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NONPARAMETRIC INFERENCE FOR A FAMILY OF
COUNTING PROCESSES!

By Opp AALEN
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University of Copenhagen
Let N = (M, - - -, Ni) be a multivariate counting process and let = be

the collection of all events observed on the time interval [0, #]. The intensity
process is given by

Ait) = lim“o%E(Ni(t +h) = Nt)| F1)  di=1, -0k,

We give an application of the recently developed martingale-based ap-
proach to the study of N via A. A statistical model*is defined by letting
Ai() = ai(0)Yi(t), i =1, «- -, k, where @ = (a1, + -+, ak) is an unknown non-
negative function while Y = (¥, - -+, Y%), together with N, is a process
observable over a certain time interval. Special cases are time-continuous
Markov chains on finite state spaces, birth and death processes and models
for survival analysis with censored data.

The model is termed nonparametric when a is allowed to vary arbi-
trarily except for regularity conditions.” The existence of complete and suf-
ficient statistics for this model is studied. An empirical process estimating
Bi(t) = (§ ai(s) ds is given and studied by means of the theory of stochastic
integrals. This empirical process is intended for plotting purposes and it
generalizes the empirical cumulative hazard rate from survival analysis
and is related to the product limit estimator. Consistency and weak con-
vergence resultsare given. Tests for comparison of two counting processes,
generalizing the two sample rank tests, are defined and studied. Finally,
an application to a set of biological data is given.

1. Introduction. A point process is, roughly speaking, a countable random
collection of points on the real line. Throughout this paper we will, if not
otherwise stated, restrict all processes to the time interval [0, 1]. Let N(t) be
the number of points in [0, t]. The process N can be said to count the events
of the point process, and hence it is called a (univariate) counting process. A
multivariate counting process is a collection of k univariate counting processes
which may of course be dependent on each other.

Let &, be the collection of all events observed on [0, r]. Sometimes the fol-
lowing limit exists:

At) = limhlo%E(Ni(t LR = N)F) =1,k
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The stochastic process A = (A,, ---, A,) is called the intensity process of the
counting process N = (N,, - - -, N).

Recently several papers concerned with the study of counting processes via
the intensity process have appeared. The development seems to have started
with the papers of McFadden (1965), Cox and Lewis (1972), Papangelou (1972),
Rubin (1972), Snyder (1972), and Bremaud (1972). Entirely different approaches
are taken by the different authors. We are particularly interested in the one
taken by Bremaud. He uses the modern theory of square integrable martingales
and stochastic integrals. Bremaud’s approach has been developed further in
Bremaud (1974), Dolivo (1974), Boel, Varayia and Wong (1975a, b), Segall and
Kailath (1975a, b) and Davis (1976). Jacod (1973, 1975) has developed the theory
from a somewhat different point of view. His papers constitute an important
supplement to those of the other authors. )

So far the martingale-based counting process theory has been developed and
used mainly in the context of communication engineering. Martins-Neto (1974)
considers applications to queuing theory and studies some estimation in that
context, but otherwise no statistical applications seem to have appeared so far.
The object of the present author is firstly to present the elements of the theory
to a statistical audience, and secondly to demonstrate its usefulness for statistical
inference. The results are revised versions of parts of the author’s Ph.D. disser-
tation (Aalen, 1975).

Section 2 is a short introduction to stochastic integrals. Section 3 gives a
short review of a part of the martingale-based counting process theory. InSection
4 we present a specific nonparametric statistical model for counting processes
with several motivating examples. Section 5 considers the question of existence
of complete and sufficient statistics while Sections 6 and 7 contain estimation
and testing. Finally, in Section 8 we give an application to a set of real data.
One of the points we want to emphasize is how the theory of martingales and
stochastic integrals is a very useful tool not only in the probabilistic part of the
theory, but also in the inference part.

2. Square integrable martingales and stochastic integrals. Expositions of the
theory of square integrable martingales and stochastic integrals may be found
in Kunita and Watanabe (1967), Meyer (1967, 1971), Doléans-Dadé and Meyer
(1970) and Courrége (1963).

Let (Q, &, P) be a probability space and let { & .},.(,,; be a family of sub-o-
algebras of &, Assume { &} is increasing, that is &, C &, whenever s < .
Assume also that {.5} is right-continuous, that is (5, &, = F ..

Let {X(#)};c10,1; be a real-valued stochastic process. We will usually denote
{X(?)} simply by X. We say that X is adapted to { &} if X(¢) is .7 ,-measurable
for all € [O0, 1].

A martingale M satisfying M(0) = 0and having sample functions that are right-
continuous with left-hand limits is called square integrable if sup, E(M(t)?) < oo.
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The space of these processes is denoted by .Z%. Let M, M,, and M, be square
integrable martingales. The variance process (M, M of M and its extension
{M,, M, are defined in Kunita and Watanabe (1967). M, and M, are said to
be orthogonal if (M, M,y = 0, and this is equivalent to M, M, being a martingale.

The concept of a predictable process plays an important role in the theory of
stochastic integrals. For our purpose it is enough to note that any left-continuous
adapted process with right-hand limits is predictable. Let M be a square integrable
martingale. The class of predictable processes H satisfying

E[§3 H(s)* d{M, M(s)] < oo
is denoted by L¥M). The integral above is a Lebesgue-Stieltjes integral as are
all integrals below unless they are taken with respect to square integrable
martingales.

The stochastic integral of H with respect to M is a mapping from L M) into
A Its value at time ¢ is denoted by ( H(s) dM(s). The process itself will
occasionally be written as { HdM. The stochastic integral is usually defined in
an abstract way by means of Hilbert space theory. In the present paper we will
mainly be interested in the situation where the stochastic integral coincides with
the corresponding Lebesgue-Stieltjes integral. By Proposition 3 of Doléans-Dadé
and Meyer (1970) a sufficient condition for this to take place is the following:

E 3 |H(s)| d|M(s)] < oo .

Let M, and M, be members of _#*and let H, € L*(M,), i = 1, 2. An important
property of the stochastic integral is the following:

(2.1) (\H,dM,, \ H,dM,) = | H,H, M, M, .
Hence, | H,dM, and § H,dM, will be orthogonal whenever M, and M, are
orthogonal.

Recently the theory we have reviewed in this section has been extended to
the so-called local martingales which include martingales as special cases. This
theory is given in Doléans-Dadé and Meyer (1970) and it is used in several of
the counting process papers mentioned in the introduction, see e.g., Boel et al.
(1975a,b). The advantage of using the theory of local martingales is that one
requires slightly weaker conditions on the counting processes. From our point
of view this is not very important since we are primarily concerned with statistical
applications.

