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ADMISSIBLE SOLUTIONS OF FINITE STATE SEQUENCE
COMPOUND DECISION PROBLEMS

BY STEPHEN B. VARDEMAN
Purdue University

A general method of constructing procedures which are both admissi-
ble and asymptotically optimal in finite state sequence compound decision
problems is suggested and applied to the situation of a two state classifica-
tion component. When used in an empirical Bayes setting, procedures so
constructed are seen to be both admissible and asymptotically optimal.

1. Introduction. We consider a situation in which independent structurally
identical decision problems are to be faced serially. Numerous authors have
produced procedures for various types of component problems satisfying the
classical compound optimality criterion but there has been little study of the
finite N properties of such asymptotically optimal rules. Indeed it is possible
that in some cases procedures exist with better N problem average risk functions
for each N. ‘

In this paper we give a natural notion of admissibility for sequence compound
rules and in the case of a finite state component problem, suggest a method of
producing procedures which satisfy both the admissibility criterion and the
classical asymptotic optimality criterion. The method is applied to the situation
where the component problem is a two state classification problem. The proof
of the asymptotic optimality of the resulting admissible sequence compound rule
is carried out under a smoothness condition on the two possible distributions of
the component problem likelihood ratio statistic and depends upon an estimation
result of Gilliland, Hannan and Huang (1976), developed in their study of Bayes
procedures in nonsequential versions of the compound problem. Finally we note
that the suggested method of constructing good sequence compound rules can
also produce admissible, asymptotically optimal empirical Bayes procedures.

2. Notation and generalities. We consider a component decision problem
with states § € © indexing distributions P, on a sample space (27, %), possible
actions a € %7, loss function L(., +) and decision rules d(+), measurable func-
tions on 22”7 into .%7. The risk of a rule d(+) when state § holds will be denoted
by R(0, d) = § L(0, d(x)) dP,(x) and for a signed measure G on ©, R(G, d) will
abbreviate { R(6,d) dG(#). d,(-) will stand for a Bayes rule versus G in the
component problem and R(G) will denote the minimum Bayes risk against G,
R(G, d;).
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The problem addressed here is: What are good procedures when one is to face
a sequence of independent decision problems, all with the above structure? De-

cision rules in such a situation are sequences 8 = (d,, d,, - - -) of measurable
functions, d,(+) mapping the first i observations X; = (Xj, - - -, X;) into an action
a, to be taken in the ith problem. For a sequence of states @ = (6,, 6,, - - -) and

a sequence compound decision rule 8, we will denote the average risk of &
through the first N problems when & holds as

RN(a’ (’) = ']1[‘_ I EL(ai’ 5i(xi))

= D § L0 0(x)) Py (x)

where @, denotes (0, - - -, 0;) and P, = Py X -+ X Py, the distribution of X,.
R,(0, 3) clearly depends on @ only through @,. For G, a signed measure on ©~
let G,* denote the marginal of G, on the first i coordinates of ©. In notation
similar to that in the component problem, take as the N problem Bayes risk of
the rule & against G,

Ry(Gy 0) = § < TiL, § L(O0 3,(x)) dP, (x,) 4G (6)

_ % X185 L(8., 6(x,)) dP, (X,) dG,(8,) .

The classical optimality criterion for a sequence compound procedure is that
its N problem risk be asymptotically no larger than the minimum that could be
obtained if before facing any decisions one was furnished with E, the empiric
distribution of states ¢, through #,, and determined to choose a fixed 4(+) and
in the ith problem take action d(X;). That is,

DerFINITION 2.1. A sequence compound procedure 3 is called s.c. optimal
provided

lim supy (R(6, 8) — R(Ey)) < 0.

As indicated before, taken alone such a definition of optimality is open to
criticism on the basis that when considered as a function of @, the N problem

risk function of an s.c. optimal rule 3, R,(@, ) may well be inadmissible for
each N. Hence

DEFINITION 2.2. A sequence compound procedure & will be called s.c. ad-
missible provided that for each N there is no * with R,(8, 3*) < R(4, 3) for
all @ with strict inequality for some 6.

