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ON THE PROPERTIES OF PROPER (M, S) OPTIMAL BLOCK
DESIGNS

By MICHAEL A. JACROUX
University of Cincinnati

Properties of designs which are (M, S) optimal within various classes of
proper block designs are studied. The classes of designs considered are not
restricted to connected designs. Connectedness is shown to be a property
generally possessed by designs which are (M, S) optimal within these more
general classes of designs. In addition, we show that the complement of any
proper binary (M, S) optimal design is (M, S) optimal within an appropriate
class of complementary designs and that the dual of any proper equireplicated
(M, S) optimal design is (M, S) optimal within an appropriate class of dual
designs. .

1. Introduction and summary. Let % denote the collection of all proper block
designs having v treatments arranged in b blocks of size k such that treatment i is
replicated 7, times for i = 1,- - -, o. This paper is an investigation into the
properties of designs which are (M, S) optimal in various classes ). The (M, S)
optimality criterion was introduced by Eccleston and Hedayat (1974) as a generali-
zation of the S-optimality criterion suggested by Shah (1960). This criterion selects
from the subclass of designs in ) whose information matrices have maximal trace
those designs for which the trace of the square of the information matrix is
minimal.

A property which is generally desirable in any block design is that of connected-
ness. Such a property is also desirable in a design which is optimal within ). The
notion of connectedness has not in general been related to the (M, S) optimality
criteria. Eccleston and Hedayat (1974) provide some results concerning (M, S)
optimality and various types of connectedness, but their results are only applicable
within classes of proper connected designs. In Section 4, we show that connected-
ness is a property generally associated with designs which are determined to be
(M, S) optimal within ). In particular, we show that when connected designs exist
in 9, there will exist connected (M, S) optimal designs. A commonly occurring
sufficient condition is also given which guarantees that (M, S) optimal designs in
%) be connected. Section 5 deals with the invariance of (M, S) optimality under
complementation, i.e., the complement of an (M, S) optimal proper binary design
in 9 is shown to be (M, S) optimal in an appropriate class of complementary
designs. Section 6 is used to study the relationship between (M, S) optimality and
duality for designs in .

2. Preliminaries. Throughout the sequel we will let %) denote the class of all
proper block designs having v treatments arranged in b blocks each containing k
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experimental units such that treatment i is replicated r, times for i=1,- - -, v.
Each design in %) can be identified with a v X b incidence matrix N whose entries
n;; are nonnegative integers indicating the number of times treatment i occurs in
block j. Thus % can be thought of as a class of incidence matrices whose ith row
sum is 7; and whose column sums are all k. A design is said to be equireplicated if
rr=rfori=1---,0.

The statistical analysis of interest in this paper is the intrablock analysis with the
usual fixed effects two-way classification model. The matrix of coefficients of the
reduced normal equations for obtaining intrablock estimates of the treatment
effects for any design N € 9 is given by

(2.1) C=R-k™INN’

where R = diag(r,, - - - , r,). The matrix C defined by (2.1) is called the informa-
tion matrix or C-matrix of the design.

If N’ denotes the transpose of N, then NN’ is called the association matrix and
N’N the block characteristic matrix of the design. We denote the entries of the
v X v association matrix by A;; and the entries of the b X b block characteristic
matrix by y; ;. When the entries of N assume only the values zero or one, the design
is said to be binary, otherwise the design is called nonbinary. It is straightforward
to verify that for fixed i, the entries of the association matrix of any binary design
N € 9 satisfy the relationship

(22) 2Ny =1k —1).

A property which is usually desirable in any block type experiment is the ability
to estimate all possible treatment differences unbiasedly. Any block design having
this property is said to be connected.

REMARK 2.3. It will be convenient later to have access to two characterizations
of connectedness which were given by Eccleston and Hedayat (1974). For reference
purposes, these two characterizations are stated below.

(i) A design N is disconnected if and only if after a suitable permutation of
rows and columns, N can be written in the form diag(N,,- - -, N,), 1 <a<wv
where each W, is the incidence matrix of a connected subset of treatments.

(i) A design N is connected if and only if after a suitable permutation of rows of
N, NN’ = (\;)) has the property that for each j > 2, there exists an i, 1 <i <},
such that A;; > 1.