3. Basic theory of counting processes.

3.1. Preliminaries. A multivariate stochastic process N(f) = (Ny(?), - - -, Ni(¢))
defined on the time interval [0, 1] will be called a (multivariate) counting process
whenever the following conditions are fulfilled: (i) The sample functions of
each component process N, are right-continuous step functions with value 0 at
t = 0 and with a finite number of jumps, each positive and of size 1. (ii) Two
component processes N, and N; (i # j) cannot jump at the same time.
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In the usual way N can be thought of as being defined on an underlying abstract
space Q. Let the g-algebra /7 on Q be defined for each ¢ € [0, 1] in the following
way: 7 is generated by all sets of the form {w € Q| N(s) € B}, s < t, where the
set B runs through all subsets of {0, 1, 2, .. .}. For some purposes we will need
a somewhat wider family of s-algebras {5} where for each t &, D 4. We
write & = &, and 4 = 4. Clearly {_/7} is an increasing family of o-
algebras and by Corollary 2.5 of Boel et al. (1975a) it is also right-continuous.
We will require the same to hold for {5 ,}. By Corollary 2.2 of Boel et al.
(1975a) the jump times of N are stopping times with respect to {_7"} and hence
also with respect to { & }.

Throughout the paper, if not otherwise mentioned, all probabilistic statements
will be made with respect to a fixed family {5} satisfying the general require-
ments above. In some cases we will assume that {5} coincides with the special
family (_#7), but this will be explicitly stated each time.

Let P be a fixed measure on & . All %, and .4 are to be completed with
respect to P (see Section III of Boel et al. (1975a)).

A stopping time T is a nonnegative random variable satisfying {T < 1} e 5.

For a stopping time T we define &, as consisting of those sets 4 ¢ & for
which A N {T < rle &,

3.2. The intensity process. We will make the following basic assumption:

ASSUMPTION 3.1.

(i) EN(1) < o0 i=1,---,k,

(ii) The jump times T, < T, < --- of }} N, are totally inaccessible.

ReMARK. Condition (i) is needed in order to work within the square integrable
martingale framework and avoid the local martingales. For discussion of the
concept of total inaccessibility of jump times, see Meyer (1966) and Boel et al.
(1975a, Theorem 2.1). To give it some intuitive content, consider the situation
where ., = _47 for all t. By Theorem 2.1 of Boel et al. (1975a), total inac-
cessibility of the jump times is then implied if all (the possibly degenerate) dis-
tribution functions A(T,,, — T, < t|#),n=0,1, ..., are continuous in r.

THEOREM 3.2. Under Assumption 3.1 there exists a unique vector of continuous
increasing processes A = (A,, - - -, A,) with A,(0) = 0 adapted to { &} such that

M,=N,— A,e . #7 i=1, .-, k.

The martingales M; also satisfy:
(i) (M, M,y = A, i=1,.---,k,
(ii) My, M =0 whenever iz j.

ReMARK. This theorem is stated within the local martingale framework (see
Section 2) in Boel et al. (1975a, Proposition 3.2 and Lemma 3.1). The extension
to the square integrable martingale framework is made in the Appendix of the
present paper.
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Occasionally the sample functions of the processes A, will be absolutely con-
tinuous with respect to . Sufficient conditions for this to take place are given
in the remark after Proposition 3.2 of Boel et al. (1975a). We will assume that
there exists a nonnegative process A = (A, - - -, A,) with sample functions that
are left-continuous and have right-hand limits at each point and such that

A1) = §§ Ay(s) ds i=1,.-, k.

A is adapted to {#,} since that family of o-fields is right-continuous.

The process A is called the intensity process of N with respect to {#,} and the
measure P and we will show that it satisfies the requirements that one would
usually place on an intensity process.

LeMMA 3.3. Assume that the A, i =1, ..., k, are bounded by an integrable
random variable. Put N(1) = Y%, N,(t). Then the following statements hold.

(i) limhlo_}l.l_E(Ni(t F R — N(O)|F) = M) i=1, ek
(i) 1im,,10_,11_ PNt + k) — Ny() = 1|.57)
_ umhw.}z_ [1 — P(N(t + k) — N(f) = 0|.57)] = A(t+);
(i) lim, |, % P(N(t + B) — N(t) > 1|.57) = 0;
(iv) limhw% E[(N(t + h) — N(0))[(N(t + k) — N(f) > 1)| %] =0.
REMARK. Part (i) can be found in Bremaud (1972) and Dolivo (1974). The
remaining part of the lemma does not seem to have been explicitly stated and

proved in the martingale-based counting process literature. They are however
quite straightforward consequences of Theorem 3.2.

Proor. By Theorem 3.2 and the dominated convergence theorem we have

lim, |, E[% (Nt + k) — N1)) l 7} — lim, , E [% [0 Ay(s+) ds

-]

—E [limhw % §e Ay(s+) ds

%J

= E(A(t+)|F,) = A(t+) -
This proves that (i) holds. To prove (ii) fix i and ¢ and let S > ¢ be the time
of the first jump after 7. Since S is a stopping time, it follows that the process

I, sy(u) is adapted to {&,}, hence it is predictable since it is obviously left-
continuous. Hence we can, for 2 > 0, define the stochastic integral

o I, (1) M (u) .
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This process, with 4 as time variable, is a martingale, and hence we have:
. 1
lim, |, - P(N(t + h) — N,(1) = 1| =,

. 1
= lim, |, 7 E[§ith Iy si(u) dN;(0) | 7]

. 1
= lim, |, 7 E[§i I, si(0)Ay(u+) du| ]

—E [limm—,lz— Vo I, ()N y(u+) du 5/:]

= E[A(t+)| F ] = A1) -
The second-to-last equality follows since S > 7. Hence, the second equality of
(ii) is proved. Let now S’ be the time of the second jump of N, after . Similarly
to above we have:

lim, |, _h‘_ P(N(t + k) — N1) = 2|.57)
—E [umm_]lz_ 57 L (W) A (u+) d’u|y7;] —0.

Hence, the first part of (ii) follows.
Parts (iii) and (iv) follow by observing that (i) and (ii) are valid for the counting
process N with intensity process A= kAL T

Assume that H € L*(M;) for one of the basic martingales M, defined above.
Then the stochastic integral {; H dM, is well defined. One can, however, also
think of this integral as a Lebesgue-Stieltjes integral and one may ask when the
two interpretations coincide. This is important when we actually want to com-
pute the integral as we will do later on. By applying Proposition 3 of Doléans-
Dadé and Meyer (1970) we get the following sufficient condition:

(3-1) E {3 [H(s)] dNi(s) < oo .
We will end this section by stating the innovation theorem. The theorem is

a trivial multivariate generalization of the univariate case which may be found
for instance in Segall and Kailath (1975a, Theorem 3).

THEOREM 3.4. Let {&} and { & ,} with 4, C &, C F, for all t be families
of g-algebras satisfying the general assumptions of Section 3.1. Assume that a count-
ing process N has intensity process A with respect to {,}. Then the intensity process
with respect to {Z,} is E(A(1)| &)).

