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MAXIMUM LIKELIHOOD ESTIMATORS FOR THE MATRIX VON
MISES-FISHER AND BINGHAM DISTRIBUTIONS

By P. E. Jupp! AND K. V. MARDIA
University of Leeds

It has been conjectured by Khatri and Mardia that with probability one
MLE:s for the parameters of the von Mises-Fisher matrix distribution exist and
are unique. We prove that, except for small sample sizes, this conjecture is true,
both in the case where the parameter matrix has known rank and in the
unrestricted case. The corresponding result for the matrix Bingham distribution
is proven also.

1. Introduction and summary. The Stiefel manifold O(n, p) of n X p matrices
X such that XX’ = I, admits a distinguished probability distribution, the uniform
distribution. This is induced from the normalized Haar measure on the orthogonal
group O(p). Background on Haar measure and uniform measures on compact
homogeneous spaces like the Stiefel and Grassman manifolds can be found in
Nachbin (1965) (especially pages 130-131) and in Farrell (1976). The von Mises-
Fisher distribution M(p, n, F) on O(n, p) was defined by Downs (1972) to have
density

(1.1) a(F) exp tr(FX'), X € O(n, p)
with respect to the uniform distribution. Here F is an n X p matrix. The Bingham
distribution B(p, n, A) on O(n, p) has density

(1.2) a(A) exp tr(XAX)), X € O(n, p)
with respect to the uniform distribution. Here A is a symmetric p X p matrix. We
assume without loss of generality that tr A =0. The Bingham distribution
B(p, 1, A) was introduced by Bingham (1974, 1976) and B(p, n, A) is a particular
case of a distribution introduced by Khatri and Mardia (1977).

Khatri and Mardia (1977) derive expressions for the maximum likelihood estima-
tor (MLE) of F in the von Mises-Fisher family (and the subfamilies where rank F is
known) and show that in many cases the MLE exists and is unique. They suggest
that, as the von Mises-Fisher family is an exponential family, this is true in general.
Here we show that this is indeed the case; for all except the smallest sample sizes,
with probability one, the MLE exists and is unique. We prove also the analogous
result for the Bingham family extending results of Bingham (1974, 1976). Our
results can be contrasted with those of Berk (1972) which yield almost sure
eventual existence of MLE’s without giving any information on the required
sample size.
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600 P. E. JUPP AND K. V. MARDIA

2. Existence and uniqueness of M.L.E.>s. On the vector space R(n, p) of n X p
matrices there is an inner product defined by (A, B) = tr AB’. Thus we can rewrite
the density of M(p, n, F) as

2.1 exp{<F, X) — «(F)}, X € O(n, p)

where k(F) = — log a(F) = log (F,(p/2, 1FF’) and ,F, is a hypergeometric func-
tion of matrix argument. Similarly, we can rewrite the density of B(p, n, A) as

(22) exp{<A, X' X)> — kz(A)}, X € O(n, p)

where kz(A) = — log a(A) = log F\(n/2,p/2; A) and ,F, is a confluent hyperge-
ometric function of matrix argument (see Equation (3.8) of Bingham, 1976). In
some ways it is more natural to think of B(p, n, A) as being on the Grassmann
manifold G,(R?) rather than on O(n, p). G,(R?) is the set of p X p matrices Y such
that Y = Y’ = Y2 and tr Y = n. There is a function from O(n, p) to G,(R”) defined
by Y=XX. On G,(R?) there is a distinguished probability distribution, the
uniform distribution, which may be defined as the distribution of Y when X has the
uniform distribution on O(n, p). If X is distributed as B(p, n, A) then the distribu-
tion of Y has density

(23) exp{<A, Y) — k5(A)}, Y € G,(R?)
with respect to the uniform distribution.
We shall usually use B(p, n, A) to refer to this distribution on G,(R?). Let Sy(p)

denote the vector space of symmetric p X p matrices with zero trace and define
KY) € Sy(p) by «Y) =Y — (n/p)L,. We can rewrite the density of B(p, n, A) as

(249 exp{<A, «(Y)) — kz(A)}, Y € G,(R?).

