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ON ASYMPTOTIC OPTIMALITY OF LIKELIHOOD RATIO TESTS
FOR MULTIVARIATE NORMAL DISTRIBUTIONS

By H. K. Hsien
University of Massachusetts
In multivariate analysis under normality assumptions, many likelihood
ratio criteria (A”) are distributed as
k7o, Z8(1 - Zli)b'H;'";lzg'

for some constants, k, m, m’, a;, b;, and ¢; when their associated null hypotheses
are true, where Z; are independently distributed beta variates. Let TM =
—n~"In A, This paper shows that a sequence { 7} of this kind is asymptoti-
cally optimal in the sense of exact slopes. Explicit forms of ‘the exact slopes are
obtained.

1. Introduction. It is shown in [2] (see also [3], [4], [S]) under certain conditions
that likelihood ratio (LR) statistics are asymptotically optimal in the sense of exact
slopes. It is believed (see, e.g., [5], page 140) that these conditions are satisfied by a
great variety of examples. Nevertheless, for a specified problem verification of the
required conditions and evaluation of the optimal slopes are still indispensable
before one can conclude the asymptotic optimality of the LR statistic. This paper is
devoted to clarifying the asymptotic optimality (in the sense of exact slopes) of a
class of LR statistics in multivariate analysis under normality assumptions.

The test statistics considered include likelihood ratios (or their modifications) for
testing (1) the general linear hypothesis, (2) equality of covariance matrices, (3)
equality of both mean vectors and covariance matrices, (4) independence of sets of
variates, and (5) sphericity of a covariance matrix (see, e.g., [1]). We establish the
asymptotic optimality of these tests by verifying refined versions of Conditions 1
and 2 stated in [5]. Explicit form of the exact slopes for each case is also obtained.

We note here that although the main results of this paper are obtained through
Conditions 1 and 2 of [5] which are known to be less restrictive than those stated in
Theorem 10.1 of [4], they may have been covered implicitly by the latter theorem.
However, the verification of the conditions stated in [4] seems much more intricate
and difficult to carry out.

2. Main results. We consider the following g-population (¢ > 1) problem. Let

X?(k=1,---,m;i=1,---,q) be independent random vectors, each with p
components. Denote x® =X k=1,---,n; i=1---,q) with n=n,
+ - -+ +n,. Suppose that for each i, X{? have common continuous probability
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density function, say f(x; 8,), where 6, is a parameter. Suppose also that 8 =
@,,- - - ,8,) is a point in certain space {2. Let {, be a proper subset of  and let
Q) = Q — Q. We wish to test the hypothesis H : § € Q, against the alternative
H' : 0 € . For large sample theory, we assume that as n — o, n;/n — y; such
that0 <y, <1(i=1---,9andy, +--- +y,=1L

For fixed § = (6,,- - - ,8,) € Q and fixed §, = @, -- -, 0;’) € y, we define
(as in [5])
(2.1) K,(x™; 0,0,) = n"'39_,3%_, ln[f,.(X,(j); 6,)/f(X; 0,.0)].
Foreachi,i=1,---,gq,let
(22) 1(8, 6°) = Eg[ (X5 6)/£(X(7; 67)].
Then I(-, -) is the Kullback-Leibler information number for the ith population,
which is well defined and 0 < I, < oo (see, e.g., [4], Theorem 4.1). Consequently by
the law of large numbers, as n — oo, the limit of (2.1) exists and equals
(2.3) 1(6, 6,) = 2?=1Yi1i(0i’ 0:'0)’

where 0 < I < o0, and I is known as the generalized Kullback-Leibler information
number according to [5]. Let

We shall call J(#) the J-value of the associated problem at # € Q. In many
examples the following lemma is useful in computing J-values.

LeEMMA 2.1. In the framework of the problem stated above, suppose that the
maximum likelihood estimate (MLE) of the parameter 0 based on x™ over Q,, say
0§, exists and is such that 6" — 0% a.e. P, as n — oo, where 03 € Q, and 05 may
depend on 0 € Q. If

lim, ,, K,(x™; 0, 0§") = 1(8, 63)  ae. P,
then
J(8) = 1(8, 63).
Proor. The lemma follows from J(8) < I(8, 63) and
K,(x™; 8, 0§) < K,(x™; 8, 8,)
for alln, § € @ and 6, € Q. [

Let T™ be a statistic based on x™ for testing the hypothesis H. Suppose that
T™ is of the form

(2.5) TW = —p~ ! n A™,

where A™ is some statistic based on x™. Consider the following conditions.
ConpITION A. For each 8 in &,

(2.6) liminf,_, T™ > J(8)  ae.P,
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ConDITION B.  When the hypothesis H is true, i.e., § € @y, A is distributed as
n - m n 5" mm g
(2.7) wm =k, 25701 - 2,)"" |, 2%,
where Z;; are independently distributed beta variates such that Z,; (i = 1, - - -, m)

has density B[z; a™ + a, b + b]and Z,; (j =1, - - - , m') has density B[z; ¢

+ ¢l m,m', a, b, c,d are fixed constants independent of n; a™, b, ¢ are

positive and depend on n such that as n — o0, a™/n — a;, b /n— B, ¢ /n— &,
0<q<L0<B<i,0<4< 1; and

(2.8) k™ =T, [/ (af” + b) [ b/ (af + b) ],

Here we adopt the convention that when m = 0 (or m’ = 0) the associated
product in (2.7) is defined to be one.