3.3. The likelihood of a counting process. Assume in this section that &, =
F oV A forallte]0, 1], i.e., 5, is generated by all sets 4 U B where 4 € &,
and Be .#;. Let P, and P, be two measures on .&*, both giving N the same
intensity process. According to Jacod (1975, Theorem 3.4) P, and P, coincide
on & if they coincide on .5 .
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Let P, be a probability measure on (Q, &) that makes N,, - - -, N, independent
Poisson processes, each with intensity 1. Let A be the intensity process cor-
responding to the fixed measure P. Assume that P is absolutely continuous with
respect to P, on 5. Then under very weak conditions (see Jacod and Memin
(1977)) P is absolutely continuous with respect to P, on &% and L, =
E(dP|dP,| &) is given by

(3-2) L, = Ly TN Ay (T,) exp(— {5 As) ds + k1)

where N = Y% N,, A = Y% A, where J, = i if jump number n occurs in N,
and where T, < T, < - - - are the jump times of N.

4. The multiplicative intensity model. In the remaining part of the paper
we will study the following statistical model, called the multiplicative intensity
model. Assume that A can be written in the form

A1) = a,(0)Y,(2) i=1,..-,k,te[0,1]

where @ = (a,, - -+, a,) is an unknown function while Y = (Y, ..., Y},) is a
stochastic process which together with N can be observed over the time interval
[0, 1]. For each i we require that a;, and the sample functions of Y, be non-
negative, left-continuous functions with right-hand limits. Y has to be adapted
to {#,} since A is adapted. We will also assume that {ja,(s)ds < co, i =
1, ..., k. Let % denote the set of all functions a satisfying the assumptions
given here.

Next we will proceed to give several examples of the multiplicative intensity
model to indicate its broad scope.

After the examples we will continue with a study of the model that arises by
letting @ vary freely in %, We will term this situation nonparametric. We will
show that inference procedures can be developed and studied without further
specifications of the probabilistic structure of (N, Y). For instance, it is not
necessary to assume that (N, Y) is Markovian, an assumption which is usually
made in the literature when one studies processes of this kind.

ExAMPLE 1. A simple life testing model. Let X, ---, X, be independent and
identically distributed nonnegative random variables. Let F denote the cumu-
lative distribution function of X; and assume F(1) < 1. Assume that the density
f(2) exists for t € [0, 1]. In life testing one is interested in the hazard rate defined
by a(t) = f(t)/(1 — F(¢)) on [0, 1]. The requirement F(1) < 1 is equivalent to
the finiteness of {} a(s) ds. Assume also that « is left-continuous with right-hand
limits.

Consider the multivariate counting process N with components Ny(t) =I(X,<1),
i=1,...,n, and the family of o-fields {_#7}. F defines uniquely a measure P
on .#". Inthe following lemma we state that N, has intensity process a,()I(X; = t)
with respect to {4} and P.
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LemMma 4.1,
M(t) = I(X, < 1) — §; a(u)(X, 2 u) du i=1,-,n
are orthogonal square integrable martingales with respect to {_4}.

ProoF. The square integrability and orthogonality follow immediately from
the assumptions. For each i we have to prove E(M(1)| 4) = M,(s) whenever
0 <s<t=1. Since X, for j + i is independent of X; it is enough to consider
the following elements of _#7: {X, > s} and {X; = r} for 0 < r < 5. We have:

EM(1)| X, > s) = P(X, < 1| X, > s) — §La(u)P(X; = u| X, > s) du

= (F(t) — F(s))(1 — F(s))™* — §; a(u) du
— (tau)(1 — Fu))(1 — F(s))du = — Vs a(u) du

where the last expression is the value of M,(s) on {X; ‘> s}. Further, we have
forr < s:

E(M(1)| X, = r) = P(X, S t| X, = r) — $a(@)P(X, 2 u| X, = r) du
=1 — {7 a(u)du

where the last expression is the value of M,(s) on {X, = r}. []
Define

N(t) = 2N,
R(t) = Tt ) = a(t)(n — N(t ).

Clearly N is a counting process with intensity process A relative to P and {7}
N is a one-to-one function of the order statistics corresponding to X. Hence N
is a sufficient statistic for the nonparametric family of the kind defined above.
Let {77} be the family of g-algebras generated by N. From the expression for
A above, we see that A is adapted to {_#]}. Hence, by the innovation theorem
(Theorem 3.4), A is also the intensity process of N relative to {7}

Clearly we have a multiplicative intensity model with N being the counting
process, a the unknown function, Y(r) = n — N(t —) and &, = .7,.

EXAMPLE 2. A general life testing model. Using common life testing termi-
nology one can say that Y(¢) in Example 1 is the number of items at risk, the
risk set, at time . The process N counts the failures that occur. Of course,
there is no reason in general why Y should have the specific relationship to ¥
given in the previous example. For instance, in medical survival studies one
usually has lots of censoring and also patients may come into the study during
the trial. This means that the size of the risk set, measured by Y, may have
several changes during the trial which are unrelated to the failure process N.
One of the advantages of the multiplicative intensity model defined at the beginn-
ing of this section, is that it allows for the process Y to change quite arbitrarily
during the observation period. If the changes are due to outside random in-
fluences this may be modelled by increasing the o-algebras {.&,} appropriately.
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Note that the most important requirement made to the process Y in the multi-
plicative intensity model is that it be adapted to {%,}. This means that the
changes in the risk set can depend quite arbitrarily on the past, but not on the
future, e.g., future failures. This has also been commented upon by Efron
(1975, Section 5F) on a more intuitive basis.

When several groups of items are under study, or when the same group is
studied with respect to several causes of failure, one needs the full multivariate
version of the multiplicative intensity model. Note that the processes Yy, - -, Y,
may depend on each other quite arbitrarily.

In this paper we only mention this application to life testing as an illustration.
One should of course study in greater detail different kinds of censoring schemes
and relate them to the present model. We are planning to do that in a later
paper. Itshould however be clear that our model is considerably more general
than the censoring models commonly considered in the literature (seee.g., Breslow
(1970) and Kaplan and Meier (1958)).

ExAMPLE 3. A4 Markov chain model with censoring. Let {1, - .., m} be the finite
state space of a time-continuous Markov chain. Let a,,(f) be the infinitesimal
transition probability (or force of transition) between the states i and j. Let all
functions a;; satisfy the same requirements as the «; in the multiplicative intensity
model.

We will now assume that several “particles” are moving around on the state
space independently of each other and according to the probabilistic structure
given above. Each particle starts out in a given state at time 0. This state does
not have to be the same for all particles.

Let N,,(¢) for i  jbe a process counting the number of direct transitions from
i toj. Let Y,(r) be the number of particles in state / at time ¢, and let it have
left-continuous sample paths. Denote by N the multivariate counting process
consisting of all processes N,; and let {_/"} be the s-algebras generated by N. It
is intuitively reasonable that each component process N;; of N has an intensity
process given by Y,(f)a,;(f) with respect to {_#7}. One can prove that this is so
(see Aalen, 1975, Section 5D). Hence we have again the multiplicative intensity
model.

