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RANK ORDER ESTIMATION WITH THE DIRICHLET PRIOR!

By GREGORY CAMPBELL AND MYLES HOLLANDER
Purdue University and Florida State University

Suppose that a sample of size » from a distribution function F is ob-
tained. However, only r (< n) values from the sample are observed, say
Xi, -+, Xr. Without loss of generality, we can consider Xi, -+, X» to be
the first r values in the (unordered) sample. The problem is to estimate the
rank order G of X; among X, - -, X,. The situations of interest include
F nonrandom, either known or unknown, and F random. The random
case assumes that F is a random distribution function chosen according to
Ferguson’s (Ann. Statist. 1 (1973) 209-230) Dirichlet process prior. Since
this random distribution function is discrete with probability one, average
ranks are used to resolve ties. A Bayes estimator (squared-error loss) of G
is developed for the random model. For the nonrandom distribution func-
tion model, optimal non-Bayesian estimators are developed in both the case
where F is known and the case where F is unknown. These estimators are
compared with the Dirichlet estimator on the basis of average mean square
errors under both the random and nonrandom models.

1. Introduction and summary. Let X, X,, - - -, X, be a sample of size n from
the distribution function F. The problem is to estimate the rank order G of X,
among X,, - - -, X,, from the knowledge of r (< n) observed values X, -- -, X,.
Without loss of generality we can consider X, - - -, X, to be the first 7 values in
the (unordered) sample. Situations in which the model is applicable include the

following:

(i) The Mantilla River has flooded four times in this decade with the severity
of each flood measured by X, the height of the river. On the basis of the ob-
servations X, - - -, X,, how can we estimate the severity of the first flood, in the
group of these four and the next five that occur? Equivalently, how can we
estimate the rank order of X, among X, ..., X,? (Note that we could, for
example, interchange the roles of X, and X, and pose the question in terms of
estimating the severity of the fourth flood.) Here r = 4 and n = 9.

(ii) An astronaut (WW, say) undergoes, as one of a pilot group of 15 astronaut
trainees, extensive preparation for a space mission. Each astronaut earns a score
X, a measure of overall performance. WW’s score is X,. Based on the observed
values X, - - -, X;, we wish to estimate WW’s rank in the total pool of 50 trainees.
(Only the best ten astronauts, as measured by X, will be chosen for the mission.)
Here r = 15 and n = 50.
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(iii) A swimmer (SS, say) competes in the first heat (six swimmers to a heat)
of a two-heat class A event of fast swimmers. SS swims the required distance
in X, seconds. We observe X,, -- -, X,, the times of the heat-1 swimmers, and
we wish to estimate SS’ rank order among X, - - -, X;,. (The six fastest swimmers
in the two heats combined earn individual awards and also score points for their
swim teams.) Here r = 6 and n = 12.

Of course example (i) is easily generalized to cover other undersirable (or
desirable) events, example (ii) is applicable in other situations where a subgroup
is selected to be on a team or perform a mission, and example (iii) can be stated
in the context of other sports competitions.

This paper emphasizes the case where F is a random distribution function
chosen according to Ferguson’s (1973) Dirichlet process prior with parameter
a(+), a (completely specified) measure on the real line with the Borel o-field.
In this Dirichlet model, care must be taken in the definition of a rank order
since the distribution chosen by a Dirichlet process is discrete with probability
one (see Ferguson (1973), Blackwell (1973), Blackwell and MacQueen (1973),
and Berk and Savage (1977)). To resolve the issue of ties with regard to the
rank order, average ranks are used.

DeriniTION 1.1. Let K, L, and M denote the number of observations of X,
X,, - -+, X, that are less than, equal to, and greater than X, respectively. Then
the rank order G of X, among X, X,, - - ., X, is the average value of the ranks
that would be assigned to the L values tied at X, in a joint ranking from least
to greatest, if those values could be distinguished; namely,

(1) G={K+D)+(K+2) 4+ - +(K+L)L=K+(L+1)2.

Similarly, for K’, L', and M’ defined, respectively, to be the number of obser-
vations of X), X,, - .., X, less than, equal to, and greater than X, the rank order
G' of X, among X, X,, ---, X, is given by G’ = K’ + (L’ 4 1)/2.

