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An extremal problem in large deviation is solved for the one and two
sample r-statistic. Let T, = X/sx be the s-statistic, except for normalizing
constants, based on z independent observations fron F where X and sx are
the sample mean and standard deviation. The statistic for the two sample
case is Tn = (X — Y)/[(s% + s3)/2]* based on two independent samples of
size n. Let a be positive. We find the rate of convergence to 0 of
supr Pr(T» = a) where the sup is taken over F’s symmetric at 0 in the one
sample case and all F’s in the two sample case. The results are applied to
obtain the Bahadur exact slopes of the #-statistic for the full nonparametric
hypothesis testing problems. We include a table giving the slopes of the
t-statistics. the slopes of standard rank statistics and the maximum possible
slopes. This table shows that, in both the one and two sample situations,
the #-statistic has, as expected, efficiency strictly less than one when com-
pared with the normal scores statistic, and the slope of the normal scores
test is very close to the maximum possible slope, at normal alternatives.

1. Introduction. Efron (1969) discusses the size of the one-sample #-statistic
under weak symmetry conditions on the underlying distributions. He gives
convincing evidence that a normal approximation to the size leads to a conserv-
ative test of zero location under most underlying distributions. Working with
the t-statistic in the form S, = Yr, X,/(3 7, X.%)}, he shows whenever X, - - -,
X, are independent and symmetric about zero, ES,* (v = 4, 6, 8, - ..) are largest
if the X’s are symmetric Bernoulli trials (P(X, = 1) = P(X, = —1) = 1), so that
S, is less dispersed about zero than the standardized binomial distribution. Using
an extension of the above moments result from Eaton (1970), we establish in
Theorem 2.4 the minimal rate that P(S, > nif) converges to zero as n goes to
infinity and show that it is attained under symmetric Bernoulli trials. We estab-
lish in Theorem 2.5 a similar result for the two-sample #-statistic under a common
df for both samples.

Using our large deviation results, we obtain the Bahadur exact slope of the
t-statistic for testing the full one-sample and two-sample nonparametric
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hypothesis. These exact slopes are compared to standard rank tests in Section 3.
At any specific alternative, the maximum possible slope is attained by a linear
signed-rank test in the one-sample problem and by a linear rank test in the two-
sample problem in view of Ho (1973) and Hajek (1976), respectively. The slopes
of all these tests (calculated at normal alternatives) are given in Table 1 of Sec-
tion 4. In view of existing results on’ maximum slope, the permutation t-test
also has maximum slope at normal alternatives. Table 1 shows that at normal
alternatives, the unpermuted z-test (for which, in view of Efron’s results, a nor-
mal approximation to the size tends to give a conservative test) is less efficient
than the normal scores test and that the slope of the normal scores test is very
close to the maximum slope, in both the one-sample and two-sample problems.
These results indicate that the unconditional ¢-test is inefficient for the one- and
two-sample problems as we expected. However, this investigation leaves un-
known the efficiency of an adaptive version based on the ordered absolute values
for the one-sample or the combined sample for the two-sample problems as Efron
proposes.

2. Extremal problems connected with large deviations of the t-statistic. Let
X=7xn Xin, syt = N, Xn — X2,

where X, X;, - .., X, are independent and identically distributed random vari-
ables. The one-sample t-statistic T, is defined as follows, except for certain
normalizing constants.

T, = X/sy if 5,>0
= 4 o0 if Y>0, Sy, =0
= —o0 if 1‘7<0, sy=0
=0 if X=0, s5,=0.
We will use the longer form of the z-statistic as opposed to the short form of
Efron (1969). The proof of the results about the two-sample r-statistic will be
analogous to that of the one-sample t-statistic. By a large deviation of T, we
mean the event {T, > a} for a > 0. By an extremal problem for the probability
of large deviations of T, we mean the finding of the rate of convergence to 0 of
sup, Px(T, = a), where the sup is taken over a large class.
We begin with one df under which the large deviation rates for 7', are known.

Let B stand for the symmetric Bernoulli df, i.e., under B, PyX,=1) =
Py(X, = —1) = 4.

