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THE BEST STRATEGY FOR ESTIMATING THE MEAN OF A
FINITE POPULATION!

By V. M. JosHI1
University of Western Ontario

If the finite population is homogeneous and the statistician’s resources
permit him to take a sample size m at the most, it is shown here that his best
strategy for estimating the population mean is to draw a sample of size m by
simple random sampling without replacement and to take the sample mean as
the estimate. The strategy is the best in the sense that in the entire class of
unbiased strategies subject to the restriction that the size of any observed
sample does not exceed m, this strategy minimizes for any convex loss function
both the maximum and the average risks over the set of parameter points
arising from permutations of the labels of the population units. Similar deci-
sion-theoretic justification is also derived for the customary strategy for a
two-stage cluster-sampling design.

1. Introduction. Suppose we have a finite population for which the mean value
of some variate is to be estimated and, according to the available knowledge, the
population is ‘homogeneous’ in respect to the variate. Suppose further that the
resources at the statistician’s disposal allow him to take a sample of size m at the
most. What procedure should he adopt? Almost invariably the procedure adopted
in practice is to draw a sample of size m by simple random sampling without
replacement, and to take the sample mean as the estimate. This procedure is
intuitively appealing, but a nonintuitive justification for preferring it over all others
has not been given. In this note we provide this justification by showing that the
above stated strategy (procedure) is the best in the entire class of unbiased
strategies in the sense that it minimizes for a convex loss function both the average
and the maximum risks over the set of parameter points obtained by permuting the
labels of the population units. Here strategy means the choice of a sampling design
and an estimator and it is said to be unbiased if, for the chosen sampling design,
the estimator is unbiased. In deriving the result we use two previous results of
Royall (4], [5)).

2. Preliminaries. The finite population U consists of units labelled in some
order as u,, u,, - - - , uy. With each unit , is associated an unknown real variate
value x;. X = (X, X, * * - xy) is the parametric vector. The parametric space is a
specified subset R, of the N-space. A sample s means any subset of U. S denotes
the set of all samples s. A sampling design is any probability distribution p on S.
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An estimator e is a real valued function on S X ﬁN which for each s, depends on x
through only those x; for which u, € s. We write i € s for brevity for y; € s.

For any sample s, the sample size n(s) is the number of units contained in s. Let,
for any s, the co-ordinates x; i € s arranged in nondecreasing order, be
Y15 Y2 * * * » Vnes The latter are called the order statistics.

DEFINITION 2.1.. An estimator e is symmetric if it depends on s and x only
through n(s) and the order statistics.

Thus the value of a symmetric estimator depends only on the observed values x;,
i € s and not on the units observed in the sample.

3. Main result. Let 7 denote a permutation of the label numbers
(1,2, - -, N} of the units. Following Royall [5], assume that a unit which gets the
label i after the permutation had the label (i) before. Let (p, €) be any given
strategy, i.e., pair of sampling design and estimator. From e a symmetric estimator
¢ (Definition 2.1) is obtained by averaging as follows: if p(n(s)) > 0, let
(1) (s, x) = Z,e(m(s), x,)p(771(5))/ (1))t (N = n(s))'p(n(s))
where 7~ !(s) = {J, m(j) € s}, X, is the coordinate vector resulting from the vector

x by the permutation =, and p(n(s)) is the total probability under p of samples of
the size n(s), i.e.,

)] p(n(s)) = 2y . ny=noP(s)-
If p(n(s)) = 0, assign to &(s, x) any arbitrary value. It is seen that & is a symmetric
estimator.

Following Royall [5] we assume a loss function /(a, ) of real variables a and ¢
which is convex in a for every 8. For any strategy (p, €), R(e, p, xX) denotes the
risk-function at x, and R(e, p, x) denotes the mean value of the risk-function over
the N! parameter points (not necessarily all distinct), obtained by permuting the
coordinates of x. The parameter function under estimation is the population mean
6(x). We assume that the parameter space Ry, is such that if x € R, all the points
arising from permutation of the coordinates of x also belong to R,. Then

PROPOSITION 3.1.  For all x € Ry,

3 R(é,p,x) < R(e,p, x).

ProOF. This result is proved in the theorem in [5]

