suff1c1ently large. Note that R, €
% . Furthermore, Linderberg’s condition can be verified, so as to obtain that

BPN(E,_,log N (. )):%(—5602(:) 2%(E))

EQ:(Z,_llog Y (x, )):%( 18%%(8), 8%7(4)),

where A = —a IA + 7y IA Hence (R}) € H. It is now easy to see that
limy N2 3 [ICydRy = [IC(eE + 8A)dP, which is greater than —éa, + (¢ + §)a,.
Then let a, tend to inf(p,/C, and a, to sup;p/C. In order to prove the equality
assertion, if inf;,/C and sup[ pIC are finite, we apply Lemma 3.2 and Lemma 3.3
of [12] to the function IC® = inf; ,,]IC V IC A supp[C, bearing in mind that the
statistics N "72,_1IC°(x) and N _52,=11C(x,) are asymptotically equivalent over
H. The proof also shows in this case that, if P(IC = inf(p/C) > 0 and P(IC =
sup;p;/C) > 0, then the sup is a max and the inf is a min in (2.9). ]
Let ® be the standard normal cdf. The preceding lemma implies that

( (1a55(ICy) = 75) \ (787 (ICy) — 77 )
0,(1Cy) '

This quantity is minimized by the following choice of the functions 7/, 7

(2.10) R(T(IC),7,7";0)=®

19(ICy) = "'0(1 +3(55(ICy) — s,}’(IC,,)))

13 (ICy) = mo(1 — 3(55(ICy) ~ 54(ICp))).

Therefore, the following theorem has been proved.

(2.11)

THEOREM 2.2. Let T(IC) be a regular estimate. Then, at each § € ©, we have

(7ol = L(s3IC) + 55(IC))
“0(1Co)

(2.12) R(T(IC); 8) > ®| -

Equality holds true in (2.12), if 15(1C,), 79 (IC,) can be estimated consistently.

REMARKS. (1) The side condition will be fulfilled in most practical cases. Then
(1 — ngVarp,) I Cy)

0y(1Cy)

the risk equals <I>( - ), where 27y, = & + 28, and Var, | IC,

= Supu,’llco - inflpa'ICO.
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(2) Let two regular estimates T(IC’), T(IC") be given. Apply, at stage N, T(IC")
to N and T(IC’) to M, observations, where M), is chosen in such a way that, as
N > o0, T(IC") matches T(IC") with respect to the above risk. Then the sample

size ratios —NA: necessarily tend to the following limit:

03(IC;) (1 = mVarp,IC;)’

ARE, (T(IC") : T(IC'); 6) = : .
™ Ug(lco/) (1 - n,Var[Pv]IC,,')z

Thus we rediscover the asymptotic relative efficiency of tests, introduced by
Definition 5.2 of [12]. This quantity may be an alternative to the measure consid-
ered by Sievers (1978) and is not based upon such negligible probabilities. It should
be added that, in order to be admitted to the comparison, an estimate 7(/C) must
satisfy R(T(IC); ) <3, i.e., T(IC) must not be worse than choosing —co and
+ 00, with probability % each, without looking at the observations.

3. The Minimax Result. In minimizing the risk, we assume equality in (2.12)

and make the substitution IC, = . Thus, as if a test had been carried out

o
J¥eAgdPy l
in the testing model of [12], based upon the statistics N ~23Y_ y,(x,), between
&v, ¢ Oy, g-neighborhoods of P,_, ~and P,,, ,we arrive at the problem: maximize

G.1) 2[ g gdPy — (s55(vs) + 55(%p))
o5(¥s)
with respect to y, € L*(dP,), subject to [y,dP, = 0, [Y,A,dP, # 0.

This problem is solved by Theorem 3.7 of [12]. We have only to notice that the
quantity s(IC), defined by (3.6) of [12], does not decrease, when IC is truncated at
its essential extrema. Therefore, the Pj-a.e. unique solution is of the following
form:

(3.2) §=dg\V Ag N\ dy,
where the truncation points dj, d;’ are uniquely determined by the equations
+ 2§,
(33) J(d5 = Dg)* dPy = 252 = [(A, — &))" dP,
)
The corresponding /C-function at @ is givén by
/)
(34) Ic} = VirdP,’

So we have the following minimax result.

