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Let Xy, --+, Xx bei.i.d. Fpandlet Yy, - -+, Y, be independent (and inde-
pendent also of X, ---, X») random variables. Then assuming that F is
distributed according to a Dirichlet process with parameter a, the authors
obtained the Bayes estimator I:"a of F under the loss function L(F, I:") =
[ (F(u) — 15(t¢))2 dw(u) when X, - .-, X, are censored on the right by Y1, - -,
Ya, respectively, and when it is known whether there is censoring or not.
Assuming Xi, -+, X, are i.i.d. Fyand Yy, - -+, Y, are i.i.d. G, this paper
shows that }"a is mean square consistent with rate O(rn—!), almost sure con-
sistent with rate O(log n/n*), and that {I:"a(u) |0 <u < T}, T < oo,converges
weakly to a Gaussian process whenever Fy and G are continuous and that
P[X1 > u]P[Y > u] > 0.

1. Introduction and summary. Recently attention has been drawn to the con-
sideration of obtaining nonparametric Bayes estimates of a distribution function
assuming a manageable prior (resulting in a manageable posterior distribution)
on the space of distribution functions F on R = (— o0, o0). Towards this goal,
Ferguson [4] introduced a class of priors, known as Dirichlet process priors, on
F which enjoy the property that the posterior distribution is again a Dirichlet
process. Ferguson used this fact to obtain the Bayes estimator of the right sided
cumulative distribution function F (F(x) denotes the probability in (x, co) here
and elsewhere, and this useful convention is borrowed from Efron [3]) under a
weighted squared error loss function.

While treating this important problem (see, for example, Gross and Clark [6])
of estimating survival curves based on incomplete data, the authors [11] obtained
the Bayes estimator of F under a weighted squared error loss function when the
independent observations from F are randomly censored on the right under
Dirichlet process priors of Ferguson [4]. They demonstrated that this Bayes
estimator is an extension of the above mentioned Bayes estimator of Ferguson
[4] and in a certain sense, also of the well-known Kaplan-Meier (KM) estimator
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756 V. SUSARLA AND J. VAN RYZIN

[7] which maximizes the likelihood of the observations. Efron[3]and in a more
detailed manner, Breslow and Crowley [1] showed that the KM estimator is
weakly consistent and asymptotically normal under the assumption that all the
censoring random variables are i.i.d. continuous random variables.

The object of this paper is to show that our Bayes estimator has good limiting
properties including mean-square consistency (m.s.c.), almost sure consistency
(a.s.c.) and asymptotic normality assuming that the observations are i.i.d. with
right cdf Fand that the censoring random variables are i.i.d. with a continuous
distribution function. Efron [3] and Breslow and Crowley [1] have neither rate
of convergence results for m.s.c. nor a.s.c., while we obtain rates for both m.s.c.
and a.s.c. Our methods of proof, in contrast with those of Breslow and Crowley
[1], involve the analysis of the expectation and the variance of the logarithm of
W, (u) involved in the Bayes estimator given in (1.2).

For each fixed prior distribution involved in our Bayes estimator, we have
shown that the Bayes estimator has better asymptotic properties than those
established for the KM estimator by Breslow and Crowley [1]. For results of
this type in parametric cases, see the bibliographies of Lindley [8] and Shapiro
9]

We now formally describe the problem along with some notation. The rest
of the sections deal with various asymptotic aspects of our Bayes estimator.

Let X,, -- -, X, be a random sample from a right sided cdf F with F(0) = 1
and Yy, ..., Y, beanother random sample such that (X, - - -, X,)and (Y, - - -, ¥,)
are mutually independent. Set

(1.1) 0, =[X; £ Y] and Z, = min {X;, Y}

for i=1, ..., n and assume that 1 — F is a Dirichlet process with parameter
measure « on the Borel o-field <7 in (0, o). Then the Bayes estimator of F,
under the loss function L(F, F) = \¢ (F(u) — F(u))* dw(u), where w is a weight
function, is shown in [11] to be

A _a(u) + NY 1) 1, (a(Z7) + NYH(Z) + 2, Pim0%i=w)
S Tt | «(Z7) + N¥(2) }
= B, ()W, (u)

where N*(f) = number of observations > ¢ and 2, = number of observations at
Z,i=1,.---,n
The main results of this paper concern the asymptotic behavior of F, under

the following assumptions:

(A1) X, ---, X, are i.i.d. with right sided cdf F, a fixed unknown distribu-
tion on (0, o).

