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ESTIMATION OF THE INVERSE COVARIANCE MATRIX:
RANDOM MIXTURES OF THE INVERSE WISHART
MATRIX AND THE IDENTITY

By L. R. HAFF
University of California, San Diego

Let S, ,, have a nonsingular Wishart distribution with unknown matrix =
and k degrees of freedom. For two different loss functions, estimators of =~!
are given which dominate the obvious estimators aS~!, 0 <a <k —p — 1.
Our class of estimators C includes random mixtures of S ~! and 1. A subclass
CoC C was given by Haff. Here, we show that any member of C, is
dominated in C. Some troublesome aspects of the estimation problem are
discussed, and the theory is supplemented by simulation results.

1. Introduction and summary. Let S,,, have a nonsingular Wishart distribu-

tion with unknown matrix = and k degrees of freedom; i.e.,
(1.1) S~ W(E, k), k—p—1>0.
This paper is concerned with the problem of determining good estimates of =~ !.
The results given constitute a generalization of those in [4] and are obtained using
the same method. Some peculiar and troublesome aspects of the problem are also
discussed.

Our estimators of =~ ! have the form

(1.2) St=[a+f(S)]S™' + g9,

0 <a <k — p — 1, where f(S) and g(S) are real. In an earlier paper (Haff [4]) we
gave estimators with f(S) = 0. It is seen, below, that such estimators are dominated
by others with f(S) 0.

Two different loss functions L, and L, are considered where

(1.3) LELE ) =u@ - =%,
and
L& L= ) =u@ ' - =1,
where Q is an arbitrary p.d. matrix. Efron and Morris [2] developed L, from an
empirical Bayes argument. Note that L,, a more typical loss function, is the

squared Euclidean norm of £~! — S~! when Q = I.
We shall evaluate an estimator in terms of its risk function

(1.4) R(E-LE2Y=ELE ", =Y, i=1lor2,
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the latter being an average with respect to (1.1). As usual, if ﬁ‘.; "and £7! are
competing estimators of £~ then “S;! dominates £~ (mod L)” if R(Z;%, =Y
< RE!, =Y for all .

The obvious estimators of =~ ! are

(1.5) $:1=4as87, 0<a<k-p-1
In particular, £ 2,:_'1,_, = 37!, Efron and Morris [2] proposed estimators of the
form

(1.6) S5 =aS™ '+ (b/tr S)I

(f(S)=0,g(S) = b/tr S, b > 0), and they proved ﬁa‘b' dominates ﬁ; ! (mod L)) if
a=k—p—1andb = p?+ p — 2. (See, also, Stein, Efron and Morris [10].) Haff
[4] proposed a larger class,

(1.7) St =aS7 +[b1(U)/tr S]I

(f(S) =0, g(S) = bt(U)/tr S, U = p|S|'/? /tr S), and obtained conditions under
which

(1.8) R(EFLET)<R(ELLEN<R(ELET) (VD) i=12

In the present paper, we proceed as follows:
(a) We exploit an identity which was proved by Haff [4], viz,

(1.9) [str[(8¢/3S) - F]dS = [s¢D*FdS

where & denotes the cone of p.s.d. matrices, F(S) a symmetric matrix, ¢(S) a
scalar function, and D*F = X, 0F;/0s;. Equation (1.9) was used to obtain
identities for R;, i = 1, 2 and to prove the dominance results (e.g., (1.8)). The same
technique is used in the present paper. Here, however, F is nonsymmetric, so D* is
defined by
(1.10) D*F = ZX0F;/0sy.
Given such an F, as needed in Lemma 2.1, and given equation (1.10), the reader
can verify that (1.9) remains valid by straightforward modification of [4], pages
377-379. We shall omit most of the details.