LeMMa 2.1. Let0 < a< 1. Then

(2.1 lim, % log P5(X > a) = inf,,, log (e~** cosh 2)

-r(h+ 40
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where for 0 < p,, p, < 1,

1 — P)
I(p,, p.) = pylog£L + (1 — p)lo ( E

PROOF. The proof follows by a direct application of a theorem of Chernoff
((1952), Theorem 1) and noting that E,(e**1) = cosh 2. The equality of the last
two expressions in (2.1) is straightforward and will be used again in the proof of
Theorem 2.4. []

LEMMA 2.2, Leta > 0. Then

. 1 _ 71 a 1
2.2) lim, - log P,(T,, > a) = —1I (E et 7) .

ProOF. Since s5,? = 1 — X? with probability one under B,

P,T,>a) =P, <X’ > _"_>

1+ @)
Lemma 2.2 now follows from (2.1). [

LetA,, A, -+, A, bei.i.d. with common df B. The following lemma contains
an inequality between expectations of functions of heterogeneous linear func-
tions of A,, -, A, with those of homogeneous linear functions of A, - .-, A,,
and it plays an important role in the Theorems 2.4 and 2.5.

LemMma 2.3. Let A, .., A, be i.i.d. with common df B. Let &, ...,&, be
constants. Then for all 2,

(2.3) E(exp{a Xi-, §:A) = E(exp{2 X: A - (X §/n)*))
= [cosh A( X &.2/n)}]" .

Proor. This result is a special case of a theorem of Eaton ((1970), Example 2
of Theorem 1) and can also be deduced directly from the inequalities of Efron
((1969), moments theorem) connecting the moments of Y}, &;A, with those of

(D A)(Z &l mt. O
THEOREM 2.4. Let & be any class of df’s symmetric about O for which the weak
closure contains B (or any other symmetric two-point distribution). Then for a > 0,

. 1
(2.4) hm"—n— log supz. o Po(T, = a) = <‘% + m ) ?)

ProoF. Let Fe . Throughout the proof 3 = 0 as before. Let &, ---, ¢,
A,, ..., A, be independent and, for i =1, - .., n, let &, and A, have df’s F and
B respectively. The df of T, under F equals the df of
(2.5) DA&fn X &S — (X A5
with all sums ranging over i = 1, ..., n. A little algebra reveals that for §* =
nt Y &2and b = a(1 + a*)?

(2.6) {Z A& T &0 — (D AE)TH 2 a} = {Z A6 57 = nb}
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application of Markov’s inequality and Lemma 2.3 yields
Py(T, = a) = P(3] 06,57 = nb)
(2.7) < inf,,, exp{—nib} cosh" 2
= exp{—nl(3 + b/2, })} ,

with the last step following from Lemma 2.1. We can find a sequence {F,} in
& such that F, — B weakly. Since {T, > a} is an open set of R,,

(2.8) supy. o Pp(T, = a) = liminf, P, (T, > a) = P(T, > a),

for each n. In view of Lemma 2.2, relations (2.7) and (2.8) establish Theorem
24.

REeMARK. The inequality in (2.7) holds for all n and @ and is quite remark-
able. For instance, it implies that T, — 0 with probability one under any df
symmetric about zero.

Together with X, s5,? defined above, let ¥ = Y7 Y,/n, 5, = 32 Y2n — 17,
N = 2n. The two-sample t-statistic T,*, except for certain normalizing con-
stants, is defined as follows:

Ty* = (Y — X)/[(sy® + $7)/2] if 524+52>0

= oo if YT—X>0, s52+5.2=0
= — if Y—X<0, s5,24+5.2=0
=0 if Y—X=0, syt 85, =0.