THEOREM 3.1. Let T(IC*) be a regular estimate whose IC-function at 8 € O is of
the form (3.4), and assume that 7o(ICY), 7y (ICJ) can be estimated consistently. Then
T(IC*) minimizes R(T(IC); 0) among all regular estimates T(IC), at each 8 € O,
and R(T(IC*); 8) = ®(— 7405(43"))-
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The optimality of 7(JC*) can be interpreted in still another way. As already
remarked, the /C-function will in most cases be supplied by the influence curve,
which measures the influence of additional observations. It is a desirable robust-
ness property that this function be bounded. (Let inf /C, and sup IC, denote the
pointwise extrema of IC,.)

THEOREM 3.2. Let T(IC*) be a regular estimate whose IC-function at § € © is
given by (3.4). Then T(IC*) minimizes the asymptotic variance [ICjdP,, subject to
the bounds inf IC, > inf IC§, sup IC, < sup ICS, among all regular estimates
T(IC), at each 8 € ©.

ProOF. We can equivalently minimize [(IC, — A,)’dP,, because [IC?dP, =
JUCy — AY’dP, + 2 — [A2dP,. 1t is obvious then that [(JC, — A )dP, > [(IC}
— A,)’dP, (with strict inequality unless IC, = IC} a.e. Pp). []

This is just a reformulation of Hampel’s (1968) Lemma 5, cf. Huber (1977), pages
32, 33. Indeed, if the laws Bp,(Ao) are symmetric about zero, both statements
coincide. In general, Hampel forces the absolute values of the upper and lower
bounds to be the same, b, say, by determining a,, such that [(—b,) \/ (Ay — @) A
bydP, = 0, and, accordingly, finds \17,, = (—by) V (Ay — ay) /\ by to be optimal.

4. Construction of a minimax estimate. This section provides the construction
of a regular estimate T(IC*), IC* given by (3.4), which is then optimal in the sense
of Theorem 3.3, Theorem 3.4. Additional assumptions are required for this con-
struction. The kind of estimates we shall look at are (M)-estimates, because they
can easily be reconstructed from their local, resp. asymptotic, properties. The tools
for the following one-step construction are borrowed from LeCam (1969), pages
79-81, 101-107.

Certainly, it must be assumed that the family is not overparametrized, i.e.,

(4.1) 01, 02 (S @, Pol = Paz lnlplles that 01 = 02.

Then, in view of assumptions (1.1), (1.2) and since ® is open, the conditions are
satisfied under which LeCam constructs N %-consistent estimates, i.e., 0~N Q¥ 50,
such that {£,8(N %(67” — 0)) : N € N} is tight, for each § € ©. It turns out to be
technically more convenient to use as an initial estimate, instead of 67N, a dis-
cretized version fy of f,, which may be obtained in the following way. Fix
b € (0, 0) and cover O, for each N, by disjoint intervals of length N ~ 2b, For each
such interval, fix a point of its intersection with ©. Assign this value to fy, if fy
falls into the interval. Note that 8y, is still N I-consistent. (In practice, such initial
estimates can be obtained by more direct methods.)

Now let a function ¢ : ® X 2 —» R be given, such that y, € L*(dP,) for all
6 € O. Introduce the functions A,({) = [y, dP,, AO) = — Yy \odPy, 0, { € O.
Assume that

4.2) A maps © continuously into (— oo, 0),
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and assume that, at each § € ©O:

(4.3) Ae(8) = 0.
(44) A, isdifferentiableat ¢ =0, withderivative  A(f).
(4.5) N 72EI (9, (%) = (%) — Ao(§w)) = opp(1)

for every ({y) C O, such that (N %(g,,, — #)) is bounded.
Then define the estimate 7y, : 2V — R by

A 1
(4.6) Ty =0y ——= (N —121’.\/_ 1‘P5N(xi))°
A(8y)
THEOREM 4.1. Under assumptions (1.1), (1.2), (4.1)-(4.5), (Ty) is a regular esti-
mate T(IC) with ICy =

0
f‘PaAodPav )
ProOF. For each § € © we have
N3(Ty — 0) — N33 IC,(x)

ry

1 Ag(Gy) — }\0(0))
A(dy) by — 0

= N7(fy - 0)(1 -

1 1 I P
- (m - ;\ZE-)-)(N 2.'-1%(":))