(b) We note some pathological results associated with L, and L,. First, let us

require k — p — 3 > 0; otherwise Rz(i 1) does not exist. Fork —p — 5 <a
<k —p—1, it is seen that 2 dommates E ' _1 (mod L,); however, Zk —p-1
dominates 2 ! (mod L)), a # k p -1 The dommance reversal is surprising
because R (E" =Y and R,(2; !, =) are qualitatively close if k is large and

Q = kZ. See Haff [4] for a similar anomaly associated with (1.6). (See, also, Efron
and Morris [3] for a separate proof of the L, result.) Finally, we note the difficulty
associated with k — p =4 and k — p = 5. According to the L, result, —S~!
dominates 38 “'(k —p — 1 =3),and 0 ),x, dominates 4S Yk —p—1=4)

(c) General conditions are given under which $~! = [a + f(S)]S™! dominates
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$-(mod L,). A special case is
(1.11) $-1 =[1=¢;/(c;+[aS7Y)][aS7"]

where ¢, i = 1, 2 are constants. Our generalization of (1.11) is similar in spirit to
that of Efron and Morris [2] who generalized Stein’s estimator for the multinormal
mean.

(d) We show that any estimator with f(S) =0 (e.g., (1.7)) can be dominated
(mod L,) by one from the class (1.2)—see Section 6.

(e) We present estimators of the form ! = a[1 — «U)]S™! + [bt(U)/tr S]I,
t(U) », 0<yU) < 1, which dominate ia"(mod L,). Here, U is given by U, =
p|S|'/? /tr S or U, = p?/[(tr S™")(tr S)]. These ratios measure disparity among the
sample eigenvalues; U, is the geometric mean over the arithmetic mean, U, the
harmonic mean over the arithmetic mean

0<U,<U, <1

If we assume that = = ¢/, then (b/tr S)I, b > 0, are natural estimators of
S~!(b = pk — 2 gives the unbiased estimator). An outcome U, ~ 1 suggests the
possibility S~! = (1/0)?I. Note that £~! shifts weight from aS~! to (b/tr S)I as
Uu » L

The theory is supplemented by simulation results on each of the estimators
(Section 7).

2. The risk identities. Let ! and £;! be given by (1.2) and (1.5) respec-
tively, a < kK — p — 1. From (1.3) we have

RELED=R(E;LE) + (D)

and
RELEN=R(E;LETY) + ay(3)
where
(2.1) a,(2) = E[Qaf + At S~ + 2pg(a + f) + gr S
—2ftr =7 - 2g tr 27'S],
and

(22) a(Z) = E[2af tr(S™%Q) + Za:g tr(S™1Q) + tr(fS~! + gI)’Q

—2ftr(87'Q="") - 2z (27'Q) |-

To obtain (2.2), note that tr(E~'S7'Q) =t(Z~'S7'Q) =tr(QS~'=7) =
tr(S ~'=71Q).

In this section, we give unbiased estimators of «(2), i = 1, 2, i.e., functions
&,(S) for which Ea,(S) = o;(2), i = 1, 2. If &(S) < 0 (VS), then «$-1 dominates
ﬁa‘ ! (mod L,),” i = 1, 2. Sufficient conditions for @(S) < 0 are given in Sections 3,
4 and 6.
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As in [4], we need the following operation: for a matrix M and real ¢t # 0, we
define M) =tM + (1 — f)diag(M) where diag(M) is the diagonal matrix with
diagonal elements equal to those of M. When matrix inversion precedes (?), i.e.,
(M~ l)(,), we simply write M(,_)1 because these operations are not used in the reverse
order. It will be useful to note that tr[M N ] = tr(MN) and tf{M,N]=
tr[MN ,] for matrices M and N.

The following lemma shows how to handle those terms in (2.1) and (2.2) in which
the trace (under the expectation) explicitly depends on =.

LEMMA 2.1. Let f(S) and g(S) satisfy the conditions of Stokes’ theorem; also, let
S(S) and g(S) ||S|| be bounded on & .

(a) If pk > 4, then
E[f(S)tr =7'] = tr E[(k — p — Df(S)S™" + 2(3f(S)/3S)]
o E[g®StUr="'Q] =t E[(k —p— 1)g(S)S™'Q + 2(3g(S)/3S) - Q(%)].
(b) If pk > 2, then
E[ g(S)tr =7'S] = E[ pkg(S) + 2 tr(9g(S) /35 - sey ]
(c) If pk > 4, then
E[f(S)r 87'Q=7"] = E{(k — p — 2)f(S)r(ST7Q) — f(S)(tr S~)(tr S7'Q)
+2 tr[ (3f(S)/3S) - (87'Q)(3) ] }-