Section 2 contains a brief description of the Dirichlet process. Let X, --., X,
be a sample from the Dirichlet process. Given X, - -, X,, the problem is to
estimate G, which is a function of K, L, and M. The prior distribution of (K,
L, M)given X, corresponds to the no data situation for this problem. In Section 3,
the posterior distribution of (K, L, M), given X, - - -, X,, is obtained (Theorem
3.2). For squared error loss, the mean of the posterior distribution of G is the
Bayes estimator. This mean, denoted G, is found (Theorem 3.3) to be:

(1.2) G =0+ (n = r)fa’(—o0, X,) + Ja((XDYa'(7)

where .72 is the real line and a’ = a + Y7, 6, , where g, is that measure which
concentrates its entire mass of one at the point z. The remainder of Section 3
furnishes the necessary distribution theory to compute the mean (3.15) and the
variance (3.16) of G, conditional on the configuration (K, L, M).

For purposes of comparison with G, two non-Bayesian competitors are
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introduced; viz.,

(1.3) G, =G + (n— r)FX),
for the case where F is known and continuous, and
(1.4) G, ={(n+ /(r + 1)}G'

in the case where F is unknown. Note that G, can be obtained from G, by
replacing F(X,) withG’/(r + 1)in(1.3). In Section 4 it isshown that, if X, - - -, X,
isa sample from the nonrandom distribution function F, G, has minimum average
mean square error in the class of estimators of the form aG’ + bF(X,) + ¢, and
G, has minimum average mean square error in the class of estimators of the
form aG’ + c. We note that if, for the Dirichlet estimator G, the measure a(+)
is nonatomic with a(—co, x) = a(2)F(x), then as a(#) tends to infinity, G
approaches G,. (Itis helpful to think of the Dirichlet framework as intermediate
to the cases of F unknown and F known. In the Dirichlet model F is random,
but partial information is supplied through specification of the parameter a(.).)

The estimators G, G r» and G, are compared on the basis of mean square errors
for two models; viz., (I): the nonrandom model where X,, ..., X, is a random
sample from a known, continuous (nonrandom) distribution function F and,
(IT): the Dirichlet model where X, - - -, X, is a sample of size n from a Dirichlet
process with parameter a(-), where a(+) is assumed to be known. The estimator
G, has the smallest average mean square error for model I and G is so preferred
in model II. However, for moderate a(.%#), the estimator G performs remark-
ably well in model I; in average mean square error it is positioned between G,
and G, but as a(.%#) increases it approaches G .

2. Dirichlet process preliminaries. This section contains the basic definitions
and results concerning the Dirichlet process that will be used in the sequel.

DEFINITION 2.1. Let Z,, - .., Z, be independent random variables with Z,
having a gamma distribution with shape parameter a, > 0 and scale parameter
l,j=1,---,k. Let a; > 0forsome . The Dirichlet distribution with parameter
(@, - -+, a;), denoted by F(a,, - - -, a,), is defined as the distribution of (Y, - - -,
Y,), where Y; = Z,/3t  Z,, j=1, .- k.

ProposITION 2.2 (Wilks (1962), page 179). The Ur,,...,r, moment of the Dirichlet
distribution Z(a,, - - -, a,) is, for | < k and r; a nonnegative integer such that r,
positive implies a; positive for i =1, ..., [,

(2.1) Prpooir = I‘(a1-|-r1)-~-l"(a,+rl)l"(a)"
T [(a,) - - - T(a)(a + 1)

Lr

where « = 3 ¥ a,andr = 3L r,.

For k a positive integer, let yi*] denote the ascending factorial y(y + 1) - ..
(¥ + k — 1) and define y? = 1. Then it is convenient to rewrite (2.1):

(2.1 Py, = I o m)falr]
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DEFINITION 2.3 (Ferguson (1973)). Let (-2, ") be a measurable space and
let & denote a nonnull, finite measure on (&2, %"). Then P is a Dirichlet process
on (&, &) with parameter « if, for everyk = 1,2, ..., and every measurable
partition (B,, - - -, B,) of 27 the distribution of (P(B), --., P(B,)) is Dirichlet
with parameter (a(B), - - -, a(B,)). ‘

DEFINITION 2.4 (Ferguson (1973)). The “2Z~-valued random variables X, - - -, X,

constitute a sample of size n from a Dirichlet process P on (27, %) with pa-
rameter «aif, foreverym = 1,2, ..., and measurablesets 4, - - -, 4,,, C,, - - -, C,,,

(2.2) Pr{X,eC, -+, X,eC,|P(4), ---, P(4,), P(C), -, P(C,)}
= I, P(C;) a.s.
where Pr denotes probability.