S.c. admissibility does not imply s.c. optimality. The main result of this paper
is the demonstration of sequence compound rules for a two state classification
problem component which satisfy both Definitions 2.1 and 2.2.

3. Considerations for finite ®. For © = {1, 2, - - -, m} a method of showing
the s.c. admissibility of a procedure 8° would be to produce for each N a
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distribution G, on ©% such that G,(@,) > 0 for each &, € " and such that 3°
minimizes R,(G,, +). For 8° to minimize R,(G,, -) it is necessary and sufficient
that §,° minimize :

(1) Liogeoi § L(0:, 0(x,)) AP (%,)G1'(6,)

for eachi = 1,2, ..., N over choices of measurable maps J, from 2% to ..
(In the terminology of Gilliland and Hannan (1969) such a 4,° would be Bayes
versus G,* in a I'* decision problem.) Notice that for y a sigma finite measure

dominating P,, - - -, P, and f, = dP,/dy, subject to measurability considerations,
the choice of §, as

(2) 0(x;) = an a which minimizes Y, .e: L(0;, )G5*(0,) [T5-, faj(xj)
will minimize (1). It is informative to rewrite (2) as
3) 0(x;,) = an a which minimizes

2iiea f(x:) Lk, a)(Zaieeiw,:k G,'(9;) IT54 0j(x,'))
(interpreting the empty product as 1 in the case i = 1), because abbreviating
2io,e0ia0,= Cn'(0:) 1524 ,,j(xj) to w, (G, it is then apparent that for fixed x,_,,
d4(x;) is a component problem Bayes rule against a measure giving mass w, (G ")
toeachstate k =1, --., m.

Now a standard method of producing s.c. optimal rules in finite state settings
is, at problem i, to estimate E, , in some consistent fashion, say by E,_ and to
take action dz _ (X;) (see for example Hannan (1956), (1957), Van Ryzin (1966)
or Vardeman (1975)). This suggests that to produce a procedure satisfying Defi-

nitions 2.1 and 2.2 one might search for a sequence of distributions (G,, G,, - - -)
such that

(a) G, is a distribution on @’ such that G,(8,) > 0 for all 8, ¢ ©°,
(b) G,_, is the marginal of G, on the first i — 1 coordinates of ©%, and

(c) when normalized the weights w, (G,), - - -, w,, «(G,) give a consistent es-
timate of E;_,.

One might then take §, to be of form (3) with G, replacing G,* and attempt to
prove s.c. optimality for the resulting rule. We proceed to carry out such a
program for a two state classification component problem.

4. Admissible, asymptotically optimal two state classification rules. For this
section we specialize to the case where ® = {0, 1} and P, and P, are distinct prob-
ability measures on (2, % ). Let py =P, + P, 0< f, =dPJdp < 1,i=1,2
and note that the extended real valued p = f/f, is well defined (i.e., not 0/0)
a.e. u. Take %7 = O and assume the loss structure

L@,a)=0 for 6§ =a
=L, for § =0 and a=1
=1L, for =1 and a=0

where L, and L, are positive real numbers. L will abbreviate the ratio L,/L,.
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An intuitively appealing sequence of distributions on ©, @7, ..., for which
there is available the kind of consistency result for the weights w, ;(G,) alluded
to in Section 3, was suggested by Robbins (1951) in his original treatment of
the nonsequential compound decision problem. Denote by H, the probability
on O which is symmetric and places equal mass on the subsets of ©° defined by

i 0, =a,a=0,1,...,i(thatis for which H({(0,,- - -, 8,)}) = (( + D)()™)-
It is a simple exercise to show that H,_, is the marginal distribution of H; on
the first i — 1 coordinates of © and H,({6,}) > O for each @, ©‘. Further,
with p, denoting a/i, A abbreviating § f, d(P, — P,), and w,; standing for
Yio,coiso,=r H(0) TT5 o,.(X ;) for k = 0 and 1, Gilliland, Hannan, and Huang
(1976) prove the following.