Proor. These expectations are verified by straightforward modification of [4],
pages 377-379. We omit the details. []
Finally, the unbiased estimators of o,(Z), i = 1, 2, are given by

THEOREM 2.1. Let f(S) and g(S) satisfy the conditions of Lemma 2.1.
(@ Fora=ay=k—p—1,

&) =ftr S ' —4tr LA —4tr AN S(i) +2pg(f—p — 1) + gtr S.
as aS

(b) For a* = a — a;, < 0,
&,(S) = f(f + 2a* + )t (S7?Q) + 2g(a* + fHu(S™'Q)
0 9
—4tr(%)- 21) —4tr(a—§)- T(1)
+2f(tr S~1)(tr S7'Q)

+g%tr Q.
ProoOF. Immediate from Lemma 2.1. []
In the sequel, f and g depend only upon the eigenvalues of S; hence, the matrix
df/0S (or dg/dS) is generally determined by standard perturbation theory. Let R
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diagonalize S; ie., S = RAR’, A = diag(/,, - - - , [)) (the /; distinct a.e.). Further,

let R = (R, Ry, - - -, R)), the eigenvectors given by R, = (ry,, rp, * * * , 1), t =
1, - - -, p. For future reference, we record a standard result

Ay, - -, h) of \( 3k
23) as; = k- 1( alk)(E

9 .

25 lrxk( a{) 1=J
- 3 L
227}-1’&’;1:(_8{:) i #J.

3. The estimators aS™'. Let a, =k — p — 1, f(S) =d (a nonnegative con-
stant), and g(S) = 0. Here we compare

3.1) $:1=asS7, a=ay— d,
with the unbiased estimator
(32) S.l=aS7l

From Press ([7], page 112) it can be seen that R2(2‘1 =71 does not exist (for any
d) unless k — p — 3 > 0. We assume that the latter inequality holds.
A troublesome result is given by

THEOREM 3.1. Let 5‘.;‘ be given by (3.1), 0 < d < 4; and let f?a'o‘ be the unbiased
estimator. If k>p+3>4,then

(a) Rl(Ea 137 hg R,(z-' ==Y for all =, but

(b) Rz(Za ,27h > R2(2‘1 ==Y for all =.

PrOOF. Obviously, kK — p — 3 > 0; also, it is easy to see that the conditions of
Lemma 2.1 are satisfied. From Theorem 2.1 (a), if d # 0, then ,(Z) = d?E tr S7,
S0 2 ! dominates 3! (mod L,). From Theorem 2.1 (b), d > 0, &,(S) = — d(2 —
d)tr(S 2Q) — 2d(tr S™Y)(tr ST!Q)

(3.3) < (d? — 4d)tr(S72Q)
(smce tr(S~2Q) < (rS” N(tr ST'Q)). Thus, if 0 < d < 4, then a,(Z) < 0 (V=) and
31 dominates £ (mod L,). [

Theorem 3.1 is a reversal similar to that described in [4] for the estimators
aS~!' + (b/tr S)I,a = k — p — 1. In part (b) (Theorem 3.1), note the troublesome
cases associated with d = 4. If a, = 3, then 38! is dominated by —S~!; i.e., the
usual estimator is dominated by a negative definite matrix! Also, if g, = 4, then
4S~! is dominated by 0 ), xp- These results and those which follow are illustrated in
Section 7 by Monte Carlo methods.

4. The estimators a(S)S™'. A generalization of (3.1) is
4.1) STl=a1-1)]S"Y, a=k-p-—1,
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in which #(-) is a function of
(4.2) (trS)/p, |S|"7 or p/(trS7Y)

(the arithmetic, geometric or harmonic mean eigenvalue of S).
Attention is restricted to loss function L,, so we require d,(S) < 0; i.e.,

(43) (f2+2/)t(S72Q) + 2f(tr S™N)(tr S7'Q)
of

- 4tr(8_S-)' T(%) <0, T=S"'Q

(see Theorem 2.1 (b)). For the present case, f(S) = — ayt(+).

