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ASYMPTOTIC DISTRIBUTION RESULTS IN COMPETING
RISKS ESTIMATION

By Tuomas R. FLEMING
University of Maryland

Consider a time-continuous nonhomogeneous Markovian process V'
having state space 4°. For 4 c A%and i, j € 4, Paij(z, t) is the i — j transi-
tion probability of the Markovian process ¥4 which arises in the hypothet-
ical situatioAn where states 4° — 4 have been eliminated from the state space
of V. Let Psj(z, t) be the generalized product-limit estimator of Paij(z, ).
It is shown that the vector consisting of components in {N #(f’,qi iz, t) —
Paijz, 1)): i, je A; i # j} converges weakly to a vector of dependent Gaus-
sian processes. The structure of this limiting vector process is studied.
Finally these results are applied to the estimation of certain biometric
functions.

1. Introduction and summary. Consider a probability space (Q, F, P) and a
time-continuous nonhomogeneous Markovian stochastic process V' = {V(f): t¢
T = [t,, t,]} with left-continuous sample paths. V has finite state space 4° con-
sisting of s transient and r absorbing states.

The transition probabilities of ¥, given by P,,(z, t) = P(V(1) = j|V(z) = i) for
i, je A° are assumed to have continuous intensity functions v,(¢) such that for
i#j, Pyt,7+ h)=nhv,r)+o(h) and Py(r,7 + h) =1 4 hyy(zr) + o(h).
The cumulative intensity function is given by 8,,(z, t) = (% v,,(s) ds.

Let A C A°and i, je A. We will be interested in P,;,(z, t) which is the i — j
transition probability of the Markovian stochastic process V', which arises in the
hypothetical situation where states 4° — 4 have been eliminated from the state
space of V.

More generally, as suggested by Hoem (1969), one could be interested in the
i — j transition probabilities arising when certain transitions of V' rather than
certain states of ¥ are eliminated. Techniques employed and basic results
achieved in this paper are also valid for this general situation. We shall adopt
Hoem’s terminology “partial transition probability” for P, ;(z, ).

If v,,;(7) is the intensity function corresponding to the partial transition prob-
ability, P,;;(z, 1) then by the following assumption, P,; (z, ) is well defined.

ASSUMPTION 1.1.
v4i5() = vi;(0) forany iz j; Ljed.
Vaiilt) = — 2 jeasini Yis(t) forany ie 4.

Based upon the concept of Kaplan and Meier’s (1958) product limit estimator,
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1072 THOMAS R. FLEMING

a nonparametric estimator P, (z, ) of P,;;(z, 1) was formulated by Fleming
(1978).

In Section 3 of this paper, it is shown that the vector consisting of components
in (NP, ,(z, 1) — Pii(7, 1)1 i # j; i, je A} converges weakly to a vector of de-
pendent Gaussian processes as N — co, and in Section 4 the covariance struc-
ture of this limiting vector process is studied.

These results rely upon those by Aalen (1977, 1978) concerning the function
B:;(z, 1). He relied upon recent results concerning the decomposition of count-
ing processes, stochastic integrals, and weak convergence of martingales.

Finally in Section 5 the above results are applied to the estimation of certain
biometric functions which in the literature have been pointed out to be of

interest.

2. Nonparametric estimator of P, (z, r). For purposes of estimation we ob-
serve N independent stochastic processes {(V,(1); te T): j= 1, - - -, N} identically
satisfying what has been set forth in Section 1, in addition to the following
assumption.

AssUMPTION 2.1. Let P(r) = P(V,(r) = i) forie A°. There exists ¢ > 0 such
that Py(r) > ¢ for any ie 4, N A and for any v € T, where 4, is the set of non-
absorbing states in A°.

We may now define #,7%(¢) = (P(t))*ifie 4, and z,7}(t) = 0 if iec A° — A,.

N(?) is the (s + r)-dimensional vector whose ith component, N,(r), represents
the number of the N observed processes in state i at time ¢. R,(7) is defined to
be [Ny(#)]" if Ny(t) > 0, and to be zero if N,(r) = 0. Then if we let m be the
cardinality of 4, the (m X m) diagonal matrix Z2,(¢) is defined by (Z2,(1)),;, =
R,(t) for any i e A.

The upcoming lemma, whose validity follows essentially from the fact that
N;(?) is binomially distributed, will be useful in Section 3.

LEMMA 2.1. For every integer n and for any ic A, N A, there exists K,, where
K, < oo, such that E[NR(t)]* < K, for every te T, and N = 1,2, .... In other
words, one can bound E(NR(t))* uniformly in t by a term which is independent of the
sample size N.