THEOREM 2.5 (Ferguson (1973)). Let P be a Dirichlet process on (27, ') with
parameter o and let X,, - - -, X, be a sample of size n from P. Then the conditional
distribution of P given X\, ---, X,, is a Dirichlet process with updated parameter
a + i, 0y, where 0, denotes the measure which concentrates a mass of 1 at z,
mass O elsewhere.

3. The rank order problem. Assume that, for X}, - .-, X, a sample of size n
from a Dirichlet process on (%, &%) (<% is the real line, <% the Borel o-field),
only the first 7 variables are observed. The problem is to estimate the rank order
(recall Definition 1.1) of X,, based on the realizations X, = x,, X, = x,, - - -,
X, = x, and the knowledge of the parameter a(.) of the Dirichlet process. To
obtain the proposed Bayes estimator, we begin by deriving (Theorem 3.2) the
posterior distribution of (K, L, M), given X, X,, ---, X,. In this regard, it is

helpful to first establish Proposition 3.1 which will be used in the proof of
Theorem 3.2.

ProrosiTiON 3.1. If X,, ---, X, is a sample of size r from a Dirichlet process on

(2, F') with parameter a and if A€ <&", the n-dimensional Borel o-field, then
Pr{(X,, ---,X,)eAd|X,=x, ---, X, = x,}
= {Pr{(X,, -, Xy)ed[ X, =x,, - -+, X, = x,, F}dQ,(F)

where Q,. denotes the Dirichlet process prior with updated parameter ' = a +
Z{=1 aXi‘

Proor. Recall (cf. Breiman (1968), page 74) that if E|Y| < oo and if o-fields
< and & are such that & — &, then
(3.1) EY|2)=EEY|E)|Z) as.

Now, let Y = I,, & = o(X, = x;, - -+, X, = x,) and & the o-field generated by
X,, --+, X, and F. The outer expectation on the right of equation (3.1) is the
integral over the conditional distribution of F given X, = x, - - -, X, = x,, which,
by Theorem 2.5, is the properly updated Dirichlet process. []
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THEOREM 3.2. Let X, ---, X, be a sample of size n from a Dirichlet process
with parameter . Then
Pr{(K,L,M)=(k,l,m)| X, =X, ---, X, = x,}
(3.2) = (kb 1577, mem )@ (— 00, xp)IE=F " ({x )1

X (%, c0)m (),
where K! = k', L' =1I', and M’ = m’.
Proor. Given X, .-, X,,
(K, L, M) = (k, 1, m) is:
(3.3) Pr{(K,L,M)=(k,l,m)| X, =x,, -+, X, = x,, F}
= (kmrr, 57, mem ) FO7) 7 (F(x) — F(x 7)) 70 (L — Fx))™™™
where K = k', L' = I',and M’ = m’'.
By Proposition 3.1, the desired probability can be obtained by integrating

the right-hand side of (3.3) with respect to the probability Q,.(F). The integral
is readily evaluated, using Proposition 2.2, to yield equation (3.2). []

and F, the probability of the configuration

The problem is to estimate the rank order of X, having observed X, = x,, - - -,
X, = x,, where X, ..., X, is a sample from a Dirichlet process with parameter
a(+). The Dirichlet process prior on the space of distribution functions induces
a prior distribution on the random variable G. The posterior distribution of G
given X, ..., X, is obtainable from Theorem 3.2. Let L(g, a) denote the loss
incurred by taking action a (an estimate for the rank order) when g is the true
state of nature (the rank order). Our development is for squared-error loss,
L(g,a) = (9 — a)®. Recall that (K, L, M) is definitionally dependent on X.
Consider first the “no-sample” or “no-data” problem. The “no-sample” problem
is to estimate the rank order of X, based on the single observation X, (r = 1).
(If there is really no sample, the problem is not defined.) Then the solution of
the “‘data” problem, with X, - .., X, provided (r > 1), can be obtained by esti-
mating G — G’ by merely updating the Dirichlet parameter and adding G’ to it.
The Bayes solution to both the “no-sample” and the “data” problem, since the
loss is quadratic, is given by the mean of the posterior distribution of G given
the r X’s. This conditional mean is obtained in the next theorem.

THEOREM 3.3. The mean of G = K + (L + 1)/2, conditional on X, -- -, X, is
given by the right-hand side of equation (1.2).