THEOREM 4.1. Let 3! be given by (4.1), t(-) a nonincreasing function of any
argument (4.2). Also, let 2, ' = a,S ~' where ay=k —p — 1. If 0 < #(-) < 4/a,
then

R(E™L,Z ) <RY(3,L=7Y) (V).
Proor. If f(S) = — at(tr S/p), then 3f/dS = — (at’/p)lL,.,. The left side
of (4.3) is (a%? — 2aH)tr(S™2Q) — 2at(tr S~Y)(tr STIQ) + (4at’/p)tr(S7'Q) <
(a’? — 4antr(S™2Q) + (4at’/p)tr(S ~'Q) < 0 (because ' < 0and 0 < ¢ < 4/a).
Now, if f(S) = — at(|S|'/), then 3f/3S = — (a|S|'/*¢ /p)Sz —see Rao [8],
page 72. The left side of (4.3) is

(4’4) (a2t2 - 2at)tr(S‘2Q) - Zat(tr S_l)(tl' S_lQ) + (4a|Sp|1/pt/

Jurs0)

4 l/pt/
< [azt2 — dat + —al—spl——

]tr(S‘zQ) <0
(as in the previous case).

Finally, f(S) = — at(p/tr S™"). From (2.3), 3f/3S = — ap(tr S™)"% - S3}.
Our sufficient condition for (4.3) becomes (a%? — 4antr(S™2Q) +
4a/p)p/tr ST ¢ - tr(S3Q) < 0, which, again, is satisfied by hypothesis.
Therefore, if #(-) is a function of any argument (4.2), then a,(Z) < O for all =. ]

Note that Theorem 4.1 reduces to Theorem 3.1 (b) if ¢(:) = d/a,. Again, for the
case g, = 3, we can select a “good estimator” which is negative definite on a set of
positive probability (let #(-) be positive, noﬁincreasing and let 1(0) = g, say).

The case f(S) = — at(|S|'/?) deserves further comment. Denote [S|'/? by 2.
From (4.4), it is clear that a,(2) < 0 (VZ) if

4.5) at(z) —4t(z)+ 4zt (z)p <O.

Thus, the restriction of Theorem 4.1 to nonincreasing #(-) is unnecessary in this
case. In fact, the inequality (4.5) has a family of increasing solutions,

€ _ €y
e+ (a/z)f ¢, +|aS7Y

(4.6) «z) =
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for constants ¢, i = 1, 2 (see Section 5). Corresponding to (4.6) is the estimator of
=~ ! given by

A 4
4.7 St=l1-—21—|(aS7)).
“ o e
This, (4.7), is an analogue of Stein’s estimator [6] for the mean vector of a
multivariate normal distribution.

5. The differential inequalities. Bernoulli’s equation is given by

(5.1) t'(x) + A(x)t(x) + B(x)t}(x) =0,

for specified A(x), B(x) Z 0. Throughout, we need solutions to the related inequal-
ity,

(5.2) t'(x) + A(x)t(x) + B(x)t*(x) < 0.

In the present discussion, the argument x > O is a generic function of S. Note that
(4.5) is a special case of (5.2). The equation (5.1) can always be reduced to a linear
one, and its solutions provide information about (5.2).

This section contains three lemmas. Lemmas 5.1 and 5.2 give rather obvious
sufficient conditions for (5.2); Lemma 5.3 treats the inequality (4.5). From these
lemmas, we obtain (4.7) and certain of its generalizations.

We remark that (4.5) also plays an important role in Section 6. There, however,
the argument measures eigenvalue dispersion rather than central tendency.

LEMMA 5.1.  Let t(x) and t.(x) be absolutely continuous functions where t.(x) is a
solution of (5.1), ¢ a constant of integration. Let x, be arbitrary. If there exists
¢ = c¢(x,) such that

(1) t(xl) = tc(‘xl)
and
(1) v'(x;) < t(xy),

then t(x) satisfies (5.2).
PrROOF. Omitted. []
As an equation, (4.5) has the family of solutions
(5.3) t.(x)=4/(a+ cx7?), c>0.

If 0 < #(x) < 4/a, we can always find ¢ as required in (i) and (ii) above.
Let z.(x) be given by (5.3), and let

(54) t(x) = 8t.(x) = (48)/ (a + cx7F), 0<é< 1.

(This function was stated in (4.6).) Obviously, #(x) satisfies (4.5). In general, we
have

LEMMA 5.2. Given 0 < & < 1, if t.(x) satisfies (5.1), then t(x) = 8t (x) satisfies
(5.2) with strict inequality.