(A2) Y,, ---, Y, are i.i.d. with right cdf G, a fixed unknown continuous dis-
tribution on (0, o).

Thus, while the rule under consideration is a Bayes rule, the asymptotic properties
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of F, are obtained in a nondecision theoretic setup. In other words, we obtain
the asymptotic behavior of ¥, as an estimator of F,.
Throughout we assume that for a fixed (but otherwise arbitrary) u,

(A3) a(u) = a(u, ) > 0.
Since it is not possible to estimate F,(x) whenever G(x) = 0, we assume through-
out that G(x) > 0 without further reference.

Throughout, we point out H-!, G7%, - .. are not functional inverses, but stand
for 1/H, 1/G, - ... This notation will be used in the rest of the paper without
further comment.

2. Mean square consistency with rates. This property of £, can be studied
through the corresponding one for the logarithm of W,(u) of (1.2). Under (A3),
one obtains that
2.1)  InW,(u) = 1.0 = 0, Z, < u]In {-E(Eii)h+_ﬁi(é)j_1}

(Z;7) + N*(Zy)
where a(s™) = limit of a(f) as 1 5. Observe that (2.1) (and hence (1.2)) is well
defined since a(u~) > 0 by (A3). This property is not enjoyed by the KM
estimate which is not always well defined in the right tail. It is precisely this
property of converting (1.1) into a sum by use of logarithms that allows us to
obtain stronger convergence results than Breslow and Crowley [1] obtain for the
KM estimator.

For dealing with the expectation and the variance (and properties based on
these) of In W, the following decomposition which follows by a logarithmic
expansion of the summands in (2.1) and the succeeding lemmas will be extremely
useful. The justification for such lemmas can be given as follows: By looking
at (1.2), we see that if F has to be a good estimator of F, then W, should be a
good estimator of G~'since B, obviously is a good estimator of H (= F,G). Since
W, is a product of positive factors, it is clear that its properties can be studied
via its logarithm. A motivation for the decomposition follows from the facts
that, in general, one can neglect all the terms starting with the second in a
logarithmic expansion such as In W,(x), and that N*(z,) is a good estimate of
H(z;). Thus we have

(2.2) InW,(u) = R, ((#) + R, ,(#) + R, 4(1)
where
(2.3) nR, (4) = 37, [0;, =0, Z, < ulH YZ)),

(2.4) R, (w)= 23,400, =0,Z, Su] X, T (a(Z;7) + 1 + N¥(Zy)™,
and
(2.5) nR, (u) = 3", [0, =0, Z, < u]

X A{nl(a(Z;7) + 1+ NY(Z)]' — H™(Z))}
where

(2.6) H=F,G.
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In the lemmas to follow, we get bounds on the expectations of R, ; (j=1, 2, 3)
less some functions, and bounds on their second moments or variances as required
for further analysis leading to Theorems 3.1 and 3.2. In the lemmas to follow,
the bounds involve constants ¢,, ¢,, - - - which are given in Remark 2.1 below.

LemMma 2.1. E[R, ,(#)] = —In G(u) and nH*(u) Var (R, (4)) < ¢, /n.

Proor. Since the summands of R, ,(u) are identically distributed,

E[R, (1)] = E[[0, = 0, Z, = u]H™X(Z))] = —{; F()H () dG(1) = —In G(u)
by the definition of H in (2.6). The variance result follows since each of the
i.i.d. summands in R, ,(#) is bounded by H~*(x).

LemMma 2.2. E[R] (u)] < ¢,/n’.