For any i, je 4, let the right-continuous transition counting process M, (z, 1)
represent the number of i — j transitions over (r, 7] if i # j, and—(number of
i — (4 — {i}) transitions over (z,7]) if i = j. The (m x m) matrix M(z, 1) is
then defined by (M (7, 1)),; = M, (<, 1).

B a7, t) is the generalized cumulative hazard estimator (see Fleming (1978))
given by 8,,.(z, 1) = {‘ R, () dM 4, ;(z, 5).

This, through the use of Kolmogorov’s forward differential equation, leads
to the generalized product limit estimator given by

Bz, 1) = (Pt, )y = (I, + §£ Pz, )52,(s) dM ((r, s»w

where /, is an (m x m) identity matrix.
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For notational simplicity, the subscript 4 will be suppressed throughout the
remainder of this paper, except on the process V,. Furthermore, we will assume
A={1,2, ..., m).

3. Weak convergence. Let D(T) be the space of functions on the interval T
which have discontinuities of only the first kind; that is, each function in D(T)
has left- and right-hand limits everywhere in 7. Let d be the Skorohod metric
on D(T). In the following sections, the term “weak convergence” will be used
with respect to the product metric d, on the product space D*(T) for appropriate
values of n, and will be denoted —. Convergence in probability will be with
respect to d,, except when referring to random variables, in which case it will
be in the usual sense and will be denoted by — . Almost sure convergence of
random variables will be denoted by —, _ .

We will have frequent need for the following processes. Assume {W,;: 1
i,j < m,i=+ j}is a collection of independent Wiener processes. For any 1
i,j < m;i= j; define

§.i(z, 1) = §L 9:(5) dW,(s) where g%(t) = 7,7 (t)v,(?) .
From their definition, we see that {¢,;: 1 < i, j < m; i # j} is a collection of

independent Gaussian processes, each with continuous sample paths and inde-
pendent increments, such that

E€ (r,t)=0 and  Varg,(r, 1) = {¢v,;(s)m,"(s) ds .

A 1IA

Finally define
e bt (512’ 513’ tt Sm’ ‘521, 523’ Y Em,m-l),

and
S = — DT iei &ij forany i=1,...,m.

3.1. Weak convergence of yx. Define B#(z, 1) = {Lv(5)]y,+nds and
XX(z, 1) = N%(‘éij(z-, 1) — B¥(z, 1)) forany 1 < i, j < m.

The following is a result of Theorem 6.4 of Aalen (1978).

LEmMMA 3.1. Let x* = (X3, Xk, -+, X, X5, X%, -, X% ). Theny* =§.

1m>

Now define X,(z, 1) = N¥B;,(z, ) — Bi;(z, t)) for any 1 < i,j < m. We will
need the next elementary lemma. '

LEMMA 3.2. sup..,, |X¥%(7, 1) — Xj(z, 1) —,0 forany 1 < i, j < m, i+ |

PROOF.  sup..,, |A5\7, 1) — Xi(7, 1)] = sup.q,q, N* (L Vii(Miw -0 d5 =
(ty — T SUP.gigy Ny -0y = (8 — T N e, 9=y Where v, = sup, ., —
vii(f). The result now follows from Lemma 5.4 of Fleming (1978). []

If x = (X, X3, -+, X m_y)’ Lemmas 3.1 and 3.2 imply the following result:
LEmMMA 3.3. gy =¢.

3.2. Weak convergence of vec Z/(t, t). Assume % is an arbitrary matrix with
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dimension # X v. Define vec % to be the vector formed by combining rows of
Z; that is, if (27);; = z,;, then
vec = (Za> Zuas =+ *5 Zags Zogy + 05 Zgpy vty 2y "zuu)' .

Define the (m X m) dimensional matrices &, 7, B, 2, and 2Z* by
(«93(7, t))ij = i,-(T, 1); (%(5))” = ”tj(s); (E)z] = fij; (%)il‘ = Xij; (2’*)” = X%
forany 1 <i,j < m.

Define 7z, t) = N¥(FH(z, t) — H(r, t)). We will now prove the key result
of this paper.

THEOREM 3.1. vec 2z, t) = vec {* F(z, 5) dB(z, 5)F(s, t) where the integrals
are stochastic integrals in the quadratic mean.