Next, for any sampling design p, let p be the symmetric sampling design defined
as follows: for any sample s

@ 76 = () 2

where p(n(s)) is given by (2). Thus p assigns equal probabilities to all samples
having the same size in such a way that the total probability for each size coincides
with the corresponding probability under p. Next,
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PROPOSITION 3.2. p being the design defined by (4),
5) R(¢,5,x) = R(&,p, x).
ProOF.
N'R(&,p, x) = 2,2,e5p(s)I(e(s, x,), 0(x))
= Z,esP(8)Z,H(&(s, x,), 0(x))
= 3012, w=mP ()2, 1(&(s, X,), 8(x))
=S5 p(m)ym! (N — m)!Z . )= ml(E(s, X), O(x))
= N!Z5 o2 =mP (9)U(E(s, x), 0(x))
= N1Z,esP(s)l(e(s, x), 6(x))

= N!R (&, p, x).
[REMARK 3.1. The proof essentially follows from R(é, p, x,) not depending on
7, so that R(e, p, x) = R(e, p, X) = R(e, p, x).] Next for k=1,2,---, let p,

denote a symmetric sampling design of fixed sample size %, i.e., p, is simple random
sampling without replacement of size k. Let the sampling design p in (3) be such
that the maximum sample size for any sample with positive probability does not

exceed a given number m. For k = 1,2, - - , m, let 5, denote a sample of size k
and let e* be the estimator defined by

- m\~1 -
©) e (5 %) = Z71 2R ) 2y, 508500 X)

in which e is as in (1) and p(k) as in (2). For n(s) #m, e* may be assigned
arbitrary values. Then
PROPOSITION 3.3. For all x € Ry,
() R(e* p X) < R(&, 5, %)
where (e, p) is the strategy in equation (5).
Proor. By the convexity of /(a, 8) it follows from (6) that

® Ao x),000) < Iy ) PRI, g, HEs5o X), 000)).

Multiply both sides of (8) by (1];,1 )_l and sum over all samples s,,. Noting that

_ -1 . . .
P(8,) = ( N ) and that in the summation over all s,,, each particular s, occurs

(Z : :) times, we obtain
(9) R(e*’ p-m’ X) < 2'I?= lzkﬁ(sk)l(e-(ska X), 0()())
= R(e, p, x).

Since both sides of (9) are invariant under permutations of x, (7) follows.
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Next, let the strategy (p, e) be unbiased, i.e.,

(10) 2 esp(s)e(s, x) = 0(x))
for all x € Ry, Then,

PROPOSITION 3.4. If the strategy (p, e) in (3) is unbiased for O(x), the strategy
(P> €*) in (7) is also unbiased for O(x) and further, provided the parametric space
satisfies the condition in equation (11), e* is the same as the sample mean.

Proor. From (1) and (4)
Z,esP(8)e(s, X) = (N1)7'E,e5Z,e(77'(s), x,)p(77'(s))
= (N!)_lzwzslese(sl’ xvr)p(sl)

= (N)7'2,0(x) = 6(x),
and then, from (6),

zsesﬁm(s)e*(s’ x) = 2.s',,,]jm(sm)e*(sm’ x)

=2 p(s)é(s, x) = 6(x).
Hence the strategy (p,,, €*) is unbiased. _
Next, let £ be any arbitrary set of real numbers and let R, satisfy, for some &,

(11) XxXERy, iff x€¢ for i=1,2,---,N.

((11) means that each x; assumes in Ry all the values in the set £.)

It then follows, from the completeness of the order statistics, (cf. [4]), that the
sample mean, 1/mZ,, x; is the unique symmetric unbiased estimator of the
population mean 6(x). Hence, in (6) e*(s,,, X) = the sample mean. This completes
the proof of Proposition 3.4.

