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A MINIMAX APPROACH TO RANDOMIZATION AND
ESTIMATION IN SURVEY SAMPLING

By H. STENGER
University of Mannheim

We consider a finite set of units, a population. With each unit is associated
a real value (unknown to us) and a label (identifying the unit). Based on the
labels we may select a sample, i.e., a subset of the population, to estimate the
mean of the real values. In simple random sampling (not necessarily of fixed
size) the selection probabilities of all samples are not affected by a permutation
of the labels.

It is assumed that we have to choose both a sampling design and a linearly
invariant estimator, i.e., a linear function of the observed values with the
property: equality of the observed values implies that the estimate is equal to
this common value. Under these conditions we should use simple random
sampling together with the sample mean as an estimator. This follows from the
minimax criterion.

1. Introduction. The discussion of Bayesian ideas and superpopulation models
has brought the role of randomization in survey design into question. “The only
formal justification of a random design that we know that does not depend on the
introduction of some form of unbiasedness is that of Blackwell and Girshick (1954,
page 229) based on the minimax criterion”, state Scott and Smith (1975, page 353).
They show by generalizing at least partially the result of Blackwell and Girshick
that, once having accepted a certain standard estimator, sampling with unequal
probabilities is a minimax decision. Aggarwal (1959) and Royall (1970) describe the
complementary approach, first accepting a design and then looking for a minimax
estimator. However, a statistician usually has to determine a design and an
estimator at the same time. The minimax principle allows us to justify simulta-
neously a standard design and a standard estimator, as will be shown in this paper.

2. Definitions and notation. The population to be considered consists of N
distinct units. With each unit is associated a real number, called a variate value,
and an integer, called a label. Labels of distinct units are assumed to be distinct.
Without loss of generality we may assume that {1,2, - - - , N} is the set of labels.
The variate value of the unit with label / is denoted by x;. Then x =

(%), X5+ * + , Xy) is called the parameter vector. X denotes the whole parameter
space.

Let S be the collection of all samples, i.e., of all nonempty subsets of
{1,2,- - -, N}. For s € S we denote by n(s) the number of elements in s. Any

probability function p(s) is said to be a (sampling) design. If p(s) > 0, p(s") > 0
implies n(s) = n(s’) the design p has a fixed sample size.
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Any function #(s, x) depending on x only through the coordinates x;, i € s is
called an estimator. The sample mean

to(s, x) = Z;e.%,/n(s)
is an estimator of special importance. A strategy (p, f) consists of a design p and an
estimator ¢.

Let L(x, a) be a given nonnegative function, which is convex in the real variable
a for each x. Then L is called a loss function and associates a risk function

R(x; p, 1) = Z,e5p(8)[ L(x, 1(s, X)) + cn(s)]

with each strategy (p, 7). In this formula c is a positive constant denoting the cost
of drawing one unit from the population. When the population mean X = Sx,/N
is to be estimated, we use the loss function

L(x, a) = I(x, a)

where / is convex in g for each x. It is common to consider linear estimators, where
linearity of an estimator #(s, x) means that functions #(s) exist satisfying

(s, x) = Z;t(s)x;,  for all sE€S,x€EX.

The definition of an estimator implies that £(s) = 0 for i & s.
A linear estimator #(s, x) is said to be linearly invariant (see Roy and Chakra-
varti, 1960) if

Sit(s)=1 forall s€ES.

(The term linearly invariant should be understood as an abbreviation of: linear and
invariant with respect to translations.) Clearly, a linear estimator is linearly in-
variant if and only if equality of all the observed variate values implies that the
estimate equals this common value. The sample mean ¢, is linearly invariant.

3. Relabelling and symmetry of sampling strategies. Let 71,72, - - -, 7N be a
permutation of the integers 1, 2, - - -, N. We relabel the units associating the label

wi with the unit originally labelled by i. This change of labels does not affect the
variate value of a unit, i.e., with label i is now associated the same variate value
which was associated originally with label i. We denote by 7x the parameter vector
we obtain by relabelling; then we have

(7x) i = x; (equivalently, (7x); = x, -y,

ie, the mith component of #x is identical with the ith component of x. By
relabelling s € S is transformed into ws = {mi : i € s} € §.

Subsequently II represents the set of all permutations of the integers
1,2, .-, N. We assume that the parameter space X is symmetric, i.e., 7x € X for
all x € X, # € II. Then II is a group of one-to-one mappings of X onto X.