Proor. Equip (Q, F, P) with an increasing family of sub-¢-fields of F, {F,,
teT}where F,=0(Vi(s): t;, = s £ t,1 < k £ N). Martingales with which we
will be dealing are adapted to {F,}.

By equation (5.12) of Fleming (1978)

dZ/(z, s) — Yz, )7 (s) = Pz, 5) dZ(z, 5) -
Following a derivation similar to that given in Section 4 of that source we
have
(Z(z, ) = §+ Az, 5) d2(z, ) P(s, 1)
(3.1) = {t Az, 5)dZ (7, 5)F(s, 1)
+ §t 2z, 5) d[N~IZ7*(7, 5)] (2, )
+ Nt §t 27, 5) d[Z (7, 5) — Z*(z, )} F(s, 1)
where these integrals and those that follow until otherwise mentioned are still
Lebesgue-Stieltjes integrals, and where 27+ is the right-continuous adaptation
of the process Z/.

Since componentwise N=¥Z/(z, 5) and Z#(s, 1) are bounded in absolute value by
one, the third term on the right-hand side of equation (3.1) converges to zero
in probability componentwise by Lemma 3.2.

Next observe that

(12 2z, 9) dN-42(5, )5, D
(3.2) = N7 D SE NP (7, 5) — Piy(z, 9)]Pu(s, HR,(s)
X d[M;(z, s) — {$ v (W)N,;(u) du] .
Now, by Hdlder’s inequality,
(3.3) E[N(ﬁij(r, 8) — Py;(t, 9))'Pru(s, DR (s)v;4(9)]
< Ph(s Ova([EIL(z, 5) — Pi(r: 5)'PLENR (5))"]t -

The right-hand side of equation (3.3) converges to zero by Theorem 5.1 of
Fleming (1978), Lemma 2.1, and the fact that |B,(z, 5) — P,;(z, s)] < 1. Hence
we have shown that

3.4 [N*(f’i’.(z', $) — Py;(7, 8))Pu(s, DR (8)]v;4(5)N;(s) —, 0 .
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It follows from Prososition 3 of Doléans-Dadé and Meyer (1970) that the
Lebesgue-Stieltjes integral in equation (3.2) coincides with the Meyer stochastic
integral (see e.g., Meyer (1971)).

The Meyer stochastic integral is well defined since {Ni[P,(z,s) —
Pi(z, 8)]Py(s, 1)R,(s): s€ [z, t]} is a left-continuous process adapted to {F,} such
that

E(§: [NH(Piy(7, ) = Pi(7, 5))Puls, OR()Ivsu(s)Ny(s) ds} < oo .
Thus by Theorem 2.1 of Aalen (1977), and equation (3.4),
(16 VPy(7, ) — Py, 9)]Puls, DR,(s)
X d[M(z, 5) — Vi vu(u)Ny(u) du]: 1 < j, k < m}
is a collection of square integrable martingales, each of which converges to 0
in probability.
Hence, the second term on the right-hand side of equation (3.1) converges to
0 in probability, componentwise.
Next observe that, by integration by parts,
vec \¢ Az, 5) d[Z (7, $)]F(s, 1)
= vec {A(t, )2z, t) — (L ([dAz, 5)]Z (7, 5)F(s, 1))
— ¢ A, 5)Z (7, 5) dF(s, 1)},
which is a continuous mapping from D™™-V to D™,
Hence, by Theorem 5.1 of Billingsley (1968), Lemma 3.3, and equation (3.1),

vec 2z, «) = vec {A(r, «)&(r, «) — (¢ ([dF(, 5)]E(z, $)F(s, 1))
— §£ Az, 8)E(r, 5) dF(s, 1)} .

The proof of the theorem is completed through an integration by parts using
equation (5.3.7) of Cramér and Leadbetter (1967). The Lebesgue-Stieltjes in-
tegrals appearing in the limiting vector above have the same value as stochastic
integrals in the quadratic mean, thus justifying the use of that equation.

4. Covariance considerations for the limiting vector process.

4.1. Covariance structure of vec {* F(z, s)[d&(r, 5)]F(s, t). For future sta-
tistical applications, we need to invéstigate the covariance structure of
vec (¢ Az, 5)[dE(z, $)]F(s, 1).