Proor. Since (¢, + - + a,)* < n X7, a? for any real numbers a,, - - -, a,,
and since for fixed n, the summands of R, ,(u) are identically distributed,

(2.7)  nE[R, ()] < E[[0, =0, Z, < u( L. T («(Z7) + 1 + N*(2))7')]

< {Zia(a@) + )7PE[(a(w) + 1 + N7 ()]

where the second inequality follows by bounding the series by {3}, (a(#) +
1> '"{a(u") + 1 + N*(u)}~* and by dropping the indicator function. The result
now follows from the following inequality and (3.7):

E[(a(u™) + 1+ N* )] = Ziz (e @) + 1+ k)7Hu)(1 — H(u)y"—*

é H—4(u) Z;:L;Ol (Zﬂ)HkH(”)(l _ H(u))n+3—(k+4)/(n;+3)

where the inequality follows since k + i < i(a(u~) + k + 1)fori = 1,2, 3,and 4.

LemMA 2.3, (a) |E[R, ((u)]] £ c;/n; (b) E[R} 4(u)] < c,fn.

Proor. Since the summands of R, () are identically distributed,

(2.8)  E[R,y(w)] = E[[0, =0, Z, < u{n((2,7) + 1 + N*(Z))) — H(Z)}]
= — ¢ Fy(nE[n(a(r) + 1 4+ N(0)™" — H™Y(1)] dG(7)
where N~(¢) is a binomial random variable with parameters n — 1 and H(r).
(N~(?) is binomial with parameters n — 1 and H(z) instead of n and H(r) since we
fixed one of the z’s to be equal to 7.) Now observe that after some simplification,
H(DE[n(a(r7) + 1 + N=(1))" — H™Y(1)]
(2.9) = 2% )k + D7H{rH() — a(r7) — k — BHA@)(1 — H@))y"*
+ 25 (e )k + 1 4 a(m) — nH@OMHMo)(1 — H(n)**
X {(k+ 1)k +1+a(r)y*=1+1I.
By a rearrangement, —nH(t)l = a(t”) 4+ (1 — H(#))"(nH(t) — a(t”)) while
2a(t~ el (n _
11 < 2 S GRIE + 2 (4 DHO) + HO) + o) = 1)
X H"(t)(l _ H(t))n+1—(lc+2)
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since k 4+ 2 < 2(a(t”) -+ k + 1). By a change of variable (k 4 2 = [) and by
using the binomial moments, we can show from the above inequality that

2a(1”) {{H(t)(1 — H@) | H@) + a(r) + 1}_
H(?) n(n 4 1) n(n + 1)
This bound on II together with that on I, (2.8) and (2.9) give the first result

since ¢t < u in all the calculations after (2.8).
Using the inequality (37, a;,)* < n >;7_, a,* and the fact that the summands of

II

IA

=1 "1

R, o(u) are identically distributed for fixed n, it can be shown that E[R? ,(u)] <
— {4 Fy(t)E[(n(a(r7) + N~(¢) + 1)™* — H7Y(¢))] dG(r) where N~Y(¢) is as in the
proof of (a). From here on, the proof runs parallel to that in (a).

REMARK 2.1. The constants c;, ¢,, ¢;, and ¢, are chosen to satisfy
H(u)e, = 1 )
(") H (u)e, = n¥(1 + a(u7))*
H*(u)e, = {1 + Ta(R*) + 2a*(R")}
H(u)e, = 2{1 — H(u) + (n + 2)™{a*(R*) + (1 — H(u))}} -
Two consequences of the decomposition (2.2) and the above three lemmas are

given below, the first of which concerns the mean square consistency (m.s.c.)
of In W, as an estimator of In G~ while the second one concerns the m.s.c. of

F, of (1.2) as an estimator of F,.
THEOREM 2.1. Let Fy(u) > 0. Then nE[|In W, (u) — In G~*(u)|*] is bounded.

Proor. The proof is a direct consequence of the decomposition (3.2) and the
above three lemmas.