As in the previous example one can let the Y,-processes vary quite arbitrarily
and allow for general kinds of censoring. The importance of this is clear since
Markov chain models are much used in demography, actuarial science and medi-
cal statistics (see, e.g., Hoem 1971).

It should be clear that birth and death processes and branching processes can
similarly be described within our framework.

EXAMPLE 4. The birth and death process. Consider a birth and death process
with population size X(r) at time ¢. Let A(¢) and p(¢) denote the time-dependent
intensities of an individual giving birth to a new individual or dying. Let
(B(t), D(1)) be the bivariate process counting the number of births and deaths in
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the population. Let .27, be generated by {X(s), s < r}. It is intuitively clear
that (B(f), D(?)) is a counting process with intensity process (A(£)X(?), p(¢)X(¢))
with respect to {.7,}. A further example of the multiplicative intensity model
is studied in Section 8. -

5. Completeness in the nonparametric model. We assume that a varies freely
in .7 that { &} = {7} and that the likelihood representation (3.2) is valid.
We will denote by P(a) the corresponding measure P for a given @. The likeli-
hood is given by

L, = exp{ 4, [§3 1og (Yi(s)) dNi(s) + §} log ay(s) dN,(s)
— Soa(s)Yy(s) ds] + k} .
Since we have assumed that Y is adapted to {7/}, it follows that the process

N is a sufficient statistic. One may ask whether it will also be complete (for the
concept of completeness, see Lehmann (1959)).

THEOREM 5.1. Assume that we can write

Y1) = Xia1 $if5u(s) dNy(s) + 9.(1)
where the f;; and g, are known, left-continuous, nonnegative bounded functions on

[0, 1]. Assume also that the f,; are step functions and that the g, have right-hand
limits. Then N is a complete statistic.

REMARK. Theorem 5.1 covers many situations of interest. One example is
the life testing model described in Example 1 of Section 4. In this case Theorem
5.1 reduces to the well-known statement that the order statistics of a random
sample is complete in the nonparametric case. Another example is the Markov
chain case in Example 3 of Section 4. When there is no censoring, then we have
Yi(9) = Yi(0) + X (N;i(f) — N;;(¢)) where the sum is taken over all j different
from i, hence the conditions of Theorem 5.1 are satisfied. When there is censoring
present, the situation is more complicated and the theorem will usually not be
applicable. It is also not applicable in the example of Section 8. A special case
of the Theorem 5.1 for a competing risks model is given in Aalen (1976).

PrROOF. Let 7 = ¢(a) be the transformation defined by
r) = loga(t) — T (ful) Viay(s)ds)  i=1, ..k,
7="00v "7
By some algebraic manipulations L, reduces to
L, = exp{ 2. [§olog (Yi(s)) dNi(s) + §o7i(s) dNi(s) — §o i(5)9.(5) ds] + k} -
One sees that the only part of log L, that depends on both the unknown parameter
function @ and the process N is

i-1 §074(5) ANi(s) -

Hence we have some sort of an analogy to the exponential class of distributions
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in the parametric case. The idea of the proof is to use a similar method to that
used in the proof of completeness of a regular exponential family (see Lehmann
(1959), page 133). But first we need to know something about the set of func-
tions y that are generated when a varies in %/, More precisely, we will prove
that all step functions y satisfying a certain condition are generated in this way.

LEMMA. Let M > 0 be a constant such that
() sup; , 2iofi(H) < M.

Lety,, i =1, ..., k, be left-continuous step functions with right-hand limits such
that

(i) sup, , 7:(1) < —1 — log M.
Then there exists an & € 7 such that y = ¢(a).

PrROOF. Assume that y = ¢(a) for some @ and 7. Then 7’ = ¢(a’) for 7’ and
a’ given by
o) = Ma, , 7 =71+ logM

, 1 .
fjizﬁfji i=1,.--k

and clearly f/, satisfies (i) and 7, (ii) with M = 1. Hence we can without loss
of generality assume M = 1.

Assume then that 7 is a step function satisfying the conditions given in the
lemma with M = 1. We will construct an increasing sequence of step functions
converging to an @ € %7, satisfying 7 = ¢(a).

Lett,=0< ,<t,< --- < t, = 1Dbe a partition, denoted II, of [0, 1] such
that 7 and the f;; are constant on each subinterval. We define a step function
a® in the following way: @™ is constant on each subinterval of II. We denote
the value of &;" on {r,_,, 1,] by a,,. We define recursively for each i

Aim = exp Tz(l)
ay, = expr(t,) + i (fiu(t) Divsau(ty — 1)) -
(When [ > m the summation is empty.)
Let II’ be a finer partition than II. Let ¢ be the largest partition point for II’

that is not also a partition point for II, and assume that ¢ is in the subinterval
{t,_1, 1,]. Then

a (1) = exprt) + Zho (LN DT au(ty — 1) + ag(t, — )]
= exp[rt) + 25 (fiu(t) Do @u(ty — 1,20))]
=a, = a7 (7).

v

By continuing this procedure through all smaller partition points of II’, we
see that for all ¢

(5.1) a1 () < a7 (1) i=1,,k.
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Since (i) and (ii) are supposed to hold with M = 1, we also have that
(5.2) (1) < 1 i= 1,k

for all I’ finer than II. Let I, r=1,2, ..., be a sequence of increasingly
finer partitions, each of them finer than II, such that the maximum length of
all subintervals goes to 0. By (5.1) and (5.2) it follows that the sequence of
functions @"r has a finite pointwise limit. Denote this by @. We will show that

7 = 4(@)
Let ¢ be any point in [0, 1] and let ¢, be the smallest partition point of II,
satisfying ¢, = ¢t. We have:
Ti(t) = Ti(t'r)
= logan(t,) — T fuu(t,) 1}, @, o(s) ds
= log a;"r(r) — 2h_, fiu(t,) St a"n(s) ds + 3%, f; Sir an(s) ds
e l0g ay(t) — 5o, f3:(0) $ay(s) ds
that is, 7 = ¢(a). By the definition of ¢ we have:
log ay(r) = 7i(r) + X1 (fiult) §i ;(s) ) -
The right-hand side is left-continuous with: right-hand limits, and so the same
holds for log a,(f), and hence for a.
We have now proved the lemma and can continue with the proof of the

theorem. Let g be a real valued function on Q, integrable with respect to P(a)
for all @ € .97 and assume that

{gdP =0 forall ae Y.
This implies
9L dP,=0 forall ac .
Thus by the lemma
(5.3) $ 9Z(r)dP, =0 forall yel

where I' is the set of all step functions 7 satisfying the assumptions of the lemma
with M = 1, and