PROOF. Omitted. []
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Lemma 5.3 is motivated by a result of Efron and Morris [2]. The lemma shows
that we can generalize (4.7) in the same manner that they [2] generalized the
James-Stein estimator of a mean vector.

LEMMA 5.3. Let y(x) = xPt(x)/[(4/a) — t(x)). The inequality (4.5) holds iff
Y'(x) < 0.

PrROOF. A simple calculation shows that y’(z) < 0 is equivalent to (4.5). [J
6. Random mixtures of S™! and I. Assume that
(6.1) 21 = a[1 - 1,(VU)]S™! +[bty(U)/tr S]1,

0<a<k-—p-—1b>0, 4U) nondecreasing, 0 < f,(U) < 1, =1, 2, with U
given by

(6.2) Uy =p|S|'?/tr S or U, =p*/[(trS)(trS7")].

For t,(U,) = 0, Haff [4] gave conditions under which £~! dominates £;! (mod L),
i = 1, 2. We do not have such results for loss function L,, #,(U) 2 0. The results
which follow are mostly L, results. We note, however, that Efron and Morris (2]
studied the special case #,(U) = #,(U) = y (a constant) under L;, 0 <y < 1.

For the estimator (6.1), f(S) = — ar,(U) and g(S) = bt,(U)/tr S. We need
dof/3S and 9g/3S—see Theorem 2.1. These derivatives are as follows:

If U= U, then

3f/3S = aU(U)[(1/t S)1,, — (1/P)SG) ], and
(63) 3g/3S = —b(1/tr S)é[tz( U) + Uty(U)]1,x,
| G/ UKUISE.
If U= U, then
(6.4) 3f/3S = —aUry(U)[(1/tr S™")Sg} — (1/tr S)I],  and
9g/3S = bry(U)[(U/p)'Sg} — U/ (1 S)’I] = biy(U)/ (tr S)* 1.

The derivatives (6.3) were given by Haff [4). Those of (6.4) follow from (2.3).
Our first specialization of Theorem 3.1 is

COROLLARY 6.1. For U = U,, we have a,(Z) < 0 (V) if
(6.5) (pat))* + 4apU,(1 — Uy)1

+ U,[4bty — 2abptyt, — 2bp(p + 1)t + b%3] < 0
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for all S; and ay(Z) < 0 (VZ) if
[a% — 2a(a* + 1)1, + 4aU,(1/p)1; Jtr(S ~*Q)(tr S)*/tr Q
(6.6)  +[2a*bt, — 2abt;t, — 4bU\(1/p)t; - 4aU,t; tr(S'Q)(tr S)/tr @
— 2at,(tr S~Y)(tr S7'Q)(tr S)*/tr Q

+[4bt, + 46Ut + (b1,)’] <0, forall S.

Proor. Straightforward. [

We note some complications for loss function L,. For #,(U;) =0, we obtain
o, (2) < 0 (V) if 0 < 1(U) < 2/ b)(p? + p — 1). The latter is a result from [4].
However, if ¢,(U,) # 0, then (6.5) depends on U, and U,, and it is doubtful that
a,(3) <0 (V). If U= U, t,(Uy) 0, then the counterpart of (6.5) can be
reduced to an inequality in U, only; still, we are unable to establish dominance
(mod L)).

For loss function L,, the following theorem shows that we can strictly improve
upon the choice #,(U)) = 0.

THEOREM 6.1. Let U=U;,, a=k —p—1(a*=0), b >0, and g(S) =
bt(U)/tr S, t,(U) nondecreasing, 0 < t(U) < 1. Also, let 7', =aS7! +
[bt,(U)/tr S|I and $V= a1l — t(U)IS™" + [bt(U)/tr SI in which t(U) is a
nondecreasing solution of
(6.7) 4Ur'(U) — 4pt(U) + apt*(U) < 0.

Then £~ dominates £; '(mod L,).