It is now clear that in the terminology of Barndorff-Nielson (1973, Section 5)
(2.1) and (2.4) are minimal standard representations of the exponential families
M(p, n, -) and B(p, n, ). (That the representations are minimal, i.e., the dimen-
sions of the parameter spaces cannot be reduced, follows, for example, from the
existence of densities in Proposition 2.) Further, as O(n, p) and so G,(R?) are
compact, M(p, n, F) and B(p, n, A) are defined for all F in R(n, p) and all A in
So(?). Thus the maximal sets on which k and kp are defined are open, i.e., the
families are regular. Similarly, if we consider the sample means X and Y of samples
of size N from M(p, n, F) and B(p, n, A) we again get minimal standard repre-
sentations of regular families. The densities are

2.5) ‘ exp{<F, X)> — «(F)}, X €R(n, p)

(2.6) exp{ <A, «(Y)) — xz(A)}, 1Y) € Si(p)
with respect to the probability distributions on R(n, p) and Sy(p) corresponding to
the uniform case F = 0, A = 0. Now we can apply the general theory of MLEs for
exponential families.

The principal result we need is the following direct consequence of Theorem 7.1
of Barndorff-Nielsen (1973).
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PROPOSITION 1. Let C be the convex hull of O(n, p) in R(n, p) and Cg be the
convex hull of t(G,(RP)) in Sy(p). For F € R(n, p), A € Sy(p), denote the expecta-
tions Epyp, n, 7X) and Ep, , a(1(Y)) by 7(F) and 75(A) respectively. Then

(a) there is a MLE F of F if and only if X € int C.

If F exists it is given uniquely by

2.7 X = 7(F) = 0k /3F g
(b) there is a MLE A of A if and only if «(Y) € int C.
If A exists it is given uniquely by

(2.8) ((Y) = 75(A) = (3x5/0A),_;-

To use this proposition we do not need to calculate C or Cp once we know that
X, #(Y) have densities with respect to Lebesgue measure. From now on X and Y
will denote the sample means from any distributions on O(n, p) and G,(R?) which
are absolutely continuous with respect to the uniform distribution. The next result
follows from Theorems 2 and 3 of Jupp and Mardia (1977).

PROPOSITION 2. (a) In R(n, p), X has a density with respect to Lebesgue measure
if and only if either

()N >2andn<p;or

(@) N>3andn=p > 3.

(b) In Sy(p), t(Y) has a density with respect to Lebesgue measure zf N >p.

COROLLARY. Under the conditions of Proposition 2, with probability 1, X €int C
and «(Y) € int Cy.

Proor. Certainly X € C and #(Y) € Cp. Also 3C = C \int C, 3C, have Le-
besgue measure zero in R(n, p) and Sy(p) from Corollary 8.6.2 of Farrell (1976).

Combining the above we get the following main result on MLEs for the von
Mises-Fisher and Bingham families.

THEOREM 1.
(a) For the von Mises-Fisher family on O(n, p): if N = 1, there is no MLE of F; if
N = 2 and n = p, then with positive probability there is no MLE of F; if either (i)
N >2and n<p or (il) N > 3 and n = p, then with probability 1 there is a
unique MLE F of F and

X = 7(F) = (0k/9F)g-¢-
(b) For the Bingham family on G,(R?), if N > p then with probability 1 there is a
unique MLE A of A and
1Y) = 7(A) = (3kz/9A), _;-
ProoF. The existence statements follow immediately from the results above.

Nonexistence in (a) for N = 1 follows from the fact that O(n, p) C oC. (T o see this,
note that for X € O(n, p) <X, X)> = n and argue as for the sphere S?~! in R”.)
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In the case N = 2 define p(X) to be the maximum modulus of an eigenvalue
of X. Then for X € O(n, p), p(X) = 1. Also p is convex, so

int C C {X € R(n, p)lp(X) < 1}.
Now for a sample (X, X,) from M(p, p, F), with positive probability, 1 is an
eigenvalue of X; 'X, (consider the cases p odd and det X, = det X,, p even and

det X, = — det X,), so p(X) = p{3(, + X; 'X,)} = 1. Thus X € 3C and there is
no MLE.

3. The von Mises-Fisher family—singular value version. We can reformulate
the above results for the von Mises-Fisher family using singular value decomposi-
tions. Recall the singular value decomposition F = AD,I' where A’'A =1, = IT",
D, = diag(¢y, . - - > $,) with ¢, > ¢, > - - - > ¢, > 0(see, for example, Rao, 1973,
page 42, or Farrell, 1976, page 120). Such a decomposition always exists and Dy is
unique. If we insist that the first nonzero element in each row of I‘ is posmve then
if the ¢, are distinct, A and I" are unique. Let X = ADgI‘ F= AD I' be singular
value decompositions of the sample mean and MLE.