ProPOSITION 4.1. For X,_, distributed as P, _,

Wi
Woi -+ Wi

E|l_ Wi (1, ':E
Wo s + Wi ( Pi-1)

for any 0,_, € O,
Thus with p,_, = w, (w,; + w,,)”", the sequence compound procedure ¢ =
(¢ @y, - - +) defined by

$i(X:) = I[p(Xi) >L 1_;_&]

i-1

< <4A‘1(27c5i_: 11))% + 1)

— Pia

is s.c. admissible and the estimation result lends hope of proving uniform s.c.
optimality at a good rate. Adding a condition on the possible distributions of
o(X) we will prove,

THEOREM 4.2. For k = 0, 1 let v, denote the distribution of L(L 4 p(X))~* for
X with distribution P,. If there exists a y € (0, 1] and real number C such that for
any two real numbers 0 < a < b < 1, y([a, b]) < C(b — a), then there exists a
real number ¢" depending only on A, max (L, L,), and C such that

Ry(0,$) — R(Ey) < FZ°N2.
Proor. It is standard in proofs of s.c. optimality (see for example Vardeman
(1975)) to note that.(l/N) 2L R(0;, dg,) < R(Ey) so that
1
(4) Ry(0, $) — R(Ey) = + B E(L(0: $4X) — L(0s> dp(X1))) -

The function dg (x) = I[p(x) = L(1 — I;i)pi‘l] is component Bayes versus E; so
that the right side of (4) may be bounded by

() ALy Ringpeo BILL(L = i < o(X) < L(1 = p)pi”]
+ Ly Xiso=1 EI[L(1 — p)p, ™ < p(X;) < (1 — pe_)pit]} -

But now consider a typical summand above.
EI[L(1 — piy)pity = p(Xy) < L(1 — p)p.7]
= EE[I[p; < L(L 4 p(X;))™" < pi_1] | Xis] < EC|pioy — piff
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by the assumption on the distribution of p(X;). Further for i > 1

E|piy — pil"  E(|ficy — Pical + |Pi — Picil)
< (Elpicy — Pical + |ps — picil) -

So applying Proposition 4.1 together with the fact that |p, — p, )| < (i — 1)7!
for i > 1, we have R,(@, ) — R(Ey) is no larger than

€ max (Ly, L) — (1 + Xl (A7l — D)} + (i + D™ + (= 7))

and the result follows. []

Several comments are in order. The first is that the y = 1 version of the con-
dition on the distribution of L(L + (X))~ is similar to one used by Hannan and
Van Ryzin (1965) in an investigation of a nonsequential compound classification
problem and can be verified by showing v, and v, have bounded densities with
respect to Lebesgue measure. Such is the case for example for P, the normal
(0, 1) distribution and P, the normal (8, 1) distribution. The second is that proof
obviously carries over practically verbatim to any other sequence of distributions
G,, G,, - .. for which the weights w, ,(G,) are consistent for E;_, at an i~} rate.
Gilliland, Hannan and Huang (1976) have considered distributions G, defined
by G(8;) = { t%(1 — t)'=*dA(f) witha = }i_, 6, for a wide class of probabilities
A on (0, 1) and proved analogous of Proposition 4.1 for such G;. Note that
since for 8,_, € ®! with

B = Xiz16; we have
Gii—l(oi—l) = (tp(l - t)i_ﬂ + t’Hl(l - t)i_ﬂ_l) dA(t) = Gi—l(ai—l)

such sequences of distributions can be used to produce whole classes of's.c. ad-
missible, s.c. optimal classification rules.