Proor. From (6.6), it is sufficient to show that [a%? — 2at, +
4aU(t,/ p)te(S~2Q) — 2at)[tr S7'[tr S7'Q] < 0. Since [tr S~ Hitr S7'Q] >
tr(S~2Q), the desired inequality holds if 4aU(t;/p) — 4at, + @’} < 0, and the
proof is complete. []

In Theorem 6.1, the assumption a* = 0 was for convenience only. A similar
result holds for a* < 0. Recall that (6.7) was given (except for the argument) by
(4.5), a family of solutions by (4.6).

The remaining results are for random convex mixtures of aS ~!and (b/tr S)I;
ie.,

(6.8) St =a[1 - HU)]S™" + (b(U)/tr S)1,
#HU) = «U),j =1, 2). For convenience, let us record
(a) tu(S~"Q)/tQ > |S|7VPQ*,

N a positive integer, 0* =p|Q|'/?/tr Q,
(b) (tr S~ (tr S™MQ) > tr(S™*VQ),
() trS$ 2/ (trS™') > 1/p.

(6.9)
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In (6.9), (a) is apparent from [1], Exercise 4, page 134; (b) follows from the spectral
decomposition of S; and (c) is from [1], Exercise 13, page 137.

THEOREM 6.2. Assume that £~ is given by (6.8) with
O U=U,
(ii) #(U) > 0 a nondecreasing solution of at* — 4t + 4Ut'/p < 0,
(i) a=k—p—1(a*=0),b=ap,
>iv) pQ* > 1.
Then £~ dominates 51;;‘ = (k —p — DS7Y(mod L,).

Proor. If we apply (6.9)(c) to the second line following (6.6), we obtain
a,(2) < 0 (V) if

[a%* — 4at + 4aUt' /p|te(S™?Q)(tr S)*/tr Q
(6.10) —[2abs® + 4bUr' /p + 4aUr |tr(S™'Q)(tr S)/tr Q
+[4bt + 4bUt + b’} <0 (VS).

The coefficients of tr(S™2Q)(tr S)*>/tr Q@ and tr(S™'Q)(tr S)/tr Q are negative
by hypothesis, so from (6.9) (a), a sufficient condition for (6.10) is [a*? —
dat + 4aUt' /p)(p/ UYQ* — [2abi® + 4bU¥ /p + 4aUr(p/ U)Q* + [4bt + 4bUY
+ b%#? < 0. Since 0 < U <1 (a.e), a sufficient condition for the latter is
[a%? — 4at + 4aUt’ /p]p°Q* — [2abt*> + 4bUt' /p + 4aUt'|pQ* + [4bt + 4bUY +
b*?] < 0, or, after simplification, (ap — b)%#?Q* + (4bUt' — 4ap* + b4*>)(1 — Q%)
+ 4bt — 4ap*Q* < 0. After substituting b = ap, we obtain ap*(at* — 4t +
4UY /p)(1 — Q*) + 4apt(1 — pQ*) < 0, which is true by hypothesis. The proof is
complete. []

Finally, let U be given by U,, 9f/3S and dg/dS by (6.4). Here we assume
Q = I(Q* = 1), so that L,(2~!, =" ") = =2(6¥ — 0%)®. From Theorem 2.1(b),
a* = 0, we obtain a,(2) < 0 (VI) if

[4aUr tr(S7%)/ (tr S7)’
+[a%* — 2at — 4b(U/p)’t (87 / (tr S71)?

(6.11)
+[ —2abr® — 4aUr' ] /[(tr S~Y)(tr S)]

+[4bUt + 4bt + b ]p/[(r S)(tr S71)]* — 2at < 0.
In (6.11), note that

r 73/ (r$7Y’ < (tr STH(tr $72Q)/ (tr S7Y)’

(6.12) = tr(S72Q)/ (tr S7)?
<1
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THEOREM 6.3. Assume ' is given by (6.8) with
@O U=U,
(i) #(U) a nondecreasing solution of at* — 4t + 4Ut'/p < 0 and 2Ut' < 1,
(iii) a=k—p—1(a*=0),b=ap.
Then £™' dominates 37! = (k. — p — 1)S ™! (mod L,).

Proor. From (6.12) and simple algebra, we obtain the following sufficient
condition for (6.11):
[(1 = 1/p)4aUr ]tr $72/ (r S71)?