Define ¥(z, t) = (¢ Az, s)[dE(z, 5)]F(s, 1), and ¢, (7, t) = (¥(z, 1)),; for any
1<i,j<m

Thus,

Gij(ts 1) = 20my 251 Ve Pia(Ty $)Pgy(s, 1) d€p(t, 5)
= Z?:l 2:9":1;,9#:11 Si Pz’a(T’ S)[Pﬂj(s’ t) - Paj(s’ t)] dEuﬁ(T’ S) *

Clearly ¢;;(z, +) is a mean zero Gaussian process.
Letl <4,j,k,1 < m, 7 < s,andt < u. By theindependence of the {§;,; i # j}
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we have

Cov [¢;(7, 5), Pt u)]
(4-1) = 2ina Z?:l;pam ¥ §2 Pio(v, w)[ij(w’ 5) — Paj(w7 s)]Pka(t, v)
X [Py(v, u) — Py(v, u)] dCov (§,4(7, w), Eap(ts v)) .

Since {§;,; i + j} have independent increments,
(4.2) Cov (§,4(75 5)s Eap(t, w)) equals O if r<s<t=2u,

and equals
WY ve(Nr(y)dy i <1< (sAw),

where (s A #) = min (s, u).
Hence the next lemma follows immediately from equations (4.1) and (4.2).

Lemma 4.1. Forany 1 < i,j, k,l < m:
(4.3) Cov (¢(z, $), du(t,u)) =0 if «

and

IA
5%
IA
IA
&

COV (gbij(r’ S), ¢kl(t’ ll))
(4.4) = 2a= Lp=vpra 3 Pio(Th 0)[Pyi(V, 5) — Poy(v, 5)]Pyo(t, v)
X [Pyy(v, u) — Py(v, u)]y(v)m, (v) dv if t<t<(sAu).
CoroLLARY 4.1. Forany 1 <i,j<m,andt < s < ¢,

Cov (¢i5(7 5)> Pus(z, 1))
= Z;’L:l Z'Zb:l;p*a S:' P?a(r’ u)[Pﬂj(u’ S) - Paj(u’ S)]
X [Pﬁj(u’ t) - Paj(u’ t)]uaﬁ(u)na_l(u) du .
4.2. Covariance estimation. We propose the following natural estimator for
Cov (¢i5(7, 5)s Pult, u)) where 1 < i, j, k, Il < m, and ¢ <t < (s A u). Setting
7 = (s A u), define

N
Cov (¢;(7,5), Pult, ¥))
= Z?:l Z?:l;ﬂ#:a Str Pia(T’v)[Pﬁj(v’ S) - Paj(v’ s)]Pka(t’ ’U)
X [Byy(v, u) — Py(v, u)]NR 3 (v) dM, (7, v) .
In the next theorem, it is proved that this estimator is uniformly strongly

consistent.

THEOREM 4.1. Foranyt < t,and 1 < i,j, k,1 < m,

P
SUP, ucie ;1 {COV [$3(7, 5), Pu(t, w)] — Cov [¢yy(7, ), Pu(t, )]} =45, 0.
Proor. In this proof ‘uniform” means over {(s,u, v):t < v <

r=(Au);su< tl}; C/o?/ [¢:5(7, ), P, u)] — Cov [¢:(2, ), du(t, w)] =
Dtety Bisasa (3 (B—0)R(0) dM (2, ) + {7 O[R(0)dM (., v) —dB,y(c, v)])
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where

0 = Piy(7, V)[Py; (v, 5) — Poj(v, 8)1Ppo(t, V)[Py(v, #) — Py(v, u)]z, " (v) .
By Theorem 5.1, Lemma 5.6, and Lemma 5.8 of Fleming (1978) it follows that
6 —6—,,0 uniformly and |Baﬁ(t, V) — Bap(t, ¥)] >, . 0 uniformly, which to-
gether imply that {7 (6 — 8)R(v) dM (7, v) —, . O uniformly.

Noting that |¢| is uniformly bounded by ¢=?, and that Lemma 5.7 of Fleming
(1978) implies 6 is of bounded variation, it then follows through an integration
by parts and from another use of the result in Lemma 5.8 that

§1 O[RA(v)dM (7, v) — dBoy(t, ¥)] —,5. 0 uniformly. 0

5. Some biometric functions. For the stochastic process V,, let e; (¢, t,) be
the expected period of time spent in state j within the interval (¢, ¢,), condition-
ally for a process in state i at time . Furthemore, let e,(t, 1,) be the expected
“survival time” (i.e., time spent in states in 4,) in (¢, t,), conditionally for a pro-
cess in state i at time ¢.

Fix and Neyman (1951) emphasized the importance of estimating biometric
functions such as those just defined. In the special case where A° has one tran-
sient and one absorbing state, Chiang (1968) introduced a nonparametric esti-
mator of e, (¢, t,), which was later generalized to the case of an arbitrary number
of absorbing states by Yang (1976), who at the same time investigated its distri-
butional properties.