1 _1aw 5
- :(-E;N—)-(N 22;-1(¢§N(xi) = (%) — Al!’(oN)))

The first two terms obviously tend to zero in P;¥-probability. To show the same for
1 A

the third term, let k > 0 be given and pick a ¢ € (0, ), such that [N 2(8, — 8)| >

¢ with probability less than «, for all N. Denote by 8,,,/ = 1, - - , L, the possible

values of f, in the disjoint intervals of length N ~2b that intersect [§ — N ~ic, 8 +

N “%c]. Note that L < [Z_bc} + 2, and observe that, with probability exceeding

1 — k, we have
Izjiv-l(‘PéN(xi) — (%) — Ao(éN))l
< maxz-1,'~~,L|2};Y-1(%N,(xi) = Yp(x;) — )\o(om))lo

Since |N %(0,,,, — 8)| < c for all N and /, the assertion follows. []

We sketch only briefly how to verify these conditions for the particular
defined by (3.2). It satisfies [y}dPy =0, [YFA,dPy > 0 automatically. As for
conditions (4.4), (4.5), it is sufficient to ensure that the truncation points are
continuous and to assume that A.(x) is continuous in { = 6 a.e. P,. Continuity of
d’, d” may be inferred from continuity of ¢, 8, * and from continuity, with respect
to 0, of the integrals [(d — Ag)*dP,, [(Ay — d)*dP,, which are strictly isotone,
resp. antitone, with respect to d € (infjz;Ay, sup;p,;Ay). The continuity of these
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integrals, as well as that of A, seems to require conditions which, if spelled out
further, amount to Cramér-type differentiability assumptions such as those used in
[12]. Given the continuity of ¢, 7, d’, d”, A, note that also T(ICY), 14(ICY) are
continuous, and hence can be estimated consistently.

5. Complementary remarks. Over the full classes Hy = {(Wy o) : Wy o € ¥ 4
for all N} essentially the same results obtain. Since contiguity is missing in this
enlarged model, stronger assumptions must be imposed on the estimates under
consideration, in order to make sure that convergence in probability under P}
extends to all sequences in Hy. Once conditions (1.5), (2.2) are strengthened in this
way (i.e., opx(1) replaced by: oy, , (1) for all (W, 4) € HJ ), we can appeal to the
results of [12], thereby exchanging s,(1Cy), s5(IC,) for the corresponding quantities
defined by (3.5) of [12]. Then sections 2, 3 carry over.

In order to construct estimates that are conmsistent for §, or that have an
asymptotic expansion (1.5), over H, for all § € ©, one may try to modify existing
proofs and assumptions for consistency and asymptotic normality of (M)-esti-
mates. Let us look at the work by Huber (1967) and carry out the following
modifications for each 8, € . Assume equality in (15), page 224. Take over his
assumptions (B-1), (B-2), (B-3), (B-4), with expectations referring to P, . Replace
“integrable” in (B-4)(i) by “bounded”. Then the consistency results, Lemma 2 and
Theorem 2, extend from P;) to every (Wy, ) € Hy. Similarly, assume this
uniform consistency. Assume equality in (27), take over assumptions (N-1), (N-2),
(N-3)(i), with expectations referring to P, . Assume that (N-3)(ii) holds true with the
expectation sign replaced by the supremum over x. Assume that y, is bounded.
Then the asymptotic normality results, Theorem 3 and Corollary, extend from
(PgY) to every (Wy ) € Hp.

It may also be possible to generalize LeCam’s method of constructmg N3-con-
sistent estimates, so as to obtain initial estimates 0N that are N 2-cons1s’(ent for 4
under every W, € Hp, for all # € ©. The one-step construction goes then through
with only minor modifications.

It should also be noted that, since the members Wy , of a sequence W, € H
need not be connected over different sample sizes, the thus obtained approxima-
tions hold in fact uniformly over H,. This is not so in the contiguity-submodel,
where one could have, for instance, tiglitness of {£,, (N 2(0 — ) : N € N} for
every W, = (Wy, ) € H,, without the family {£,, (N 2(0N -0):NeN, W, e
H,} being tight. Clearly, such an initial cstlmate cannot be recommended for
practical purposes.
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