LEMMA 2.2. Let T™ and A\™ be defined in (2.5). If A" satisfies Condition B, then
(2.9) lim sup,_,,n~'In P, [T™ >¢] < —1¢
holds for any t > 0 and 6, € Q.

Proor. By Markov’s inequality (see, e.g., [4], Theorem 2.1), for fixed # > 0 and
0 €Q,

(2.10) Py [T™ > 1] = P, [ —nt + m(A™)™" > 0]
< e""™ME, [A™] 7"

holds for all # > 0. Now suppose that A satisfies Condition B, then using (2.7)
and Stirling’s approximation to gamma functions (e.g., [6], page 66), it can be
verified that for0 < h < 1,

(2.11) lim,_,, n~="In E, [A®]7" = 0.

The values of h are so restricted to ensure that the gamma functions in the
expression of E,[A™]* are defined for positive values. Applying (2.11) to (2.10)
gives

(2.12) lim sup, o, n ' In Py [T™ > 1] < —ht.

'n—»00

Since (2.12) holds for all 4 between 0 and 1, (2.9) is valid. 1]

Note that (2.6) and (2.9) are essentially equivalent to Conditions 1 and 2 stated
in [5). As a consequence of that corollary and the lemma just proved, we establish
the following theorem.

THEOREM 2.1.  Let {T™} be a sequence of test statistics defined by (2.5). If { T}
satisfies Conditions A and B, then it is an asymptotically optimal sequence with exact
slope equaling

C(8) = 2J(6),
for all § € §, :
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3. Examples of asymptotically optimal sequences. In this section we use Theo-
rem 2.1 to conclude the asymptotic optimality of the LR statistics for the problems
mentioned in Section 1. For simplicity, some notation is adopted directly from [1].
We assume that all covariance matrices used below are positive definite and hence
have inverses. The null hypothesis for the ith problem is denoted by H; (i =
1,- - -, 5) and the alternative hypothesis corresponding to H; is the complement of
H,. However, the same notation  is used to represent the unrestricted parameter
space for each of the five problems. Similarly, , is used to represent the restricted
space corresponding to each of the five null hypotheses. As in Section 2, we denote
Q) = @ — Q,. When g (¢ > 2) populations are involved in a problem with sample
sizes N, - -, N, respectively, we assume that there exist constants v; (i=
L---,9,0<y,<1lyy+---+7y,=1such thatas N=N;+--- +N,—>
©, N;/N->y,(i=1-"-,9.

3.1. Testing the general linear hypothesis. We discuss here only the one-way
layout MANOVA problem (see [7] for the general case). Let X” be independent

observations from N,(y;, 2), k =1, - - ,Nsi=1,---,q. The null hypothesis is
Hy:p =---=up,. For fixed § =(py, -, p,2)ER and 4, =
(pos * * * 5 gy Zg) € Qp, the Kullback-Leibler information number is found to be

1,(8, 8p) = —3In(IZ|/|Zg]) — 37 +3tr{[Z + 20 v — mo)(is — 1) 12571}

Applying results of [1, page 213] and Lemma 2.1 gives

(3.L1) Ji(8) =3I + 24 v — B)(w — BYZ7Y,
where 1 = Z7_,v;u,. Consider the likelihood ratio criterion [1],
(3.12) MM = INZglsV/IN S, 3Y

where 519 and flw are statistics defined by (11) and (13) of Anderson [1, page 214]
with Y replaced by X. Define

(3.13) T™ = —N~'In A{™,

Then direct computation shows lim,_,,, T{*’ = J,(8) a.e. Py. Thus { T} satisfies
Condition A. Further, by Theorem 8.5.1 of [1], { T{™} also satisfies Condition B.
Hence by Theorem 2.1 the sequence {7{"} is asymptotically optimal for testing

H, and it has exact slope C\(8) = 2J,(8) for § € 2. This result is conformable
with that of Bahadur [4, Example 5.1] and also that of [8].

3.2. Testing equality of covariance matrices. Let X (k=1,---,N;; i =
1,- - -, q) be independent observations from N,(u, Z;). Denote n, = N, — 1 (i =
l,--+,q)and n = N — q. The null hypothesis is H,: 3, =--- =3 . Let§ =
(pp s v 0 Bgs Zp5 0 0 2,) € Q. Then by Lemma 2.1,

(32.1) JA(8) = Hn[[S9_ S|/ =],
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Consider the modified likelihood ratio criterion

(32.2) M =[Kkm] 'Y

where V) is the statistic defined in page 249 of [1], and

(3.23) K = T4 (n,/ n) 2™,

Let 75" = — n~"In A{", then it follows lim, _ T{” = J,(0) a.e. P,.