Z(r) = exp{ Xt [§ilog (Yy(5)) dN(s) + [i7:(5) dN,(9)]} -
Let g~ and g* be the positive and negative parts of g. Put
K = | g*Z(—1)dP,
where 1 denotes the vector (1, - - -, 1) with k elements and define the probability
measures Q, and Q, by
dQ, = K'g*Z(—1)dP,,
dQ, = K~'g~Z(—1)dP, .
Puty/ =y, + 1,i=1, ..., k. Then (5.3) translates into
§ exp[ ¢, §67:/(2) dN(1)]1dQ, = § exp[ Tk, §37:/(r) dN(1)] dQ,
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for all nonpositive step functions ,/, i = 1, - - -, k which are left-continuous and
have right-hand limits. By the uniqueness of the Laplace transform of R™-valued
random variables it follows that Q, and Q, give the same joint distribution for
the numbers of jumps in any set of disjoint intervals. Since the Poisson measure
P, is uniquely determined by all such distributions, and since Q, and Q, are
absolutely continuous with respect to P,, it follows that 0, = Q, on . []

6. Nonparametric estimation.

6.1. The estimator. Let @ be an arbitrary element of %7, We will treat the
problem of estimating the functions

Bi(r) = (s ay(s)ds i=1,.--,k

or, rather, closely related quantities. We put 8 = (8, - - -, B,)-

Our estimator can be regarded as generalizing the empirical cumulative hazard
rate studied by Nelson (1969), Altshuler (1970) and Aalen (1976). There is also
a close relationship to the empirical distribution function for censored data
studied by Kaplan and Meier (1958) and Meier (1975).

The empirical B-function, as we will denote our estimator, is mainly intended
to be used for plotting purposes. An application to a set of data is given in
Section 8. An application to a birth and death process is given by Keiding
(1976).

A basic requirement in order to be able to estimate 8 on the whole of [0, 1]
in a meaningful way is that the processes Y; be strictly positive on the whole
of [0, 1]. Often this will not be the case. One example is the Markov chain
case treated in Example 3 of Section 4. In that case it is clearly possible that
some state may become “empty,” i.e., that Y,(r) = O on subintervals of [0, 1].
Sometimes it may be possible to control this by “putting new particles” into a
state when it becomes empty. At other times this may not be possible. In general,
we will have to restrict ourselves to estimating the following quantities:

B*(1) = §§ ai(s)J(s) ds i=1,..,k
where
1) = timy 1Y, (s — 1) > 0)

and [ is an indicator function. Our way of defining J; has the purpose of making
it left-continuous. We put 8* = (8,*, .-+, 8,*)and J = (J;, - - -, Jp).

Of course B* is in general not a function but a stochastic process. However,
in accordance with the terminology of the engineering literature, it is quite
proper to talk about estimating a stochastic process. In fact, it seems that it
will often be the case in a stochastic process context that one cannot know at
the outset which parameters one will be able to estimate in a meaningful way,
because it depends on how the process develops.

The expression J,(£)(Y,(¢))~* is interpreted as O whenever Y,(f) = 0. We need
the following assumption:
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AsSUMPTION 6.1. There exists a finite number ¢ such that
SUPye,o; J(E)(Yi()) < ¢ as. i

B(r) = SEJ(5)(Yo(5)) "t dNy(s) i=1,..-,k.

The integral is to be taken as a Stieltjes integral. Put ‘é =B - Bi)-

Il
—_
x

Define:

THEOREM 6.2. Suppose Assumption 6.1 holds. Then the processes

Iéi_ﬁi* i=1,..-.,k
are orthogonal square integrable martingales with
() (B — B By — BY() = SV Hds i=1 - k.

REMARK. We suggest B as an estimator of ﬁ* We will translate a part of the
content of the theorem into more common language. The martingale property
of B, — B,* implies that

EB@(T) = E/Bz*(T) i=1,..,k

for all @ and for any bounded stopping time 7. Hence, B is in this sense an
unbiased estimator of B*. The martingale property also implies that processes
B, — B.* have uncorrelated increments.

The orthogonality implies that for any s, t and i # j B(r) — B;*(¢) is uncor-
related with f,(s) — B,*(s).

(i) implies that for any bounded stopping time 7 and for all @

E[B(T) — pX(T)P = ES§ asMu()(Yils) " ds]  i=1, -, k.
If T equals a fixed time ¢ we get

7(t) = E[B(1) — B ()] = i au(s)E[J()(Yo(5)) "] ds -
This last function we will call the mean squared error function of the estimator §,.
When Theorem 5.1 applies any random variable measurable with respect to
¥ and with expectation equal to ES*(z,) for all @ and some #,, will be almost
surely equal to B(to) for all a.

Proor. The following holds:

Bt — B(1) = T Js)(Yi(5)) ™ dMi(s) i=1,.sk,
where M,, i = 1, - - -, k, are the martingales from Theorem 3.2 and the integral
is a Stieltjes integral. The condition (3.1) for equivalence between Stieltjes and
stochastic integrals is fulfilled in this case by Assumptions 3.1 and 6.1. Hence,

the theory of stochastic integrals may be applied, see Section 2. The theorem
follows immediately. []

Clearly, a theorem like the one above could be proved without applying the
theory of stochastic integrals. However, the proof would be a long and tedious
one, and one might have to impose stronger conditions. See Aalen (1976) for
such a proof applied to a special case.
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6.2. Estimation of the mean squared error function. Assumption 6.1 will be
supposed to hold. We want to estimate the functions z,(¢), i =1, - -, k.
Define

2,(1) = §6Ji(5)Y,(5)72 dNy(s) i=1,...,k.
Note that 7,(7) is the expectation of
2u(r) — §5Ji(8)(Yi(9))7* dM(s) -
The last integral is a Stieltjes integral, but by (3.1) and Assumption 6.1 it coin-
cides with the corresponding stochastic integral. Hence, for each r and i 7,(¢) is

an unbiased estimator of ,(rf). When Theorem 5.1 applies it is the unique such
estimator.

6.3. Consistency. Assume that we have a sequence of counting processes
N, = (M, s - + +» N, ), each one satisfying Assumption 3.1 and having an intensity
process A,. Assume that each A, can be factorized as described in Section 4
with the function a being the same for all n. Let J,, Y,, ,én, and B,* have the
obvious definitions. The sequence of processes may come about in any number
of ways. However, in order to get asymptotic results we will put conditions on
the sequence which insure that the intensity process increases with n over the
whole time interval [0, 1], i.e., the number of jumps in the counting process
becomes large on each subinterval of [0, 1]. Assumption 6.1 will be supposed
to hold for each n, however the constant ¢ is allowed to vary with n.

PROPOSITION 6.3. Assume

§6 2, (S)E[J; o()(Y; o(5)) "] ds — O i=1,---,k.
Then .
E[Supte[o,ll (ﬁzn(t) - :Bz*n(t))z] -0 i=1,.--,k.