THEOREM 2.2. Let Fy(u) > 0. Then E[(F (1) — Fy(u))*] < c;/n.
Proor. Recalling that B, and W, are defined in (2.2), we obtain by a C,-
inequality,
(2.10)  2-YF (u) — Fy(u))?
= G (u)(B.(v) — H(w))" + B.X(u)(W.(u) — G7X(w))’
where we used the equality H = F,G. Since nB,(u) can be approximated by the
binomial random variable N*(u) whose expectation is nH(u) (= nFy(u)G(u)), we
obtain that
(2.11)  (a(R*) + n)°E[(B,(4) — H(u))']
= (a(u) — H(u)a(R*))* 4 nH(u)(1 — H(u)) .
After writing e™"»™ and e~'"¢" for W, (u) and G~'(u), respectively, and then

using the mean value theorem leads to (W, (x) — G}(u))* < [In W, (u) —
In G~*(u)|"(W,(4) + G~*(u))* since W,(u) and G'(u) = 1. Hence,

(2.12) E[B (u)(W,(u) — G{(u))'] < (1 + G~(w))’E[|In W, (u) — In G~*(u)]*]
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since B, and B, W, are < 1. Using the fact that E[|4 + B + C|’] < 3(E[4°] +
E[B*] 4+ E[C?]) and then using Lemmas 2.1, 2.2, and 2.3 give the result in wiew
of (2.10)—(2.12).

REMARK 2.2. The bound in Theorem 2.2 is given by

¢ = () = 2{a(R*) + n}~{w*H(u)(1 — H(u)) + n(a(u) — a«(R*)H (1))}
+ 6(1 + G (w))fe, + e + ) -

3. Almost sure consistency. Looking at the estimator £, of (1.2), it is obvious
that £, converges a.s. provided W, (u) does likewise. The following lemma con-
cerning the almost sure behavior of R, ,, R, ,, and R, ; involved in In W,(u) of
(2.2) is essential for the main result of this section.

LemMA 3.1. Let Fi(u) > 0. Then

(a) IR, () + In G(u)| = O <£’$.}.§.§SJL> as.
(b) |R, (1) = O <—18n%l> a.s.
() IR, ()] = O <_.1£:_:‘>}’.’_> as.

Proor. (a) follows from the first part of Lemma 2.1 and the law of iterated
logarithm for i.i.d. random variables. (b) follows from Lemma 2.2 and the
Glivenko-Cantelli theorem since };7_, n~*(log n)~* < oo.

To prove (c), we observe that |R, ,(u)| is exceeded by

-1 n — n 1
{n7 231 [0; = 0, Z; < u]} suppeisa {la(t‘) + 1+ N () H@) } '

Since the expression in the first curly brackets is bounded by unity, it is enough
to show that

1 log n
3.1 u u” " _ }=0<mg) .
( ) SUPgct< () + 1T N+(t) HQ) p a.s
The left-hand side of (3.1) is bounded by
(32) L "
H(u) a(u™) + 1 + N*(u)
Now by Lemma 2 of Dvoretzky, Kiefer and Wolfowitz [2]

% Nt c(log n)2
1L e X0 — o > e

suPo<t§u‘{ ‘N%(Q — H(r) — ij_‘f’('t—_l” .

for some absolute constants ¢, and ¢. Hence
Nt (1) } =0 <l%l> a.s.
nt

n
since c(log n)? = 2 log n for large nand Y7, n=* < co. This completes the proof
of (3.1) and hence also of (c).

— H(1)

sup0<t§u {
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THEOREM 3.1. Let Fi(u) > 0. Then
F(u) — Fy(u) = O(log n/n*) a.s.
ProoF. By a triangle inequality,
(3.3)  |Fu(u) — Fy(w)| < G (w)|Bu(w) — H)| + B, ()] W.(4) — G7(u)] -

The first term on the right-hand side is O(log log n/n) a.s. since [(N*(u)/n) — H(u)| =
O(log log n/nt) a.s. by the law of iterated logarithm.
As in the proof of Theorem 3.2, we can show that

(3.4) B, ()|W,(u) — G u)| < (1 4+ G(w))|In W, (u) — In G™(u)] .