THEOREM 2.5. Let & be any class of df’s for which the weak closure contains B
(or any other two-point distribution with equal probabilities). Then for a > 0,

. 1 a
2.9) hm,,F log supze . Py o(Ty* = 2a) = —I<% + m ) %) .
Proor. Let Fe 5. Let Z,, .-+, Z,, A, ---, A, be independent and, for
i=1,...,N,let Z and A, have df’s F and Brespectively. The df of T,* under
(F, F) equals the conditional df given }; A, = 0 of
(2.10) 20 AMZINZ(Z - Z) — (B AZ))
with Z = N7' 3} Z, and all sums ranging over i = 1, ..., N. A little algebra

reveals that for 2 = N' 3} (Z, — Z)*and b = a(1 + @)~}
Py (T = 2a) = P(Z_AJ(?__Z__) > 6N |3 A, = 0)

p(_Z_Ai(_ZL;_—_Z_) > bN)

<
B P(Z A =0)

Following the proof of Theorem 2.4 the theorem can now be established by
using (2.10) and the fact that N=*log P(3; A, = 0) >0 as N — oo. []
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REMARK. An inequ-lity analogous to (2.7) but for the two-sample f-statistic
can be established. It implies that T* — 0 with probability one under any df
symmetric about zero.

3. Bahadur efficiency of the ¢-test. We will consider the one-sample f-statistic
first. Let &, denote the class of all continuous df’s symmetric around 0, i.e.,
F(x) = 1 — F(—x — 0) for all x. Consider testing &, : F € &, against the alter-
native G: F = G where G is a nonsymmetric df. We shall further assume that
G admits a density function g and

3.1 { xg(x)dx = p, { Xg(x)dx = p* + o, p,0*>0,
and

9(x) |°
(3.2) stlogm[ (9(x) + 9(—x)) dx < oo

and log g(x)/g(—x) is of bounded variation in every closed bounded interval.
Put

a= plo
where ¢ and ¢ are as defined in (3.1). For the one-sample r-statistic we have
T,—a

with probability one under G, and from Theorem 2.4 and Theorem 7.2 of
Bahadur (1971), the Bahadur slope of T = {7} under the null hypothesis &, at
the alternative G is
— 1 a

(3.3) (T, &, G) = 21(7 ST %) .

REMARK. In view of the hypothesis of Theorem 2.4, the null hypothesis could
be any class of df’s symmetric about 0 for which the weak closure contains B.

The slopes of the sign statistic, Wilcoxon signed-rank statistic, the normal
scores signed-rank statistic (also called the Fraser statistic) for the one-sample
problem present no new problems since these rank statistics have null distri-
butions. These slopes are the same as given by Bahadur (1960a) and Klotz
((1965), Section 2). Section 4 presents these three slopes together with ¢(T, &,
G), when G = @, |, in columns 5, 4, 6 and 2 of Table 1 respectively. This table
clearly shows that the efficiency of the t-test is less than one when compared
with the normal scores signed-rank test, at all normal alternatives.

By appealing to Raghavachari ((1970), Theorem 1) and Ho ((1973), Theorem
7) it is easily seen that the maximum slope for this problem is attained by a
linear signed-rank statistic and this maximum slope is 2K(G, G*) where

G*(x) = (G(x) + 1 — G(—x))/2
and for any two df’s U and V if dV = f(x) dU, let
KU, V) = E,[log f(X)];
otherwise let K = oo.
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Putting /(a) = K(G, G*) when G = @, ,, we have

(3.4 I(a) = a® — (ZL)i {>. log cosh (xa) exp{—(x — a)?/2} dx .

T
Values of /(a), obtained by numerical integration, are tabulated in column 7 of
Table 1. It can be seen that the slope of the normal scores signed-rank test falls
short of this maximum slope by less than .002.

Next we will consider the two-sample #-test. Let ., be the class of all con-
tinuous df’s. Consider the two-sample problem which consists of testing the
null hypothesis & *: F = Ge &, against the alternative (F, F,): F = F,,
G = F, where F,, F, are df’s possessing density functions which satisfy

(3.5) § x fi(x) = w5 § X fi(x) = p* + 02,
i:1’2’ ;uz_#l>0’ 012+022>0’
and

(3.6) § 10g 209 (1) + fi() dx < oo
fi(%)
and log f,(x)/fy(x) is of bounded variation in every bounded closed interval.
Put
2a = (p, — m)/l(o)" + o2} .
For the two-sample t-statistic T,*, we have
T,* —2a

with probability one under (F,, ;). From Theorem 2.5 and Theorem 7.2 of
Bahadur (1971), we have that the Bahadur slope of T* = {T,*} under the null
hypothesis .5 * at the alternative (F,, F,) is

a
(3.7) o, 5, (P F) = 21 (% + TR }).