The limits are taken with respect to n.

Proor. We apply the semi-martingale inequality in Theorem 3.4 of Doob
(1953) (Doob states on page 354 that it is valid in the continuous case too):

ETsUP,cto.1) (Bin(r) = BEA1)'] < 4E(Be(1) — BE(1))* -
The proposition follows immediately from formula (i) of Theorem 6.2. []

6.4. Asymptotic normality. There is a large literature proving that martingales
under certain conditions converge to normal processes with independent incre-
ments. In Aalen (1977) we have used the theory of McLeish (1974) to prove
weak convergence of stochastic integrals with respect to the martingales M.
We will apply that result to the processes B, — B*. We know that j;, — B,*
coincides with the stochastic integral { H, dM, where H;, = J,Y,7'. Before we
consider the sequence of processes of the previous section we will first look at
one single process. We have to ensure that Requirement B of Aalen (1977) is
fulfilled. To be specific, we will give explicitly a set of simpler assumptions
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which ensures this to be the case. Those assumptions seem to cover most practical
applications, but they are of course in no way necessary for the weak convergence
to take place.

We will assume that a,, i = 1, ..., k, are of bounded variation on [0, 1].
Let ¢(¢) be a nonnegative nondecreasing function satisfying

la(r) — e(s)] = 6(r) — &()
for0<s<t<landi=1,...,k. We will also assume that each sample
function of the processes J,Y;!, i = 1, .-, k, is piecewise constant and has a
finite number of jumps on [0, 1]. Let us denote by R() the total number of
jumps on [0, ¢] of the processes J;Y;7}, i =1, - .-, k.
Assume (N and A are defined in Section 3.3):

E(R(1)N(1)) < oo, .

E(R(1) {3 A(s) ds) < oo .
Define

2(1) = cR(1) sup,,, (1) + (1) -

The supremum in the last expression is finite by the assumptions made above.
The variation in the process H, is either due to the jumps in the process J,Y,;™*
or it is due to the variation in «,. Hence, part (i) of Requirement B of Aalen
(1977) is fulfilled with the process Z we have defined here. Parts (ii), (iii), and
(iv) also follow immediately from the assumptions we have made.

We now reintroduce the sequence of counting processes of Section 6.3. We
will assume that the conditions stated in the first part of this section are fulfilled
for each n.

Let D be the space of real functions on [0, 1] which are right-continuous and
have left-hand limits. Let D be equipped with the Skorohod topology (see
Billingsley (1968), Chapter 3). Denote by D* the Cartesian product of D with
itself k times and let D* be equipped with the product topology. By — we will
denote weak convergence of random elements of D* with respect to the given
topology. See Billingsley (1968) for the theory of weak convergence.

The next theorem is a consequence of Theorem 2.1 of Aalen (1976b). —,
denotes convergence in probability. A, and N, are defined as in Section 3.3.
Let S, m = 1,2, - -+, Ny ,(1), be the successive jump times of the process N, ,.
Define

Zm = Jia(ST) (Yo (S -
The limits in the following theorem are taken with respect to n.

THEOREM 6.4. Assume that there exists a sequence of positive constants {a,} in-
creasing to infinity such that the following holds.

(a) There exist nonnegative functions g, e L*0, 1), i =1, - - -, k, such that
a,? \s () o(8)Y o(8) 1 ds —, §§ 9,%(s) ds
for each te[0, 1] and i =1, e k.



INFERENCE FOR COUNTING PROCESSES 717

(b) For every ¢ > 0:
E ¥, Dbt [(aZimyl(a, Zm > )] — 0.

Let W,, - - -, W, be independent Wiener processes and put X,(t) = {4 g,(s) dW(s)
and X = (X,, - -+, X,). Then

a (B, — B*)=X.

RemArk. Condition (a) guarantees the stabilization of the variance which is
needed to get a normal process in the limit. Condition (b) is a sort of Lindeberg
condition. It guarantees that the jumps of the process disappear in the limit.
Note that this condition implies that the Y-processes become large, i.e., the num-
ber of jumps in the counting process becomes large.

A simple Markov chain example with explicit verification of the conditions
in the theorem is given in Aalen (1977).

Finally, let 7, ,(¢) be defined relatively to (N,, Y,) as in Section 6.2.

ProroSITION 6.5. Suppose that condition (a) of Theorem 6.4 holds and assume
in addition
(i) a,* §5 EW; n(5)Y; () 7)at(s) ds — 0
fori=1,...,k. Then
4, a(1) =, §6.9/(s) ds
foreachte[0,1]andi =1, --., k.
Proor. Consider the expression:
U n(t) = 7,4(0) — $8J,.(8)Y, (8)ay(s) ds .
Applying condition (a) of Theorem 6.4 we see that it is enough to prove that
a,’U, ,(t) —, 0 for all i and r. U, () is equal to the Stieltjes integral
§6 i, n(8) Y1 n(8)* dM 1 (5) -
By (3.1) and Assumption 6.1 this coincides with the corresponding stochastic
integral. Hence the processes U, , are square integrable martingales and

Us s Uy () = $6J; u(8)Y; o(8)Pay(s) ds .
We now use the same argument as in the proof of Proposition 6.3. It follows
by condition (i) that a,’U; ,(f) —, 0 for all i and ¢. []

7. Nonparametric comparison of two counting processes.

7.1. A general test statistic. We consider again the multiplicative intensity
model of Section 4. We want to test whether «,(f) = a,(r) over a specified random
subinterval of the time interval [0, 1]. Denote this subinterval by R* and let
R(r) be its indicator function. R(¢) is a stochastic process and we require that
it be adapted to {.5,} and predictable. The hypothesis that @, and a, coincide
on R* is denoted by H,.
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One should note that the comparison of two random samples with or without
censoring is a special case of our general setup (see Examples 1 and 2 of Section 4).

Assumptlon 6.1is supposed to be in force throughout this section. The processes
f, and §, from Section 6.1 are then well defined. If H, is true, then §, — B, is
a square integrable martingale. Let K(f) be a process which is a member of
LB, — ;) under H, and which also satisfies the following conditions whether
H, is true or not (the integral is a Stieltjes integral):

(7.1) E(S§ K(S)R(s)(dBi(s) + dBy(s))) < oo .
The following Stieltjes integral is well defined
(7.2) Z = §s K()R(s)(dBi(s) — dpy(s)) -

When H, is true, then Z is also well defined as a stochastic integral. By (7.1)and
by Proposition 3 of Doléans-Dadé and Meyer (1970) the Stieltjes and stochastic
integral interpretation of (7.2) coincide.

Under H, we have EZ = 0. When H, is not true Z may be used as a measure
of how much «, differs from a, on R*. According to how K is chosen Z will
be more or less sensitive (or completely insensitive) to different kinds of deviations
from H,. By choosing different processes K and using Z as a test statistic one
generates a large class of different tests. Later on we will have a closer look at
this class in relation to the life testing example and show that it includes most
two sample rank tests for censored and uncensored random samples.