Next, from the Ath moment of ¥V, (see, e.g., [1], page 253) and using arguments
similar to those for Theorem 8.5.1 of [1], it can be verified under the hypothesis H,,
A{” is distributed as

W2(n) =[k§n)] {Hl-l = lzz ;(1 )z J+|}{ ,_lz—n}
where Z; are independently distributed beta variates, Z; " has density B[z; %(ﬁj +
JA =0, 5y + 1= D] with A =n +--- +n for i=1---,p; j=
l,---,q—1, and Z, has density B[z; %(n +q(1 — ), 2(g— )G — D]fori=
2,- - -, p. Condition B is thus satisfied by the sequence { T{”} noting

17 ey,
z-l(”./”)zpn' =1I_,II ':11(’7,'/’7_;'+1)2 j(”j+|/”j+1)2 L
Therefore, {T{”} is asymptotically optimal with slope C,(#) = 2J,(#) for all
9 e

3.3. Testing equality of mean vectors and covariance matrices. Let X (k =
L-++,N;i=1---,q) be independent observation, X ~ N,(p, Z,). Again
let n, =N, — 1, n =N — g. The null hypothesis is Hy : p; = - - - = p, and 3,
=---=23 . Letd=(p, - -,pI, - -,2,) EQ The J-value for this prob-
lem is

(3.3.1) J5(8) = %ln{lz?-ﬂi[zi + (I"i - ﬁ)(/’v - ﬁ)']|/H?=1|E,~|"‘},

where g = 29_ v;u. Let

(33.2) MY =[kP]7'Y,

where V is the statistic defined on page 251 of [1] and k{” is the constant defined
by (3.2.3). Let

(3.3.3) . T = —n~'In A{.

Then it follows lim, ., T{” = J;(4) a.e. P,. Further, using the Ath moment of ¥
(see, [1], page 253), it is seen that under the null hypothesis H,, A{ is distributed as

3 1 1,

e (n/m) "M, [2iZ3 (1 = Z,)7% | 23",
where Z; are independently distributed beta variates, Z; has density B[z; %(ﬁj +
JA =) 5y +1=0)] with @, =n + -+ +n for i=1,---,p; j=

L,-+-,¢g—1, and Z, has density B[z; 3(n + q(1 — i), 3(g — 1)i] for i=
1, - -, p. Therefore, Conditions A and B are satisfied by { 7{”}. By Theorem 2.1,
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{T{M} is an asymptotically optimal sequence for testing H,, with exact slope
C3(8) = 2J5(0) for all § € Q. When p = 1, C5(#) reduces to the optimal slope
obtained in [9].

3.4. Testing independence of sets of variates. Let {X,} be a sequence of
independent random vectors, X, ~ N,(u, Z). Suppose that X, is partitioned into g
parts, say X, .., X®@ with p,,---,p, components respectively, p = p,
+ -+ +p,. Let p® denote the mean vector of X and X, denote the covariance
matrix between X and X (see, Section 9.2 of [1]). The null hypothesis is
H,:3; = 0 matrix, i #. Let § = (p, Z) € . Then using Lemma 2.1 the J-value
is found to be

Ji(0) = %ln[H?-1|2ii|/|2|]-.

Let A{"™ be the LR criterion (based on a sample of size N) defined in (16) of [1,
page 236], and let T{¥ = — N~'In A{™. It follows lim,_,, TV = J(0) ae. P,.
Further, it is known [1, page 236] that under H,, A{" is distributed as a random

variable having form (2.7). Hence by Theorem 2.1 the sequence { T’} is asymp-
totically optimal with exact slope C,(0) = 2J,(9) for all § € .

3.5. Testing sphericity of a covariance matrix. Let X, X,, - - - be a sequence
of independent random vectors, X, ~ N,(, Z). We wish to test the hypothesis H:
S = ¢, where [ is the identity matrix of order p and o? is an unspecified positive
real number. Using Lemma 2.1 we obtain for § = (g, ) € ,

7(6) =3[ 3/pY /13]].
Based a sample of size N, say X,, - - -, X, the LR criterion (see, e.g., [1], page
261) is
MY = |4/ [x(4/p)] Y,
where 4 = ZV¥_ (X, — X)(X, — X) with X = N™'S¥_ X,. Define T{" = —
N~'In A, then lim, , T = J4(#) a.e. P,. Further, from the Ath moment of
W = AP/ (see, [1], page 262), it can be shown that under H, AS" is distributed
as
INp [Tip-17%iN 3N ZipN
Ws = p (221221 - Z):V ) zz7™,
where Z, are independent beta variates, Z, has density B[z; 3(iN — 2i(i + 1)), 3(N
—1-9] for i=1,---,p—1, and Z, has density B[z; L(pN — ip(p +
1)), $p(p — D)} Noting
1. 1
_1Np — Tp-1 i 2N 1 N
P H"'[i+l] [i+l]
we see that A{") satisfies Condition B. Hence by Theorem 2.1 the sequence { T{™}
is asymptotically optimal with exact slope C5(8) = 2J4(#) for all § € Q.
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