3. The (M, S) optimality criterion. A design N € 9 is said to be optimal
within % provided it is determined to be “best” by some well-defined optimality
criterion. The (M, S) optimality criterion was given by Eccleston and Hedayat
(1974) and is a two-stage optimization process. Let 9L denote the subclass of
designs N € 9 whose C-matrices have maximal trace (denoted by trC) among
designs in ). A design N € 9 is said to be (M, S) optimal if N € 9N and if the
square of its C-matrix has minimum trace among designs in 9IL.
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Observe that for N € 9,

(3.1) trC =3, — k7'E.5,n%

and that

(3.2) trC? =32 — 2k~ 'S;r\,; + k"2 to(NN')
If N € 9 is binary, A; = r, and (3.2) takes the simpler form
(3.3) trC? = (Z,r2)(1 — 2k7') + k2 te(NN")%.

4. Connectedness. The primary purpose of this section is to show that con-
nectedness is a property generally associated with (M, S) optimal designs in .

LeMMA 4.1. If N € 9D is a disconnected nonbinary design, then N & 9.

PrOOF. Suppose N € 9 is a disconnected nonbinary design. Without loss of
generality, assume n;; > 2. Observe now that there must exist p such that A,, = 0;
otherwise, N would be connected by Remark 2.3(i). Let u be such that n,, # 0.
Construct a new design N having entries 7, = ny; — 1, iy, = 1, 7,y = L, &, = m,,,
— 1 and 7; = n;; for all other i, j. Note that N € . Also note that if C and C
denote the information matrices of N and N, then

trC —trC = k~'(2n;, + 2n,, — 4).
Since n,; > 2 and n,, > 1, it follows that trC is not maximal in .

COROLLARY 4.2. If k > v, then any design in O is connected.

PrOOF. Let N € 9IL. If N is nonbinary, then N is connected by Lemma 4.1. If
N is binary, then k = v and each treatment occurs once in each block. Connected-
ness follows.

From Corollary 4.2, we see that when k > v, the search for (M, S) optimal
designs in %) can be limited to connected designs.

We observe now that any connected design containing more than v + b — 1
experimental units possesses as least one treatment replication which can be
removed such that the resulting design is still connected. This observation is of use
in the proof of the following theorem and follows directly from the well-known fact
that the rank of the design matrix of any connected designis v + b — 1.

THEOREM 4.3. Let ) be such that bk > v + b — 1. If N € 9 is a disconnected
design, then there exists a connected design N € O with tr C*< trC2

PrROOF. Suppose N € 9N is disconnected. By Lemma 4.1 and Remark 2.3(i),
we can assume that N is binary and that NN’ has the form

diag(N,N{, - - -, N,N)), 1 <a<wv,
where each N, is the incidence matrix of a connected subset of treatments. We can
also assume that the rows of each N, have been permuted so that the corresponding

A;; have the property mentioned in Remark 2.3(ii). We will first let @ = 2 and let
N, and N, denote s X ¢ and (v — s) X (b — ¢) matrices.
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Since bk > v + b — 1, we must have either tk >s + ¢t — 1 or (b — )k > (v —
s) + (b — ¢) — 1. Without loss of generality, assume tk >s + ¢t — 1. Using the
observation made following Corollary 4.2, we know that there exists a replication
of some treatment p, 1 < p <'s, occurring in a block u, 1 < u < ¢, which can be
removed from N, such that N, still has the property described in Remark 2.3(ii).
Let w be such that n,,, , = 1 and form a new design N having entries Ay = 0,
fipy =1, fipyy =1, A, =0, and i, = n,; for all other i, j. Note that N € .
Note also that NN"= (A;;) where A, =A, — 1 and A, , =1 for all /#s + 1
having 7, = 1, A,y = 1 and A, , = Ay, , — 1 for all / #p having 7, = 1, and
A;; = N for all other i, j.

Since the rows of N, and N, satisfy the condition given in Remark 2.3(ii) and
since the entries of NN’ are as given in the previous paragraph, we have by 2.3(ii)
that N is connected. Also, if C and C denote the information matrices of N and N

respectively, then
tI‘C2 - tréz = 2k—2[2,¢pn1u}\p1 + 2[¢s+]n1wAs+l‘1 - 2(k - l)].

Since A, > 1 for all treatments / # p having n,, = 1 and A, ;, > 1 for all treat-
ments / % s + 1 having n,, = 1, it follows that trC? > trC?.

Now if N € 9 is disconnected and a > 2, there will always exist two N,
satisfying the same conditions as N, and N, above, and by repeating the above
argument consecutively to pairs of connected subsets of treatments satisfying those
conditions, we will eventually arrive at a connected design whose information
matrix squared has trace at least as small as that of the original disconnected
design.

THEOREM 4.4. There exists a connected (M, S) optimal design in ) if and only if
bk>v+b—1.