5. Admissible finite state empirical Bayes procedures. The attractive se-
quence compound properties of the kind of procedures discussed in the previous
section can carry over to empirical Bayes problems. That is, consider a situation
where (0,, X)), (0,, X,), - - -, (0, Xy) are i.i.d. with @, distributed according to
some unknown prior G on © and the conditional distribution of X, given 4, is
P,,. Based on the observable Xy = (X, - - -, X;;) an action is to be taken and
loss L(fy, a) suffered. Many authors have considered procedures of the form
dy(Xy) where G is an estimate of G based on X,,_, and proved

lim sup EL(f, d3(Xy)) — R(G) < 0.

Such an asymptotic optimality property does not guarantee empirical Bayes ad-
missibility. That is, there may well be 4(X,) for which

E[L(0y, ds(Xy)) — L(0y, 6(Xy))] = 0

for each G with strict inequality for at least one G. (This notion of empirical
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Bayes inadmissibility was used by Meeden (1972) and recently explored exten-
sively in finite ® problems by Boyer (1976).) But for finite ® component prob-
lems, carrying out the program described in Section 3 can produce rules that
are not only s.c. admissible and s.c. optimal but also both admissible and
asymptotically optimal in the empirical Bayes problem.

Boyer (1976) has noted that in finite state problems, decision rules which are
“second level Bayes” versus priors with large support are admissible empirical
Bayes rules. That is, with & standing for the m dimensional probability simplex
and g € & the m vector (9,, gy, - -+, gn), if A is a probability with support all of
¥ and 0°(-) minimizes

(6) § Zoyeen § L(0y, 6(Xy)) dPy (Xy) TTiLs 95, dA(8)

and has finite risk (6), then ° is an admissible empirical Bayes rule. But inter-
changing the sum and integration with respect to A it is immediate that if G, is
of the form G,(8y) = § TT, 9o, dA(8) and 6,(+) is of the form (3) with i = N,
then 8,(X,) is an admissible empirical Bayes rule. If in addition a result like
Proposition 4.1 holds, subject to measurability considerations the following
lemma can be used to establish a rate of convergence to asymptotic optimality
for 6,(Xy)-

LeMMA 5.1. Let X have conditional distribution P, given §, 6 have distribution
G on © ={1,2, --., m} and the pair (0, X) be independent of a random vector
V=, V). Suppose 0 < L(0,a), for any We R™ dy, exists and § L(0,
dy(x)) dPy(x) < B. Then

EL(8, d,(X)) — R(G) < B X, EIG({K)) — Vil .
ProofF. Iterating expectations
(7 EL(6, dy(X)) — R(G) = EE[L(6, d(X)) — R(G)| V],
= E(R(G, d,) — R(G, d;)) .
But by the minimizing property of a component Bayes rule the right side of (7)
is bounded by
r.h.s. (7) £ E(R(G, d,) — R(G, d;) — (R(V, d,) — R(V, d3))) -
= 2 E(G({k}) — Vi)(R(k, dy) — R(k, dp)) -
< BE Zi., |G({k}) = Vil - 0

For example, returning to the two state classification component of Section 4,
since the Robbins prior can be expressed in the form Hy(8,) = § t*(1 — f£)'~* dt
with a = }}5_,0,, ¢,(Xy) is admissible in the empirical Bayes classification .
problem, and since for fixed X, _,, ¢,(Xy) is component Bayes versus the prior
giving weights 1 — p,_, and p,_, to states 0 and 1 respectively, by the lemma

EL(6y, $5(Xy)) — R(G) < 2 max (L,, L)E|G{1}) — py_,| -

But triangulating about p,_, = (1/(N — 1)) 215 6,, applying Proposition 4.1
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and the moment inequality

_ 4A7@a(N — D)+ 1 (G~ G())?
EIG(1) = Py-i| = o + (e = Ty

It is typical of results in this area that the empirical Bayes optimality of ¢ follows
under less stringent assumptions than the s.c. optimality, that is, no regularity
of the distribution of p(X) is needed.
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a student at Michigan State University.
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