4qUt’
+| a%* - 2at +

][tr S72/ (tr s-')z] - 2at

(6.13) +[ —2abr® — 4aUr'] /[ (tr S)(tr S71)]
—[46(U/p)*t tr 872/ (tr S71)?
+[4bUt + 4br + b%*]p/[(r S)(tr S~1)]* < 0.

Recall that U = p?/[(tr S)(tr S™!)]. In the first line of (6.13) replace
tr $72/(tr S™')? by 1; in the second and fourth lines, replace it by 1/p (recall
(6.9)(c)). This done, we have the sufficient condition

(p*/ U1 = 1/p)@daUt’ — 2at)

4aUt 2
: )(p/v)

+ (a2t2 — 4at +

(6.14)

- (2abt2 + 4aUr + ﬂ)p—gt—)(p/ U)

+ (46U + 4bt + b4 < 0.

The first term in (6.14) is negative by hypothesis; and the sum of the others is
negative from Theorem 6.2—see (6.11) and following. The proof is complete. []

Let #(-) be given by (5.4). (Recall that #(U) satisfies the first inequality in
Theorem 6.3 (ii)). An easy calculation shows that #(U) also satisfies 2Ut’ < ¢ for
sufficiently small c.

7. Simulation results. Consider the special case S;,; ~ W(Z,7), ie., k =17,
p = 3. Given below are the results of a computer simulation in which we compared

A

251 = 3S7, the unbiased estimator;

A

221 = — §7!, a negative definite estimator!;
R 1/2
S '=3[1-UYYs ! + (9t(r]S )I, U = 3|S|'/3/tr S, a special case of (6.1);

and
ﬁ; V=11 - 3|S|/(1 + 3|SPI(BS™!), a special case of (4.7). The loss function was
L,Q=1Iie,

(7.1) L2, =71 = =3(6Y — o¥)%
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Denote the eigenvalues of = by A;, A,, A;. We specified five diagonal matrices,
D = diag(A,, A\, A;),
and for each, the following was replicated 1000 times:
Let ¢ ~ Uniform [O, H],
6§ ~ Uniform [O, ZH].
From a realization of (¢, §), we computed the orthogonal matrix

sing cos® cos¢p cosf —sinf
R=|sin¢ sinf cos¢ sinf cosf |,
cos ¢ —sin ¢ 0
and defined 27! = RD "'R’ as the matrix to be estimated. Then, independent
vector observations Xq), X ), * T X 7y were obtained from a N4(0, I) distribution,
and the transforms Yy = RDxX; were computed, i =1,- - -, 7. From the Y’s,
which are i.i.d. N;(0, ), we computed

S3)<3 = zzgl Y(,) Yz,) ~ Wishart (2, 7).

Finally, for each of ﬁ; 13- 1, etc., we computed (7.1). The following table contains
means of (7.1), for each estimator, and estimated standard deviations of means
(over N = 1000 orientations).

In Table 1, note that £ “outperformed” ﬁg‘ ! at each set of eigenvalues except
{1, 5.5, 10}. Note, also, that £~ ! and £;! significantly outperformed 3; . Other
simulations (unpublished) indicate that the latter comparisons are more pro-
nounced still for larger values of p.

TABLE 1!
Estimation of quadratic risk (Ry) for each of four estimators.
Specified Mean loss and estimated standard deviation
eigenvalues of the mean (N = 1000 orientations)
A A A Sl S5t $-1 51
9 5 1 205.62 305.06 75.64 108.88
(743)  (91.09) (14.58) (15.99)
1 1 1 6.07 6.50 1.92 2.94
0.17) (1.03) (0.59) (0.01)
1 25 4 2.49 2.62 1.15 1.21
(0.09) (0.55) (0.40) (0.01)
1 4 7 221 2.39 0.89 1.08
(0.10) (0.60) 0.21) (0.01)
1 5.5 10 2.95 2.18 0.61 1.04
(1.01) (0.53) (0.02) (0.01)

'The first entry is mean loss; the second (in parentheses) is estimated standard
deviation of the mean.
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Clearly $7! is a bad estimator, but it cannot be this bad. The loss function L,
must be suspect—especially when & — p is small. Perhaps a more respectable loss
function is

(7.2) LE L= Y=t '=-1)
which is invariant under nonsingular linear transformations of the original data
vectors. The latter, (7.2), is treated by the author in a forthcoming paper [5].
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