But |In W,(1) — In G~}(u)| = O(log n/n*) a.s. due to the decomposition (2.2), a
triangle inequality, and parts (a), (b), and (c) of Lemma 3.1. Thus (3.3) and
(3.4) complete the proof.

4. Weak convergence of F In this section, we consider the weak conver-
gence of {F,(1)|0 < u < T} where T < oco. We assume throughout this section
that H(T) = Fy(T)G(T) > 0. Itis convenient sometimes to suppress the depend-
ence of the functions and to let || ||, denote the sup norm over (0, T].

The discussion to follow reduces the consideration of {F (1)|0 < u < T} to
a much more accessible form. To start with, we observe that

(4.1) ny(F, — F)) = n¥B, — H)G™ + n¥(W, — G™)B,
and that

Wn — G ' = enVWy elnG—l — elnG—l(ean,n—lnG—l _ 1)

=G¥InW, —In G + !EIK";ZL@:)E ectinG1

where ¢ is between 0 and In W, — In G-*. Therefore, from (4.1), we have
(4.2) ||n*(17‘a — F)) — n!G (B, — H) — ntHG(In W,, — In G7)|,

3
< ni|B, — Hll[lln W, — In G7{|G7| + %(llln W, — InG7y)*.

The purpose of the following lemma is to show that the right-hand side of
(4.2) — 0 a.s. by showing that »|ln W, — In G7'{|; — 0 a.s. for any 28 < 1.

LemMa 4.1. nfln W, — In G7Y|; — 0 a.s. for any 28 < 1.

Proor. With H,(u) = (¢ Fy(t)d(1 — G(r)) = P[0, =0, Z, < u] and with
nf(u) = ¥, [0; = 0, Z; < u], we have

ln W, — In G|,

(4.3) = |[§snin {1 — (a(s7) + 1 + Hy(s))™) df(s) — 5 H7'(s) dA(S)llr
< |15 nfa(s) + 1 + nH ()} dH,(s) — §5 H7(s) dH(5)llr
n (I + «T7))

T @T) ¥ 14 Al (a(T))
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where the inequality follows by a logarithmic expansion and an obvious weaken-
ing of the series from the second term onwards. Observe that the second term
in the right-hand side of (4.3) — 0 a.s. at a rate n~# with 28 < I.

For the first term on the right-hand side of (4.3),

(o n{a(s™) + 1 + nH,(s)}"" dH,(s) — §s H™'(s) dH(s)||,
< |V {nfa(s™) + 1 + nH,(s)} — H7Y(s)} dH()||r
(4.4) + (IS5 H™Y(s) d(H, — H)(s5)r
< |ISs [nf{a(s™) + 1 + nH,(s)}™" — HX(s)] dH,(5)|Ir
+ 2HXT)|H, — A,

where the second inequality follows by applying integration by parts to
\s H-'(s) d(f, — H)(s) and upon observing that the variation of H~* on (0, «] is
H~'(+). By the law of iterated logarithm for i.i.d. random variables |[n{a(+~) +
1 4 nH,(+)} — H(+)||lr — 0 a.s. at a rate O(n~¢) with 28 < 1 and by applying
the argument given by Singh [10] to the random variables [, = 0, Z; < u],
j=1, .-, n, we obtain that |#, — H||, — 0 a.s. at a rate O(n~*) with 28 < L.
Consequently the right-hand side of (4.4) and hence, the right-hand side of
(4.3) - 0 a.s. at a rate O(n™f) with 28 < 1.
In view of (4.2), an easy corollary to the above lemma is

COROLLARY 4.1.
lnt(E, — F,) — n*G™Y(B, — H) — ntHG™(In W, — In G7?)||, —» 0
a.s. at a rate O(n~*) for any 23 < 1.

By following the method of proof of Lemma 4.1, we can also show that

LEMMA 4.2. |ni(ln W, — In GY) — n¥(\; H,*dH, — s H*dH)||;, — 0 a.s. at
a rate O(n~f) with 23 < 1.