Proor. Sufficiency follows from Theorem 4.3 and necessity follows from the
fact that the number of experimental units occurring in any connected design must
be at least v + b — 1.

While Theorem 4.4 guarantees the existence of connected (M, S) optimal de-
signs in %) when bk > v + b — 1, it does not guarantee that an (M, S) optimal
design must be connected. In fact, the following example shows that an (M, S)
optimal design need not be connected.

ExXAMPLE 4.5. Suppose b = 6, k =2, v = 6, and r; = 2 for all i. Then the design
N given below is such that the off-diagonal elements of NN’ differ by one. Thus by
Proposition 4.7 of Jacroux and Seely (1977), N is an (M, S) optimal design.

QOO O = =—
S OO = O —
QOO = m=O
O == OO0
—_ o= OO0
—_——0 OO0 O
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Also, by 2.3(i), N is clearly disconnected. However, by interchanging the replica-
tions of treatments three and four occurring in blocks three and four respectively, a
design is obtained which is connected and (M, S) optimal.

A commonly occurring sufficient condition is now given which guarantees that
an (M, S) optimal design within ) must be connected.

THEOREM 4.6. Let D be such that r, = max{r,|l <i <v}andr, =min{r[l <i
<o) Ifrk — 1)+ ry(k — 1) > v — 1, then an (M, S) optimal design in D must
be connected.

PROOF. Suppose N € 9N is disconnected. As in the proof of Theorem 4.3, we
may assume that N is binary, that NN’ has the form

diag(N,N{, - - -, N,N)), . 1 <a<ov,

and that the rows of each N, have been permuted so that the corresponding A;;
satisfy condition 2.3(ii). We will also assume to begin with that a = 2, that N, and
N, denote s X ¢ and (v — s) X (b — ¢) matrices, and that treatment p occurs in V.

Since r,(k — 1) + r,(k — 1) > v — 1, we may conclude that either r,(k — 1) >s
— lorr.(k —1) >0 — s — 1. Without loss of generality, assume that r,(k — 1)
>s — 1. Note that\,; = Oforall 1 <i <s,and;j >s.By22, 3, A, = r,(k = 1).
Now since the A, are nonnegative integers and r,(k — 1) >s — 1, we may con-
clude that A, > 2 for some m #p, 1 <m <s. Let u denote a block in which
treatments p and m occur together, and let w be such that n,,, , = 1. Note that if
we remove the replication of treatment p occurring in block u from the design, the
rows of N, will still satisfy 2.3(ii), hence the treatments in N, will still be connected.
Form a new design N having entries 7,, = 0, 7,4y, = 1, A, = 1, A4y, = 0, and
#;; = m;, for all other i, j. Note that N € 9. As in the proof of Theorem 4.3, N is
connected, and if NN"= (A;)),

tI'C2 - tréz = 2k_2[2[#pn1“xpl + 2,#:_,_]"1”,&._,_1’, - 2(k - 1)] > 0.

Now if N € 9 is disconnected and a > 2, there will always exist two N,
satisfying the same conditions as N, and N, above, and the result follows by
applying the above argument consecutively to pairs of connected sets of treatments
satisfying these conditions.

REMARK 4.7. Let & be a class of proper designs having parameters b, K, v, and
r, where ab < r, < (a + 1)b for all i and « is some positive integer. Jacroux and
Seely (1977) have shown that the problem of finding an (M, S) optimal design in
& can be reduced to finding an (M, S) optimal design in the class %)’ of proper
binary designs having parameters b’ = b, k' = k — av, o' = v, and r{ =1, — ab
for all i. By the results of this section, we can limit the search for an optimal design
in @’ to connected designs when b’k > b + v’ — 1. Eccleston and Hedayat
(1974) provide results which, when appropriate, limit the search even further to
specific types of connected designs in %),
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5. Complementation. Suppose N € 9) is a binary design. The complementary
design of N is defined to be N =J — N where J is a v X b matrix of ones. Note
that N has parameters b=bk=v-— k, 0 = v, and 7, = b — r; for each i. Our
intent in this section is to show that (M, S) optimality is invariant under com-
plementation.

Let %) have parameters r, <b fori=1,---, v, and k <vand let D denote
the class of all designs having parameters the same as N of the previous paragraph.
If 9N and SN are defined in the obvious manner, then it is easily seen by
Proposition 3.5 of Jacroux and Seely (1977) that 9 and S consist of the binary
designs in ¢ and ) respectively. Note that for each binary design in I there is a
corresponding complementary design in @IL thus 9 = {/ — N:N € M} where
J is a v X b matrix of ones.