THEOREM 2. For the von Mises-Fisher family on O(n, p) if either (i) > 2 and
n<por (i) N >3 and n = p > 3, then with probability 1, A, D;, I' exist and are
given uniquely by

(3.1) A=A,1=T,g=u($) 1<i<r
where & = ($y, . . - » §,) and u(P) = (3/94,) oF\(p/2, D).

Proor. First suppose that n = p = r. Then a calculation using invariance of
Haar measure on O(p) gives

(3.2) m(AD,T) = Ar(D,)T.

Also, as a p X p matrix is diagonal if and only if it commutes with all orthogonal
diagonal matrices, 7(D,) is diagonal.

In the general case choose Ay € O(n), T, € O(p) such that A, = (4, A)), I, =
(I, T} and put A, = block diag[Ay, I,_,]. Then 7(8,D¢ gT0) = A;7(Dy, 0T
50 (3.2) holds in this case also and 7(D,) is diagonal. As X has a density, the g; are
distinct with probability 1. Now we can use (3.2), Theorem 1(a) and uniqueness of
polar decomposition to get (3.1).

REMARK. The maximum likelihood equations (3.1) were obtained by Khatri
and Mardia (1977).

4. The von Mises-Fisher family—F of given rank. In the von Mises-Fisher
family on O(n, p), by restricting F to lie in R(n, p; r), the set of n X p matrices of
rank r, we obtain a curved exponential subfamily. Again, except for small sample
size N, with probability 1 the MLE of F exists and is unique.

THEOREM 3. For the von Mises-Fisher family on O(n, p) restricted by rank F = r,
if either ) N > 2 and n <p or (i) N > 3 and n = p > 3, then with probability 1
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there is a unique MLE F of F and

(4.1) IA? = KD@,’ o)f‘, & = u,‘(;i)), 1 i< r,

where

X = BDL. 4 = (b -+ §) and u@) = 25 oFi( 2, 1D3)

PrROOF. We have rank X < n precisely when at least one of the n X n minors of
X has determinant zero. Thus the set of X in R(n, p) with rank X < n is an
algebraic variety of codimension one (the set of zeros of a polynomial) and so has
Lebesgue measure zero. As X has a density, with _probability 1 rank X=n
Similarly, with probability 1 the eigenvalues of XX’ are distinct. Thus, with
probability 1, X € int C, rank X = n, and the eigenvalues of XX’ are distinct. We
shall assume that X satisfies these conditions.

Existence. For A € O(n), T € O(n,p), and ¢ = (¢, * * - , $,), let I(¢) be the
log-likelihood of X at AD, oI, ‘
(4.2) I(¢) = <AD(¢, ol )—(> = "(AD(qs, O)F)

= (D4, 0y AXI") — k(Dyg, q))-

Now A’XI" € int C so (I,, 0)XI" € int C, where C, is the convex hull of O(r, p) in
R(r, p), and 3//3¢, = (AXT"), — 3/ (3¢,)k(Dy4, o). By Proposition 1(a) and (3.1) for
O(r, p), there is a unique solution ¢ of 9//9¢, =0, 1 <i <r, and this gives a
maximum of /. Now put g(4, I') = max,{<AD oI’ X) - k(D ¢)}- We wish to
show that g has a maximum. As g is defined on the compact set O(n) X O(n, p) we
need only show that g is continuous. As the matrix ((3?/ 06,0¢,)k(D, o)) is nonsin-
gular (see Theorem 5.4 of Barndorff-Nielsen, 1973), by the inverse function
theorem ¢ is a differentiable (so continuous) function of the (A'il'"),.,., 1<igr.
Thus g is continuous as required.