REMARK. In view of the hypothesis of Theorem 2.5, the null hypothesis could
be any class of df’s symmetric about 0 for which the weak closure contains a
two point distribution with equal probabilities.

This slope is the same as the slope of the one-sample r-statistic under &
against an alternative G leading to the same a. When F; =@, ,,i = 1,2 and
(#2 — 1,)/2 = a, the slope is tabulated in column 2 of Table 1. The slopes of
the Wilcoxon rank sum statistic, median scores statistic, the normal scores rank
statistic for this two-sample problem present no new problems since these rank
statistics have null distributions. These slopes are the same as given by
Woodworth ((1970), Section 4). We present these slopes for normal alterna-
tives, namely F, = <I>#i,1, i=1,2, with (g, — ¢;)/2 = a in columns 4, 5, 6 of
Table 1 and are exactly the same as the slopes of the one-sample Wilcoxon and
normal scores signed-rank tests at a normal alternative G = ®, ;. From this
table we see that the slope of T* is smaller than the slope of the normal scores
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test, thus once again confirming the fact that the #-test is less efficient in the
Bahadur sense.

Hajek (1974) has obtained the maximum possible slope at the alternative
(F,, F,) and has shown that this slope is attained at a simple linear rank test
which depends on (F,, F;). When F;, =@, ,, i =1,2, (¢, — p))[2 = a, it is
easy to check from relation (15) and Corollary 2 of Hajek (1974) that this maxi-
mum slope is equal to 2/(a) where I(a) is as given in (3.4). This maximum slope
is given in column 7. It can be seen that the slope of the normal scores statistic
falls short from this maximum by less than .002.

4. Table giving the various slopes at normal alternatives. Table 1 gives the
various slopes, simultaneously for the one-sample problem at the alternative

®,, and for the two-sample problem at the alternative (®, , @, ) with
(s — )2 = a
TABLE 1
Exact slopes (x %) of one-sample test statistics at the alternative @g,1,
and of two-sample test statistics at the alternative (®pu,,1, @p,,1)
Shift Statistic
one-sample a t Wilcoxon Sign gggsa ! %Zi:ﬁg m
two-sample  (p1 — p2)/2 t Wilcoxon  Median scores. :
.125 .007712 .007416 .004956 .007752 .0077521
.250 .02971 .02914 .01961 .03031 .0303113
.375 .06298 .06368 .04336 .0657 .0657679
.500 .1036 .1087 .07522 1114 .1114215
.625 .1479 .1615 .1139 .1642 . 1642302
.750 .1927 .2189 .1580 2211 .2211709
.875 .2361 2779 .2058 .2793 .2794855
1.000 .2767 .3360 .2557 .3365 .3368310
1.125 .3139 .3910 .3062 .3908 .3913517
1.250 .3475 .4416 .3552 .4409 .4416957
1.375 .3778 .4867 .4034 .4859 .4869890
1.500 .4048 .5262 .4478 .5254 .5267823
1.625 .4289 .5600 .4885 .5593 .5609802
1.750 .4503 .5884 .5250 .5880 .5897642
1.875 .4694 .6120 .5570 .6117 .6135150
2.000 .4865 .6311 .5846 .6309 .6327416
2.125 .5018 .6464 .6079 .6463 .6480201
2.250 .5155 .6585 .6272 .6584 6599435
2.375 .5278 .6678 .6429 .6677 .6690852
2.500 .5389 .6749 .6554 6747 - .6759730
2.625 .5490 .6802 .6652 .6800 .6810742
2.750 .5580 .6841 .6841 .6839 .6847883
2.875 .5663 .6869 .6867 .6867 6874474
3.000 .5738 .6889 .6887 .6887 .6893195

oo In2 In2 In2 In2 In2
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