THEOREM 5.1. Let & and 9 be as defined above and let J be a v X b matrix of
ones. Then N is (M, S) optimal in D if and only if N = J — N is (M, S) optimal in
D.

ProOOF. Since b, k, v, and r, are fixed for all designs in %, by examining (3.3) it
is clear that finding an (M, S) optimal design in ) is equivalent to finding a design
in O with minimum tr(NN")%. But tr(NN’)* = tr(N’N)?, hence finding an (M, S)
optimal design in % can also be accomplished by finding a demgn in 9 with
minimum tr(N’'N)2. Slrrularly, finding an (M, S) optimal design in ) is equivalent
to finding a design in St with minimum tr(NN )* or minimum tr(N N )2 Now if
N e St is expressed as J — N where N € 9N, it is straightforward to verify that

t((N'N)* = b¥(v — 2k)* + 2(v — 2k)(Z,;72) + te(N'N)-

This last expression shows that minimizing tr(1\7 'N )> over S is equivalent to
minimizing tr(N’N)? over 9.

Jacroux and Seely (1977) have established some sufficient conditions for designs
to be (M, S) optimal in ). It may happen that there exists a design N € %) which
does not satisfy any of these sufficient conditions but whose complement N may
satisfy one of the conditions in the class &. Thus it may be possible to use
Theorem 5.1 as a means to establish the (M, S) optimality of a design in .

6. Duality. Let N € ‘). Then the dual design is defined to be N = N’. Note
that N belongs to the class of all designs ) havmg parameters ¢ = b, 7, = k for
i=1---,0 b=v, andk—- , for j=1,---,0. If N €D, the matrix of
coeff1c1ents for estimating treatment effects in the correspondmg dual design N can
be expressed in terms of v, r;, b, and k as

(6.1) C=kI,— N'R™'N

where I, is the b X b identity matrix and R = diag(r,,- - -, r,). From 6.1, we
immediately get

(6.2) trC = bk — 3,r,7'S n
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and

(6.3) trC? = bk® — 2k tr(N'R~'N) + trf(N'R ~'N)>.

THEOREM 6.4. Let D and D be as defined above where ) is any class of proper
equireplicate designs, i.e., r; = r for all i. Then N is (M, S) optimal in D if and only
if N =N'is (M, S) optimal in .

ProOF. By examining (3.1) and (6.2), it is seen that a design N € ) has
maximal trace of C if and only if the corresponding N € 9 has maximal trace of
C. Thus 9 = {N’: N € 9}. Since v, r, b, k, and 3 A; are constant for all
designs in 9N and M, we see from (3.2) and (6.3) that finding (M, S) optimal
designs in 9 and 9 is equlvalent to finding designs in 9 and N with minimum
tr(NN’)* and minimum tr(NN')? respectively. But tr(NN')* = tr(NN "), hence
minimizing tf(NN’)? over 9T is equivalent to minimizing tr(NN")? over 91 and the
result follows.

Unfortunately, in classes of designs with unequal numbers of replicates, a result
similar to that of Theorem 6.4 does not hold as the following example illustrates.

ExaMpPLE 6.5. Consider the class of designs ) having the set of parameters
v=35,r=6r,=5r,=r,=4,r;=2,b="7and k = 3. Then it can be shown
by enumerating the designs in %) that N, given below is (M, S) optimal in ) and
has trC} = 55.778.

1 1.1 1 1 1 0
1 1 1 1 0 O 1
N={1 0 01 1 0 1
01 0 0 1 1 1
0 01 0 0 1 O
Next consider the design N, € %) given by
1 1.1 1 1 1 0
1 1.1 1 0 0 1
Ny=i{1 1 0 0 1 1 0
0 01 1 1 0 1
0 0 0 0 0 1 1

and having trC} = 56.2219. Now if C, and C, are the information matrices N , and
N2 respectively, it may be verified that trC, = 43.48339 and trC2 = 43.44179.

We should observe that the designs in %) can be thought of as two-way
classification designs with treatments as the levels of one factor and blocks as the
levels of another factor. We should also note that the reduced normal equations for
estimating the levels of the factors are the same as the reduced normal equations
for estimating treatment and block effects. Thus the definition of (M, S) optimality
given in Section 3 can be modified so as to be applicable to the estimation of factor
levels, i.e., the definition can be given in terms of the reduced normal equations for
estimating the levels of each factor. By Theorem 6.4 and Example 6.5, we see that a
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design in %) which is (M, S) optimal for estimating the levels of one factor may not
be optimal for estimating the levels of the other factor unless the levels of each
factor are equally replicated.
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