Uniqueness. R(n, p; r) is a submanifold of R(n, p) of codimension (n—r)(p—r).
Indeed, if F € R(n, p; r), there are A, € O(n), Iy € O(p) such that AGFI =
Dy, op Where ¢ = (¢,...,9,). f G= AO( C g)l‘o is near enough to F, then
rank A = r and

’ L 0 B
rank G = rank _ AGT, = rank( B )
( —CA™! I,,_,) 0 D-CA'B
Thus G € R(n, p; r) if and only if D = CA™'B. Therefore R(n, p; r) is a submani-
fold of codimension (n — r)(p — r) and the tangent space to R(n, p; r) at F is the
space of matrices A, A B L, ,

The derivative at F of the log-likelihood function at X is X — 7(F), so at a MLE
F in IR(n pr X - 'T(F) is normal to the tangent space to R(n, p; r) at F. If
F = AD I,X= AD T are the singular value decompositions, a calculation shows
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that a necessary condition for F to be a MLE is
(4.3) A,AD,TT} = block diag[ Dy, o), E]

where &, = @4, A) € O(n), T = ("T}) € O(p), ¥ = (Y, - - -, ¥,) and satisfies
Dy 0 = 7Dy, and EER(n —r,p —r). If E=UD.V is a singular value
decomposition, then

(44)  A,AD,TT; = block diag[1,, U] X Dy, ¢ X block diag[L, V].

As the eigenvalues of XX’ are distinct, uniqueness of singular value decomposi-
tion (see Theorem 8.5.1 of Farrell, 1976) gives ¢; = & for 1 <i <r and the
existence of a diagonal orthogonal matrix H such that AOAH block diag [I,, U]
and H’l"I" = block diag[l,, V]. Then F= AOD@, o)ro ADq.,, 0)1‘ and g, = u(¢)
1<i<r.

5. The Bingham family—spectral version. Recall that if A is a symmetric
p X p matrix it has a spectral decomposition A = MD,M’ with M € O(p), D; =
diag($y, - - -5 §) § <§ < -+ - <. Dy is unique and M is unique up to post-
multiplication by H € O(p) satisfying'HDIH’ =D, If the {; are distinct (as
happens outside a set of Lebesgue measure zero) uniqueness of M can be ensured
by insisting that the first nonzero element in each row of M be positive. We can
reformulate Theorem 1(b) in spectral language, generalising results given by
Bingham (1974, 1976) for n = 1.

THEOREM 4. For the Bmgham Jamily on G,(R?), for N > P, with probability 1
there is a unique MLE A of A. If (Y) = MDgM A= MDM are the spectral
decompositions, then

(5.1) M=M,g=0(), 1<i<p
where { = (§,,- - -, &) and v(§) = 3/, log | Fy(n/2; p/2; D).

PROOF. As in the proof of (3.2) one can readily show that 7,(AAA’) = A75(A)A’
for A € O(p) and that if A is diagonal then 7,(A) is diagonal. For almost all Y, the
elgenvalues of #(Y) are distinct, and by Theorem 1(b) for almost all Y, #(Y) = TB(A)
= MTB(D{)Ml The result follows from uniqueness of spectral decomposition.
There is also a version for restricted MLEs given by Bingham (1974) in the case
n=1p=3.

THEOREM 5.
() If Dy is known, then M is a MLE of M. If the §; are distinct then the MLE of M
is unique.
(ii) If M is known and N > p, then, with probability 1, D¢ exlsts and is umque Put
= M«Y)M); and defne ip =0, i, = max{i : v, = min,; v;}. Then { {
Ly <J<iband (i, —i_,)" 12k=;,_,+17k = U(O -1 <J <.
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PrOOF. (i) The log-likelihood of MD;M' at Y is
MDM, (Y)) — x5(D;) = <D, MMD MM — (D)

and this is maximised when M'M = L, as can be seen by an argument using
Lagrange multipliers. (See also Theobald, 1975).
(ii)) This follows from Theorem 1(b) and a consideration of maxima on the

boundary of the closed convex region §, < §, < -+ < { The 1mportant
point is that 75 is equivariant and order-preserving, i.e., if TB(dlag(ol, c 5 0)
= diag(hy, - - - , h,) then permutation of the §; induces the same permutation

of the A; and if §; < §; then A, < ;.