In general one will have to rely on large sample theory in order to actually
perform the testing. Since Z can be expressed as a stochastic integral under H,
we can, as in Section 6.4, use the theory of Aalen (1977) to prove asymptotic
normality of Z when H, holds. Since one can make similar assumptions and a
similar statement to that of Section 6.4, we will not go further into the details
here.

The weak convergence theory of stochastic integrals can also be used to study
the asymptotic power under contiguous alternatives. This is done in a special
case in Aalen (1975) where for R* = [0, 1] we have proved that the test based
on Z with K = (Y, + Y,)' Y, Y, is asymptotically most powerful similar against
the alternatives a,(f) = fa,(r) for # > 1. The proof of that result will be pub-
lished elsewhere.

7.2. An estimator of the variance under H,. We can get an unbiased estimator
of Var Z under H, in the following way. Assume that H, holds. Denote the
common value of a, and a, by a. Write:

Z(1) = §§ K(S)R(s)(dBy(s) — dpu(s))
= JEK()R()(Yi(s) ™ dMi(s) — Y(s)~ dM(s)) .

By Theorem 3.2 and (2.1) we have:
(Z, Z)(1) = BKASR(S)Yo()™ + Yi(s)Ma(s) ds .
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We have Var Z = E(Z, Z)(1). Consider the following process:
V(1) = 3 K¥(s)Yy(s)7Yy(s) " (dNi(s) + dNy(s))
and assume EV(1) < co. We have:
V() — <Z, Z)(1) = §i KA()R(5)Yi(5)1Yy(s)7H(dM (s) + dMy(s))

where the integral is a Stieltjes integral. It is well defined as a stochastic integral
if

E §§ K{(S)R($)Y(5) Y () (¥i(s) + Yi(s))a(s) ds < oo .

The assumptions we have made ensure by Proposition 3 of Doléans-Dadé and
Meyer (1970) that the stochastic and Stieltjes integral coincide. Hence V(1) is
an unbiased estimator of Var Z. )

One should note that all assumptions made about the process K in this section
will hold automatically if we assume that K is bounded by a constant with
probability 1. It seems that this will usually hold in applications.

When H, is true then (N, Y;) and (N,, Y,) “collapse” by a sufficiency reduction
into (N, + N,, Y, + Y,). Itis therefore clear that in general the variance esti-
mator V(1) will not be based on statistics that are minimal sufficient under H,.
This is a drawback but preliminary investigations indicate that it means little
in practice. Also, since we usuzlly have to base the testing on asymptotic theory
it is only the consistency of the variance estimator that really matters. A con-
sistency result can be proved along the lines of Section 6.4.

7.3. Application to the life testing model. Consider Example 1 of Section 4.
Assume that we have two independent random samples of the kind described
there. Let n, and n, denote the sizes of the two samples and let F; and F, cor-
respond to F in Example 1. All assumptions of Example 1 will be in force except
that we will allow for F,(1) and F,(1) to be equal to 1. We will however require
Fy(x)< 1,i=1,2, whenever x < 1. It is easily seen that Lemma 4.1 is still
valid on the whole of [0, 1] for each of the samples. Let «, and a, be the hazard
rates for the two distributions and let (N,, Y,) and (N,, Y,) be defined as (N, Y)
of Example 1. We have:

(7.3) Y(t) = n, — N(t —) i=1,2.

If F,(1) = 1 then a, is not integrable on [0, 1] and so the assumptions of the
multiplicative intensity model are not formally satisfied. However, in that case
all jumps in N, have to take place before r = 1. Hence, considering the quantities
defined in Section 6.1, we see that even if 5,(1) may be infinite, 8,;*(1) will always
be finite with probability 1. It is easily checked that the estimation performed
in Section 6.1 is still valid.

Consider the situation of Section 7.1 with R* = [0, 1 Jand {.5/,} generated by
(N, N,). If Fy(1) = 1,i = 1, 2, a general linear rank statistic for comparison of
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two samples can be written
(7.4) U = §§ L*(Y,(5) + Y,(5)) dNy(s)
where L* is the score function.

PropOSITION 7.1. Assume Fy(1) = 1,i=1,2. Let L be a function such that
the process

(i) K =LY, + Y,)Y,Y,
satisfies the assumptions made in Section 7.1. Substitute (i) and R = 1 in (7.2).

Then Z is a linear rank statistic as defined by (7.4). In particular, one gets the
Wilcoxon test by choosing

(ii) K=YY,
and the Savage test by choosing
(iii) K= (Y, 4+ Y,)"'Y,Y,.

REMARK. See, for instance, Hajek and Sidak (1968) for the theory of rank
tests. Note that for linear rank tests the distribution of the test statistic under
H, is independent of @, and a,. Hence the variance can be “estimated” without
error. Using the estimator of Section 7.2 we get an estimator with random
variation. See the remarks at the end of Section 7.2 for the explanation of this.

Proor. Dropping the integration variable from the notation we have with K
as in (i):
Z = {L(Y, + Y,)(Y,dN, — Y, dN,)
= i L(Y, + Yz)(Yl +7,) dN, — T L(Y, + Y)Y, d(N, + N,)
= WL(Y, + Y)(Y; + Y,)dN, + §i §5 L(Y, + Y,)d(N, + N,) dY, .

The last integral is arrived at by partial integration. Applying (7.3) we can
substitute dY, by —dN,. Finally, we get:

Z = (LY, + Y,) dNy(s)
where
Ll(y) = L(y)y - Zv<j§n1+'n2 L(]) .
It is straightforward to show that (ii) and (iii) produces the Wilcoxon and Savage
test respectively. []

Consider now the general life testing model in Example 2 of Section 4. It
turns out that most rank tests suggested for comparison of two censored random
samples are also special cases of the statistic Z. We then interpret Y,(¢), i =
1, 2, as the observed numbers at risk at time 7 in the two samples while N, and
N, count the observed failures.

Putting R=1 and using the choice (ii) of Proposition 7.1 produces the Wilcoxon
test generalizations of Halperin (1960), Gehan (1965), and Gastwirth (1965).
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Using the choice (iii) produces the Savage test generalizations of Rao et al. (1960),
Basu (1968), and Thomas (1969, 1971). This is also related to the paper of Cox
(1972). The Savage test generalization of Gastwirth (1965) occurs by putting

K= —Y,Y,log(l — (Y, + Y,)7)

which is very close to (iii). The test proposed by Efron (1967) occurs by putting
K = P, P, where P(t), i = 1,2, are the product limit estimates (Kaplan and
Meier, 1958) of exp(— {¢ a,(s) ds), i = 1, 2. This test is another generalization
of the Wilcoxon test. Finally, we will mention the statistic given by Crowley
(1974). Tt is a further generalization of the Savage statistic specifically designed
for a heart transplant study. Our counting process formulation will apply in
that situation too and we get once more a special case of Z with K given as in
(iii). .
The claims made in the preceding paragraph can be verified by straightforward
computations of the kind made in the proof of Proposition 7.1. The advantage
of our approach is, of course, the fact that it gives a unifying theory. The
disadvantage is that we do not get exact distribution results of the kind one may
get for simple censoring schemes.