Proor. Given X, = x,, ---, X, = x, such that (K, L', M) = (K, I', m"), the
random vector (K — K’, L — L', M — M’) has a Dirichlet compound multinomial
distribution (cf. Johnson and Kotz (1969), page 309) with parameters n — r,
a’'(— o0, x,), a'({x,}), and a’(x,, o). Thus,

EK—K +(L—L)2|X,=x, - -, X, = x,)
= (n — r{a'(— o0, x,) + $a'({x})}/a'(Z2) ,
and the result follows. []
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It is convenient to rewrite equation (1.2) as:
(3-4) G = {(n + (RN + ARG’ — }(n — r)|(r + «(F))
+ (n — na(—=o0, X,) + sa({X;D]/(r + a(2)) -
Note that G depends on X}, - .-, X, only through X, and G'.

The subsequent distributional results of this section culminate in a derivation.
of the conditional mean and variance of G, given (K, L, M).

THEOREM 3.4. (i) If X, ---, X,, ---, X, is a sample of size n from distribution

function F, the distribution of (K', L' — 1, M') given (K, L, M) = (k, [, m) is multi-
variate hypergeometric with parametersr — 1, k, 1 — 1, m. (ii) If X}, .-+, X, .-+, X,
is a sample of size n from a Dirichlet process, then (K', L' — 1, M") given (K, L, M) =
(k, 1, m) is again multivariate hypergeometric with parametersr — 1, k, [ — 1, m.

Proor. The first follows from a direct hypergeometric argument and (ii) is
obtained by integration of the mass function of the multivariate hypergeometric,
conditioned on F, with respect to F, and noting that the original mass function
of (i) does not depend on F. []

CoRrOLLARY 3.5. If X), - -+, X, is a sample of size n from a Dirichlet process,
the mean and variance of G’ given (K, L, M) = (k, I, m) are:
(3.5) EG|(K,L,M)=(k,l,m)) ={(r — 1) (g — 1)/(n — 1)} + 1,
Var (G’ |(K, L, M) = (k, I, m))
(3.6) =(r—1)(n—-nrn-—-1)*n—2)"!
X {k(n — k — 1) + (47 — 1)(n — D}
To compute the conditional mean and variance of G, we first determine the
mean and variance of a(—co, X)) + 1a({X,}) given (K, L, M) = (k, I, m).
THEOREM 3.6. The conditional probability of X, given (K, L, M) = (k, [, m) is,
for C a Borel subset of %
(3.7 Pr{X,e C|(K, L, M) = (k, [, m)} .
= Jo a(—oo, ) (a({x}) + 1)l'""Ha(x, o)™ da(x)/¢, ; m(a) ,
where
(3:8)  drim(a) =, a(—oo0, X)“”(a({x}5 + 1) =Ha(x, o)™ da(x) .
Proor. The distribution of (K, L, M) given X, and F is given by:
(3.9) Pr{(K, L, M) = (k, I, m)| X, = x, F}
= (, 153 W) F()H(F(x) — F(x7))' (1 — F(x))™ .
By Proposition 3.1, integration of the right-hand side of equation (3.9) over the
updated Dirichlet prior distribution for F with parameter a + 4, yields:

Pr{(K, L, M) = (k, I, m)| X, = x}
= (.77 m)a(— 0o, )M (a({x}) + 1)F-a(x, co)™/(a(F) + 1)1,
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The joint probability of X, and (K, L, M) is therefore:
(3.10)  Pr{(K, L, M) = (k, 1, m), X,e C}
= (154, m) So a( =00, )M a({x}) + 1) Va(x, co)™ da(x)a(:2)™ .

1, m
Thus, the marginal of (K, L, M) is:
(3.11) Pr{(K, L, M) = (k, I, m)} = (,. I3 )k m(@)a(S2)

Dividing the joint probability (3.10) by the marginal of (3.11) yields the con-
ditional probability as given in (3.7). ]

CoROLLARY 3.7. The conditional mean and variance of a(—o0, X)) + }a({X}})
are given by:

(3-12)  E(a(—o0, X,) + $a({X})|(K, L, M) = (k, I, m))
= ittt (@) + [300,001, (@) Pi sy m(@)] — k — 1]2..
Var (a(—oo0, X)) + 3a({X.})| (K, L, M) = (k, I, m))
= ¢k+z,z,m(a)/¢k,t,m(a') - ¢k+1,l,m(a)/¢k,l,m(a)
(3'13) - [¢k+1,t,m(a)/¢k,z,m(a)]2 + %fS[’k,Hz,m(a)/‘ﬁk,l,m(a)
— $Pk41,m(Q) i1 (@) — e 141, m(Q) Di 1, m(@)]?
+ ¢k+1,t+1,m(a)/¢k,t,m(a) - ¢k+1,l,m(a)¢k,l+1,m(a)/[¢k,l,m(a)]2 .