ReMARK. The criterion introduced on an intuitive basis by Mardia and Khatri
(1977) for testing for uniformity on G,(R?) (and so onO+(n, p)) is approximately
the likelihood ratio test for uniformity among the Bingham family. More precisely,
we have

Sy = —2log A + O(N||H(Y)II®)
where —2logA = N {(A, (Y)> — nB(A)} is the likelihood ratio test statistic, Sy, =
Na=||t(Y)|]? = Na~'(tr(Y?) — n?/p) is the statistic of Mardia and Khatri and
a=2n(p —n)/{p(p — I)p + 2)}, and [|«Y)|| = <«(Y), #(Y)>?. This can be seen
by using expansions of kz(A) in terms of zonal polynomials analogous to those of
Section 4 of Mardia and Khatri’s paper and the fact that

(Y) = aA kg(A)|a-a-

6. An example. Examples of data on Stiefel manifolds arise in astronomy,
vectorcardiography, etc. One such example from astronomy is given by the orbits
of comets. The orientation of a comet’s orbit can be specified by the celestial
longitude (L) and latitude () of its perihelion and the longitude (») of its
ascending node (thus specifying the sense of rotation). The direction of the
perihelion is x, = (cos @ cos L, cos 8 sin L, sin §) and the directed unit normal to
the orbit given by the right hand rule is

= (sin @ sin », —sin @ cos », —cos @ sin(v — L))/r

where r? = sin? § + cos? @ sin’ (v — L). The orientation of the orbit can thus be
specified by the matrix X in O(2, 3) given by X' = (x|, x}). As there is, a priori, no
symmetry, an appropriate model for the distribution of these matrices is the matrix
von Mises-Fisher family. The likelihood ratio test for uniformity on O(n, p) against
the alternative of a von Mises-Fisher distribution uses the generalized Rayleigh
statistic R where R? = tr(X’X). Under the hypothesis of uniformity pNR>
is distributed asymptotically as xz,p. This test was applied in an analysis of the

orbits of N = 240 long-period comets in Marsden’s (1972) catalogue (pages 62—63).
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It was found that 3NR? = 215. As P(x? > 215) < 104, the hypothesis of uniform-
ity is rejected. Following astronomers (see Tyror, 1957), Mardia (1975) analysed the
accretion theory of Lyttleton by using just the perihelion direction. However, the
accretion theory should be tested using the above formulation since the normal to
the orbit of each comet contains additional information relevant to the problem.
For a practical example in vectorcardiography, leading to observations on O(2, 3),
see Downs (1972) and Mardia and Khatri (1977).

REFERENCES

[1] BARNDORFF-NIELSEN, O. (1973). Exponential families and conditioning. Sc.D. Thesis, Univ.
Copenhagen.
[2] Berk, R. H. (1972). Consistency and asymptotic normality of MLE’s for exponential models. Ann.
Math. Statist. 43 193-204.
[3] BiNGHAM, C. (1974). An antipodally symmetric distribution on the sphere. Ann. Statist. 2 1201-
1225.
[4] BingHAM, C. (1976). Expansions related to a hypergeometric function arising in an antipodally
symmetric distribution on the sphere. Directional Data Project, Research Report 11, Depart.
Statist., Leeds Univ.
[5] Downs, T. D. (1972). Orientation statistics. Biometrika 59 665-676.
[6] FARRELL, R. H. (1976). Techniques of multivariate calculation. Lecture Notes in Mathematics 520.
Springer-Verlag, Berlin.
[7] Jupp, P. E. and MARDIA, K. V. (1977). Density-preserving statistics and densities for sample means.
Ann. Probability 6 688—694.
[8] KHATRI, C. G. and MARDIA, K. V. (1977). The von Mises-Fisher matrix distribution in orientation
statistics. J. Roy. Statist. Soc. Ser. B 39 95-106.
[9] MARDIA, K. V. (1975). Statistics of directional data (with discussion). J. Roy. Statist. Soc. Ser. B 37
349-393.
[10] MaRDIA, K. V. and KHATRI, C. G. (1977). Uniform distribution on a Stiefel manifold. J. Mult.
Analysis T 468-473.
[11] MARsDEN, B. G. (1972). Catalogue of Cometary Orbits. Smithsonian Astrophysical Laboratory.
[12] NACHBIN, L. (1965). The Haar Integral. van Nostrand, Princeton.
[13] Rao, C. R. (1973). Linear Statistical Inference and its Applications (2nd ed.). Wiley, New York.
[14] THEOBALD, C. M. (1975). An inequality for the trace of the product of two symmetric matrices.
Proc. Cambridge Philos. Soc. 77 265-267.
[15] TYRrOR, J. G. (1957). The distribution of the directions of perihelion of long-period comets. Mon.
Not. R. Astr. Soc. 117 369-379.

DEPARTMENT OF STATISTICS
UNIVERSITY OF LEEDS
Leeps LS2 9JT

ENGLAND