8. An application. The sexual behavior of Drosophila has been the object
of some biological studies (Christiansen 1971). A mathematical model for such
studies has been proposed by Barndorff-Nielsen (1968) and Bartlett and Jennifer
(1971). We will give a short description of it.

A number of male and virgin female Drosophila are introduced at time 0 into
an observation chamber called a “pornoscope.” The flies are observed con-
tinuously over a time interval, and one records all times at which copulations
are initiated or terminated.

Let M(¢) and F(¢) be the numbers of male and female flies which have at time
¢ not participated in any mating. Let N(f) be the number of matings initiated
in the time interval [0, r]. N is a counting process and we assume that it has
an intensity process a(f)M(t)F(r) where a satisfies the same assumptions as in
Example 1and the sample functions of M and F are supposed to be left-continuous.

We have again a special case of the multiplicative intensity model. The process
(N, M, F) is also Markovian; however, that is not the case with the following
modification which has in some cases turned out to be a more realistic descrip-
tion: We assume that M(r) consists not only of those males who have not initiated
a copulation at time ¢, but also of those who may already have participated in
one or more copulations but who are free at time ¢. Clearly the process (N, M, F)
is not any longer Markovian since at each time 7 it is of importance how long
the ongoing copulations have lasted.

To illustrate the use of the empirical S-function from Section 6.1 we will
apply it to a set of data. The data are unpublished and come from an experi-
ment carried out by Freddy Christiansen at the University of Aarhus, Denmark.

We will use the first model mentioned above where each fly only mates once.
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We use data from two experiments, one with so-called ebony flies and the other
with oregon flies. In the experiment with ebony flies 40 males and 30 virgin
females are introduced into the pornoscope at time 0. Let the processes N,, M, F,
and the function a, be defined as above. We put Y, = M, F,. Inthe oregon fly
experiment we start out with 39 males and 29 females. N,, Y,, and a, are defined
analogously to above. In both experiments the flies are observed continuously
for 45 minutes, and then observation is continued until no mating is observed
to take place or until the experiment has lasted for one hour.

The processes f; and f, can be constructed relative to the functions a, and
@, as done in Section 6.1. In this example it is natural to call a, and a, the
mating intensities and §, and §, the empirical cumulative mating intensities.

The times at initations of matings for the two experiments are given in Table 1.
The values of §, and §, ar the Jump times are plottedin Figure 1. One sees that
the plot gives a picture of the development of the mating in the two populations.

When statistical inference is to be made from the plot, one needs estimates
of the “error variation” of the curves. As for the usual cumulative distribution
functions it is possible to construct confidence bands for 8, and $,. That subject

TABLE 1
Times in seconds at initiations of mating

Ebony flies 143, 180, 184, 303, 380, 431, 455, 475, 500, 514, 521, 552,
558, 606, 650, 667, 683, 782, 799, 849, 901, 995, 1131,
1216, 1591, 1702, 2212.

Oregon flies 555, 742, 746, 795, 934, 967, 982, 1043, 1055, 1067, 1081,
1296, 1353, 1361, 1462, 1731, 1985, 2051, 2292, 2335, 2514,

2570, 2970.
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will be pursued in a later paper. Here, we will be satisfied with the pointwise
error estimates e,(t) = [#,(¢)]}, i = 1, 2, (see Section 6.2). The following values
are sufficient to indicate the sizes of these estimates (the times are given in
seconds):

e,(1000) = .0124,  ¢,(1500) = .0165,
e,(1000) = .0029,  ¢,(1500) = .0058 .

Since confidence bands for the 8, will be considerably wider than pointwise
confidence intervals, it should be clear from inspection of Figure 1 that a hy-
pothesis of constant mating intensities after the first 500 seconds cannot be
rejected.

One also sees that the mating intensity for the ebony flies seems to be con-
siderably higher than that of the oregon flies for most of the observation period.
The theory of Section 7 can be used to test whether the difference is significant.
We let the period of 3000 seconds correspond to the time interval [0, 1]. We
use the statistic Z of (7.1) with R = 1 and the simple choice K = Y, Y,. Using
the variance estimator V(1) of Section 7.2, we can compute ZV(1)"t = 5.44.
Assuming that the normal approximation is reasonable we conclude that the
observed difference is strongly significant. ‘
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dissertation written under the supervision of Professor Lucien Le Cam. Iam
also grateful to Jan M. Hoem, Sgren Johansen, Niels Keiding and Mats Rudemo
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APPENDIX

We will prove Theorem 3.2 as an extension of results in Boel et al. (1975a,
Proposition 3.2 and Lemma 3.1). Our proof is in part taken from Dolivo (1974,
Theorem 2.4.8).

By Assumption 3.1, part (i), N;, i =1, ---, k, are positive submartingales.
Hence the existence of unique natural increasing processes 4;,i = 1, - - -, k, such
that M, = N, — A;, i = 1, - - -, k are martingales follows from the Doob-Meyer
decomposition theorem (Meyer (1966)).

Let i be fixed. We have to prove that the martingale M, is square integrable.
Let T,, n=1,2, ..., be the jump times of N. Define ¢t A T, = min (¢, T,).
By Boel et al. (1975a, Proposition 3.2) the martingale M(t A T,) is square in-
tegrable with

EMXtANT,) = EN(tAT,).
Since My(t A T,) converges to M,(t) when n — co we have by Fatou’s lemma:
EM2(t) < lim,_., EN,(t A T,) = EN(?) .

M is then a positive submartingale and so by the Doob-Meyer decomposition
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theorem there is a unique natural increasing process B, such that M;> — B, is a
martingale. Hence B,(t A T,) is the unique natural increasing process such that
M}t AT,) — By(t A T,) is a martingale. By Boel et al. (1975a, Lemma 3.1)
B,(t A T,) coincides with A,(t A T,) for each n. Hence

By(r) = lim, ., B(t A T,) = lim,_,, A,(t A T,) = A1) .

It only remains to prove formula (ii) in Theorem 3.2. Let i + j be fixed.
Then N* = N; 4+ N;isacounting process and clearly 4* = A4, + A, is the unique
natural increasing process making M* = N* — 4* a martingale. By what we
have already proved (M*)* — A4* is a martingale. But

(M*)z—A*:(Mi+Mj)2—Ai_AjzzMiMj‘f‘Miz'—Ai‘f‘Mf—‘Aw

J

Hence M;M; is a martingale, i.e., M, and M, are orthogonal.
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