Let D,, denote the class of all unbiased strategies (p, e) with the restriction that
the maximum sample size for any sample with positive probability does not exceed
m. Then (3), (5), (7) and Proposition 3.4 imply that the strategy (p,,, e*) minimizes
the average risk R for each x € Ry, in the class D,,, and further, since R(e*, p,,, X)
is invariant under the permutations =, the strategy (p,,, €*) also minimizes max
R(e, p, x,) for (p, e) € D,,. Hence,

THEOREM 3.1. For estimating the population mean the strategy of selecting the
sample of fixed size m by simple random sampling with the sample mean as the
estimator is the best in the entire class of unbiased strategies with the maximum
sample size < m, in the sense that it minimizes for each X, both the average and the
maximum risks over the set of (not necessarily distinct) N parameter points obtained
by permuting the coordinates of X.

COROLLARY 3.1. The strategy (p,,, e*) minimizes in the class D,, the Bayes risk
under any prior distribution symmetrical in the x; for i = 1,2, - -, n.
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COROLLARY 3.2. For a sampling design with fixed sample size m, the sample mean
is the best estimator in the sense defined in Theorem 3.1.

Corollary 3.1 is obtained by integration over the space of all points (x). Corollary
3.2 is an obvious consequence of Theorem 3.1.

NotE 3.1. If (p, e) is unbiased, the intermediate strategy (p, €) in Proposition
3.1 is not necessarily unbiased. But this does not affect the subsequent argument.

ReMARK 3.2. It was shown in [3] that, excluding trivial cases, there does not
exist a UMVU estimator for the population mean. (cf. also [1] for an alternative,
short and simple proof.) The argument is here completed by showing that the
sample mean is the best estimator provided the variance is averaged (or maximized)
over the set of parameter points obtained by permutation of the coordinates of x.
The assumption that the finite population is ‘homogeneous’ in respect of x; implies
that all such parameter points are ‘equally possible’ and hence it is reasonable for
the statistician to prefer the estimator which minimizes his maximum risk on this
set and also the average risk on it.

4. Extension to other sampling designs. . Sampling designs used in practice are
generally more complex. It is, therefore, of interest to consider to what extent the
decision-theoretic justification in Theorem 3.1 extends to other designs. The exten-
sion to a design of stratified simple random sampling is straightforward. Consider,
therefore, a design of cluster sampling. For simplicity consider a two-stage proce-
dure in which in the first stage only one cluster is chosen by random sampling from
the clusters constituting the population and, in the second, a sample of size < m is
drawn from the chosen cluster. Let C denote the class of all unbiased strategies
(p, e) in which the sampling design p is a two-stage procedure of the specified type.
Then it turns out that, in this class, the customary strategy is the best one in the
sense of Theorem 3.1.

For, suppose the given finite population {u;, u,, ..., uy} is divided into k
clusters of sizes M,, M,,- - -, M,, the assumed condition of homogeneity—
according to all available knowledge—holding in respect of the entire population
of all clusters taken together. (The actual labelling of the population units may
have been done in a different manner, but that does not affect the argument.) Let
(p, e) be any arbitrary strategy in the class C and let (p,, €) (p,, e*) be the
strategies as defined by (4), (1) and (6). Then, as (p, e) is unbiased, (p,, e*) is
unbiased by Proposition 3.4. Assuming that the parametric space R, is sufficiently
large, i.e., that (11) holds, it follows from the completeness of the order statistics
that

(12) e* = sample mean.
Next let p,, denote the sampling design in which in the first stage one cluster is
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chosen by sampling with probability proportional to cluster-size and, in the second,
a sample of fixed size m drawn from the chosen cluster by simple random, without
replacement sampling. Then the customary strategy is to use the sampling design
Pm> With the sample mean as the unbiased estimate of the population mean (cf. [2],
page 295). Hence by (12) the customary strategy is (p,, e*). Application of
Proposition (3.3) to (p,,, e*) yields

(13) R—(e*, ;;m, x) = R(e*, p,,» X) < R(e, p, X)

by (9), (5) and (3). Since the risk of (ﬁm, e*) is constant over the subset of
parameter points obtained by permutations of the x; for units within the same
cluster, (p,,, €*) is minimax in class C on each such subset and hence, necessarily,
also over the entire set of N! (not necessarily distinct) points arising from all
permutations of the x;. As the average risk is also minimized by (13), the customary
strategy is the ‘best’ in the class C.

The extensions suggest that over the major portions of the field of survey-sam-
pling, it may be possible to justify customary procedures within the N-P-W
approach.
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