A function f(x) is called symmetric if f(mx) = f(x) for all x € X, # € II. In
particular, the population mean X = Sx,/N is symmetric. For a sampling strategy
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(p, t) we define
p(s) = Z,enp(ms)/N!,
t(s, x) = =, cnt(ms, 7x)/N\.
It is easy to see that (7, f) is a sampling strategy. If ¢ is linearly invariant, we have
t = t,. A strategy (p, t) is said to be symmetric if p and ¢ are both symmetric, i.e.,
p = p, t = t. Any symmetric strategy (p, ¢) is invariant with regard to relabelling,

ie.,
p(ms) = p(s) and t(=s, mx) = (s, x)

forallse S, x € X, 7 €I

REMARK 1. We have p = p if and only if p(s) =p(s") for all §, s’ € § with
n(s) = n(s), i.e., there exist a;, ay, - - * , ay > 0 with 2,0, = 1 and

P(s) = a5/ ( n](\i)) forall s €S.

REMARK 2. For a linear estimator ¢ we have ¢ = ¢ if and only if real numbers

B]y BZ’ Y BN exist with )
t(s) = B, forall iEs,sES.

4. A minimax theorem for sampling strategies. Royall (1970) has shown that
max, cR(7x; p, 1) < max,cgR(7x; p, 1)

for all strategies (p, ¢). This inequality is a strong justification for the use of a
symmetric estimator after a symmetric design has been accepted. (See Royall, 1970,
page 1778.) Royall’s result is complementary to the well-known result of Blackwell
and Girshick (1954, pages 229-233) which states

max, e R(7x; p, ) < max, g R(7x; p, t)
for any design p of fixed sample size. (See Royall, 1970, page 1776.) From the result
of Blackwell and Girshick we conclude that we can restrict ourselves to a symmet-
ric design, whenever a symmetric estimator and a design of fixed sample size have
to be applied. The restriction on symmetric strategies, however, cannot be justified
by combining the results of Royall and of Blackwell and Girshick. Indeed, it is easy
to see that _

max, e R(7x; p, 1) < max,cR(7x; p, 1)
is not true for all strategies (p, t), not even for all strategies (p, ¢) with ¢ linear. We
have, however:

THEOREM. Let L(x, a) = (X, a) with [ convex in a. Then
max, cqR(7x; p, t)) < max,cqR(7x; p, )
Jor all designs p and all linearly invariant estimators t.

PrOOF. Suppose s € S. We denote by II(s) the set of all # € IT with #i = i for
all i & s. If (p, f) is a sampling strategy with 7 linearly invariant, we have for any
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xeEX,s€S
(1) —[ n(i)], Zq)EH(s)tq)i(s) = ﬁ if i€s;
=0 if i&s,
and for ¢ € II(s)
(2 2it(s)x; = = 4(8)(ex)(= Eiti(s)xqa"i)'
By the convexity of / we derive from (1) and (2)
1

I(%, to(s, x)) < —[F)-]—!-Eq,en(s)l(f, =, 4()(@x);:)

and have, therefore,
(3) Z,enR(7x; p, to)

< Eses'r’lzl((;%chel‘[(s)zwen[l(f’ Z;fi(s)(Wx)i) + cn(s)].

As
zwen[l(f, 2z‘ti(5')(‘¥"”'x)x') + cn(s)]

is independent of ¢ we deduce from (3)

4 3 .enR(mx; p, 1)) < Z,enR(7x; p, 1).
Now
(5) EWEHR(Wx; ﬁ’ tO) = EWEHR(Wx; D tO)'

As R(7x; p, t,) is independent of =, the theorem follows from (4) and (5).

REMARK 3. Using Wesler’s (1959) terminology the theorem may be stated as
follows: let L(x, a) = I(%, a) with [ convex in a and let (p, ?) be a strategy with ¢
linearly invariant. Then, the strategy (7, f,) is at least as good as the strategy (p, )
(in the modified minimax sense).

REMARK 4. Let p be any design. By p we denote the uniquely determined
symmetric design with
%, esn()B(s) = Z,esn(s)p(s)
5(s) > 0,5(s) >0  implies that |n(s) — n(s)| < L.
If L(x,a) = l(X)(X — a)* with [, strictly positive, we have (see Ramakrishnan,
1969, (12))

R(x; P, tg) < R(x; B, ).
Combining this result with our theorem gives us
max, . R(7x; P, ty) < max,cnR(7x; p, 1)

for all strategies (p, £) with ¢ linearly invariant, i.e., (P, t,) is at least as good (in the
modified minimax sense) as (p, ¢) if ¢ is linearly invariant.
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REMARK 5. Let £(x) be an exchangeable (i.e., symmetric) prior density. The
Bayes risk

re(p, 1) = [R(x; p, 1)é(x) dx

of the strategy (p, f) then is an increasing function of the average risk (see Royall,
1970)

~ 1
R(x;p, 1) = 37 ZaenR(mx; p, 1)
of this strategy. Now, from (4) and (5) in the proof of Theorem 1

E(x; ]7, tO) < E(x, P t)
and, therefore, .

re( B, to) < re(p, 1)

for all p and all ¢ linearly invariant, i.e., (7, ¢,) is at least as good as (p, ?) in the
Bayes sense as long as the prior density is exchangeable.
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