Note. The random integral {; H, 'dH, could be infinity, but finite a.s.
since P[H,(s) =0]=P[§;,=0,Z, <sfor j=1,...,n] < P[Z; T for j =
1, ..-,n]= (1 — HT))" for all s < T.

Hence, by Corollary 4.1 and Lemma 4.2, we can study the weak convergence
of {F,(u)|0 < u < T} through the corresponding one for

(4.5) ntG-YB, — H) + ntHGY(\; H,'dH, — \; H™'dH) .

The following theorem, which is parallel to Theorem 3 of Breslow and Crowley
[1], is needed in the study of the weak convergence of (4.5) or equivalently that
of {F,(1)|0 < u < T}.

THEOREM 4.1. Define (P,, Q,) e D(0,T) x D(0, T] (D(0, T] as the space of
functions on (0, T] with jump discontinuities) by P, = n*(H — H,) and Q, =
n¥(H, — H). Then (P,, Q,) converges weakly to a bivariate Gaussian process (P, Q)
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which has mean 0 and a covariance structure given for s < t by
Cov (P(s), P(1)) = H(1)(1 — H(s))

(4.6) Cov (Q(s), Q1) = Hls)(1 — H(1)) ,
Cov (P(s), Q(t)) = H(s) — H(t)(1 — H(s)), and
Cov (Q(s), P(1)) = B(s)H(r)

where H = F,G and H = \; F,d(1 — G).

As in (7.9) of Breslow and Crowley [1], we can represent (4.5) as
(4.7) (4.5) = n'G(B, — H) + A, + B, + R, , + R,,
where 5

A, = \; P, H*dH,
(4.8) B,= Q,H* — {; 0, H*d(l — H),
R,,=nt%\; P2H*H,dH,, and
Ry, = \; P,HH, ™ d(H, — H)(u).
By the above representation for (4.5) and steps similar to Theorem 4 of Breslow

and Crowley [1], we obtain the following theorem which is similar to Theorem
5 of Breslow and Crowley [1].

THEOREM 4.2. Let T < oo and H(T) > 0. Let F,and G be continuous. Then
the random function n¥(F, — F,) on (0, T converges weakly to a mean O Gaussian
process R* = —G~'P 4 {§ H*P dH + H'Q + \; H*Q dH with covariance struc-
ture given for s < t by

(4.9)  Cov (R*(s), R*(1)) = Fs)F(OH(s)(1 — H(s)) + §3 H-'G~* dG)
= Fy8)F(){{s H'F,~*d(1 — F,)}.

ReMARK 4.1. The covariance calculations involved in (4.9) are given in the
Appendix. We notice here that the right-hand side of (4.9) coincides with (7.13)
of Breslow and Crowley [1].

Concluding remarks. There are three small sample advantages for the Bayes
estimator (1.2) over the KM estimator. The first is that it is defined everywhere
on the real line for any n while the KM estimator is not. Secondly, as illustrated
in our paper [11], the Bayes estimator is smoother than the KM estimator. The
final important advantage is that the Bayes estimator is an admissible estimator
of F provided the support of @« = support of w = (0, co) under the loss function
L(F, Fy = \¢ (F(u) — F(u))* dw(u) and under the weak convergence topology.

The results of this paper can be extended to the case in which Y, ..., Y, are
independent, but not identically distributed. The technique used to obtain this
extension is different from the ones proposed here and will appear elsewhere.

APPENDIX
Covariance structure of R* of Theorem 4.2. To study the covariance structure
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of R*, it is convenient to study the covariance structure of
R = F,'R* = H'P 4 \; H*PdH + H™Q + {; H*Q dH .

We use repeatedly (4.6), integration by parts and the equalities H = F,G and
dH = d(\; Fyd(1 — G)) = —F,dG. We write Cov (R(s), R(t)) = Var (R(s)) +
Cov (R(5), R(f) — R(s)) for0 < s < t < T, show that Var (R(s)) = the expression
in the curly brackets of (4.9), and that Cov (R(s), R(t) — R(s)) = 0.

Variance of R(s).
1 Var (H-Y(s)P(s)) = H™'(s)(1 — H(s)) -
(2) 2 Cov (HY(s)P(s), H™Y(s)Q(s)) = —2H Y(s)H(5) .