In this section we will inspect estimators for e, (¢, #,) and e(z, t,) in the general
situation where the number of absorbing and transient states in A4° is arbitrary
but finite. These estimators are conceptually based upon the product-limit esti-
mator while those presented by Yang which are defined when A4° has one tran-
sient state are based upon the closely related empirical cumulative hazard esti-
mator discussed by Nelson (1969) and Breslow and Crowley (1974).

5.1 et t).
e;(t, ) = S P(V(s) = j| V,(t) = i) ds
= (@ P,(t, 5)ds forany 1<i,j<m.
If £(¢, 1,) is an (m X m) matrix defined by (&(z, 1)):i; = ey(t, t,) for any 1 <
i, j < m, then ‘
NHE(e 1) = &(1, 1)) = § N1, 5) — (1, 5)) ds
= S:' ?(t, S) ds.
As usual, the integrals above are Lebesgue-Stieltjes. We now need the next
lemma, whose validity follows from direct verification.
Lemma 5.1. The map H: D™[1,, t] — D™[1,, 4] defined by H(vec W)(t) =
vec {1 W(¢, s5) ds for vec W e D™[1,, 1,] is a continuous map with respect to d,,.

Hence by Theorem 5.1 of Billingsley, and Lemma 5.1, we have the following
theorem.



1078 THOMAS R. FLEMING

THEOREM 5.1. vec N¥(&(t, 1) — &(t, 1)) = vec {a W(s, 5) ds.

If we define Z{{(¢,t,) = {1 ¢;,(¢, 5)ds, we have EZ{)(t, t,) = O for any 1
i, j < mand for any re[¢, t,]. Furthermore, forany 7, < x <y <1, and 1
i, j, k,1 < m, we have

Cov [Z7(x, 1), Zi(y» 1)]
= B2 {3t dij(x, $)fu(y, u) du ds
(5.1) = (1§ Cov (¢ (x, 5), Py, w)) du ds
= Do Diipra it 30 517 Pra(X, 0)[Py(v, ) — Pay(v, 5)]
X Peo(ys V) Pu(V, ) — Pu(v, #)as(v)n, " (v) dv du ds,
where the integral is a stochastic integral in the quadratic mean; hence the
second equality in equation (5.1) follows from equation (5.3.8) of Cramér and
Leadbetter. This last equality follows from equations (4.3) and (4.4).
Note that equation (5.1) implies that
Var Zii(x, 1) = 2 25y Dieapealat $0 2 Pla(X, 0)[Pyi(v, 5) — Pay(v, 5)]
X [Py;(v, u) — Poj(v, W)]vgp(v)m,~ (v) dv du ds .

IA TIA

5.2. eft, ).
e(t, 1)) = Su PV (s)e A, N A|V (1) = i)ds
= {8 Xjeagna Pis(t,5) ds forany 1Zi<m.

For any i€ A4, define
<

1 if ieA,
0 if igAd,.

If e(z, 1,) is defined by

e(r, 1) = (et, 1), ex(t, 1), - -+, en(t, 1))
and { by & = ({,, &y, - -+, £,) then
Ni(&(t, 1) — e(t, 1)) = (a Ni(@(t, 5) — A1, 5))§ ds
= {u 2z, 5)§ ds.
If we define {21 W(z, 5)§ ds = Z®(¢, t,) and {41 (¥(1, 5)); ds = Z,2(¢, 1,), then by
the same token that we arrived at Theorem 5.1, we have the following:
THEOREM 5.2. N¥(€(z, 1,) — e(t, 1,)) = Z™¥(1, t,).
Z™(t, t,) is a Gaussian vector process such that for any 1 <i < m and re
[t t,], EZ;(t, t,) = 0.
Furthermore for any t, < x < y < t;, and 1 < i, j < m, we have
Cov [Z,P(x, 1)), Z;(y, 4,)]
=E ;0 Dkeayna Pi(%8) Dieayaa Py, 1) dids
= §2 00 CoV (Xheayna Pie(Xs 8)s Dicagna Py, 1) dtds
= Zae 2521 330 0t 07 Zheapoa {Pia(%5 V)[Par(v, 5) — Po(v, 9)]}
X Lreagoa {Pialys V)[Pu(v, 4) — Poy(v, u)}veg(v)r,~}(v) dv du ds
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where the last equality follows from equation (5.1) and equations (4.3) and (4.4).
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