3) 2 Cov (H-(s)P(s), {3 H-*P dif) = 2H-(s) §3 SOV (P PO)) gy

H*(u)
= -2 Sg%lg — 21n G(s) .
4) 2 Cov (HY(s)P(s), ;s QH™* dH) = His) i Cov (Z(%);)Q(”)) dH

_ 12 HG) s
= +2ﬁ6+21n6().

(5) Var ({3 H-*P dfl) = 2 {3 § C°I‘;2((z g‘g;(f)(’)) dF(r) di(u)

L U= H() (., dB()]
= 2% {S' H(u)} dH(r)

_ 5 (066 =0 G0) 4 s,
HG

(6) Var (H-(5)Q(5)) = ﬂi%?@

Var ({3 H*Q dH)

_ 5 e tu COV(Q®), Q) aH(u dH(r
=2 TR dH(u) dH(r)

_ 5 oo e AN — H(w))
(7 = 23§ ) dH(r) dH(u)
—2 ggl_—_ﬁ{_ﬁ - lnG} dH
H H

2

(1 — His)A) Ssdﬁ — 2/ dA
- H(s) ’ H?

1 - H

(1 — H(s)) ) _ g ,InG
+2{._H?s7_1n0() e dﬁ}.
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2 Cov ({3 H-*P dH, H™Y(s)Q(s))

_ 2 . Cov(Q(s), P(n)) ;5
®) = s 35 OO 4
2 (B oy g ] 1
. {SOITde — () St 4B+ () S5 dH} .
2 Cov (H-(5)Q(s), {3 H-*Q dH)
_ 2 Cov(Q(n), 2(5))
©) — s 13 2 90 €O g
_ 20— AW)AE) _ 20 = H6) 1y g
H(s) H(s)

2 Cov (3 H-*P dH, \3 H-*Q dH)

5 s cu CoOV (P(w), Q(1)) A(u
= 2535 SR 20 aH ) afiw

, ¢ Cov (P(r), 0(0)) 4
+ 25 LRI art) an

« A
" HYw)H(r)

(10) =24 dH(u) dH(r)

+ 2405 A0 = B@A = HO) gy ai)

HXu)H(r)
2 ., A JHIH  2H(s) ., dG | 2H(s)
=  \z__ 2 el AH) s CY
A a6 ¢ TN T T T Ve T HE Y
o 2B 2y (I0GE) —1nGO) 4
H H* HG

, In G(s) — In G(r) JH 5
F28 = 4G — 2§ 4= dfl + In* G(5) .

Adding (1) through (10) and using the facts that H = F,G and dH = —F,dG
wherever necessary, we obtain the expression in the curly brackets of (4.9).

Covariance of R(s) and R(t) — R(s). There are 16 terms in this covariance
calculation which are grouped below into 5 sets of expressions. The sum of all
the expressions in each group will be equal to zero, thus showing that
Cov (R(s), R(f) — R(s)) =0for0 < s <t < T.

(A1) cOv(P<S> Pt) _ P(s)) _ Cov (P(1), K(s) _ Var (P(5)) _ ¢
H(s) ' H() Hes)/  H(D)H(s) o)

(A2) Cov < I};EZ) , L HP dﬁ) = HY(s) 5t £ (If; (22) PS) 45

— 1= Hi) = (’;(s) (In G(s) — In G(r)) .
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(a3)  Cov (A2, &) _Q<s>>_ﬁ<s){ L1} - A1 — H(s)) |

H(s) " H(r)  H(s)/ ~ H(s) \H(s) “THH()

Cov <% , §tH-Q dH>

_ 1 SzCov (P(zs), P(u)) dH
H(S) H (u)~
(A4) — H(s) | H(s) — f;([t_:()%_— HE) 41
_ A { 11 }
H(s) (HG) ~ H)

_(L—H@) (Hs) _ A _
0 {H(s) w10 —n G(t)}.

Cov (SgH‘deFI, P _ fﬂ)
H()  H)

1 SaCov (P(u), P(1))
T HO' H*(u)

_ o1 — H(u) _ oL — H() _
= -‘m— dﬁ(”) SO—Hz(u) —dﬁ(u) =0.

(B2)  Cov (Q(s) P() _ P(S)> _ Cov (Q(s), P(1)) _ Cov(Q(5), P(s)) _ ¢ .
H(s)' H(f) H(s) H(s)H(1) H(s)

(B1) by — L 3 CoV(P), PO)) gy

H(s) ° H(u)

s f-2 P(t) _ P(s)
Cov(SoH Qat, ik F@)

(B3) = L gy Cov (P, 01) gpyguy — L ; COV(QM: P) gy
H() H(u) H() H(u)
—0.

Cov (§3 H-*Pdfl, \t H-*P dfl) = {} § C___~°I‘;2((’; ()’2;(’: )(’)) dFI(u) dH(r)
_ (L= H(m) i 1
I = D ) st at)
— 1_;_5.(? (In G(s) — In G(z)) dE(r)
1 — H(r)
H(r)

— (In G(s) — In G(1)) § dH(r) .

Cov <§3H-2PdH,2(’_) _ g@)
P(H)  P(s)
_ 1 Cov(Q,Pw) _ 1 g Cov(Q(), P) 4wy
H(s) H(u) H(s) H(u)




(€2)

(€3)

(D1)

(D2)

(D3)

(ET)
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_ i ﬁ(") —H(’)(lfH(”)) dH(u)
H(1) H*(u)

B Y ¥ H(u) — H(s)(1 — H(x)) H

H(s) ° H*(u) H() " H?

() § L=H g 1 SgﬂdEH- H gg.l_?,H_ a .
H@) & H? H(s) ' H*

By L 2 g

H”
Cov (s H-*P dH, \! H-*Q dH)

= 3 ¢ Cov(Q(r), P(u) q

S ) dH(r) dH(u)

— g ¢ A0 — H)(1 — H(w)) p
= {34 W) dH(r) d‘ﬁ( )
_{ 11 }Ssﬁdﬁ

~HEe)  HE) A

1 —H ,5

{i(’l —B6) | 106 —In G(s)} i dft .

H(r)  H(s) 7L
Cov (H-(s)Q(s), ¢ H*PdH) = H™Y(s) {! g"l%g%{;ﬁ(”))ﬂ dH(u)
= Ilzg (In G(s) — In G(1)) .
Cov <H—1(s)Q(s) o) Q(S)> _ Cov (Q(s), Q(1)) __ Cov (Q(s), Q(s))
, H(t) H(s) H(S)H(t) H(s)
_ A1 - A@) A1~ Hs)
H(s)H(7) H'(s)
() (¢ g2
Cov (W , \tH QdH)
_ 1 W Cov (Q(s), Q(u)) dH(u)
H(s) H*(u)
= ) o l= A 1y
H(s) H?
_Ae (1 1 Ay Hs) -
H() {H(S) H(t) + H(r)  H(s) +1InG(7) —In G(S)}-

Cov ({3 H-*Q dH, \¢ H-*P dH)

— (s COV(P(r), O(u) 455

=i 1) i) dH(r) dH(u)
H(r)H(u)
H(r)H(u)

= —{(—InG(r) + In G(s)} {% + IG5} .

= ! dl(r) dH(x)
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Cov (15 HQ dH, Q) Q(s)>

H(r)  H(s)
(E2) L, Cov(Q(), O(w)) dH() — I s Cov(Q(s), Q(v) dH(u)
= H(r) H(u) H() H¥(u)
_L—H@) Sof{‘_’H L= Hs) (7 4y
H(1) H '

Cov ({; H—*Q dH, §* H-Q dH)
= (i Cov (Q(r), O(u)) dH(u) dH(r)

HX(u)H*(r)
(E3) = 5132 i) ) ) arey
1 L H
- {H(s) H(t)} S"_ <S°7i2dH>
A _ H() —1InG(s
{W g T 1n 60 — 1n G( )}.
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