Proor. Write a(—oo, X;) as (a(—oo, X;) + k) — k and a(—oo, X))? as
(a(—o0, X;) + & — (2k 4 Da(—oo0, X)) — k(k + 1) and integrate with respect
to the conditional distribution of X, given (K, L, M) = (k, 1, m). []

THEOREM 3.8. X, and(K', L', M") are conditionally independent, given(K, L, M)=
(k, 1, m).

Proor. The result will be established if, for any Borel set C in ., the joint
probability of X, ¢ C and (K", L', M) given (K, L, M) = (k, 1, m) is the product
of the probability of (K, L', M") given (K, L, M) = (k, I, m) and the probability
of X, e C given (K, L, M) = (k, 1, m). Now, witha’' = a + > 5Xi’

Pr{(K', L', M") = (k', I, m"), (K, L, M) = (k, 1, m)| X, = x}
=Pr{(K, L, M) = (k, I, m)| (K", L, M) = (K, I',m), X, = x}
(3.14) X Pr{(K', L', M") = (K, I m')| X, = x}
= (ot 7, o) (— 00, X)EH I ({x) )1V (x, 00) (M=) (PR
X (e, 771, mo)a(— 00, X)W a({x}) + 1)-1
X a(x, co)™(a(F2) 4 1)ir-11,
The last equality of (3.14) follows from (3.2). Thus, the joint probability is
given by:
Pr{(K", L', M") = (K', I', m'), (K, L, M) = (k, 1, m), X, e C}

= (bei, 0, ) Ger, 521, e

X Jo a(—o0, x)a({x}) + 1)l'Ma(x, co)™ da(x)/a(2) .
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Division by the marginal of (K, L, M) from (3.11) yields:
Pr{(K’, L', M") = (K',I', m"), X, e C|(K, L, M) = (k, |, m)}
= {2 GG}
X o a(— o0, )N a({x}) + D)l Na(x, co)™ da(x)/fy 1 m(@) - [

Consider the special case where a is a nonatomic measure. Then, since
a({x}) = 0 for all x,

Drrm(@) = §, a(— oo, x)FI1U-a(x, co)l™ da(x)
= (I = DI W #) — y) dy -
Note that ¢k,,’m(¢.1) in this special case depends on a(.) only through a(<#) and
depends on the / ties at X, only by the factor (! — 1)! The mean of G given
(K, L, M) = (k, I, m) is given by
E(G|(K, L, M) = (k, I, m))
(3.15) = [{n + a(@Wr + (W[ + {7 — (g — D/(n — D)]
— [b{n — A)fr + «(ZN] + [ — Yl + a(2))]
X E{a(—oo, X,) + $a((X})| (K, L, M) = (k, 1, m)},
where the conditional mean of a(— oo, X)) + 3a({X,}) is given by (3.12). The
variance of G given (K, L, M) = (k, I, m) is obtained by applying Theorem 3.8:
Var (G|(K, L, M) = (k, I, m))
= [{n + a(PW/{r + AR — 1)(n — r)(n — 1)7(n — 2)
(3.16) X {k(n —k =0+ @ — 1)(n— D}
+ (1 — D) + (R
X Var [a(— o0, X)) + }a({X}) | (K, L, M) = (k, [, m)],

where the conditional variance of a(— oo, X)) + ia({X}}) is given in (3.13).

4. Average mean square error comparisons of rank order estimators. In this
section optimal properties are developed for the competitors G, and G, of the
estimator G and the Dirichlet estimator is then compared with these two esti-
mators under the nonrandom and the Dirichlet models. The comparisons are
on the basis of average mean square errors (mean square errors conditioned on
configurations (K, L, M) = (k, [, m) and then averaged over the rank configura-
tions). Inthese comparisons the nonatomic measure « is related to the continuous
distribution function F by the equation a(—oo, x) = a(Z2)F(x), in order that
the distributions of samples of size one, from the distribution F(x) and from the
Dirichlet process with parameter «, agree. '

Model 1: The nonrandom model. Assume F is a nonrandom, continuous dis-
tribution function from which a sample X, ..., X,, ..., X, is generated. For

the rank configuration (K, L, M) based on X,, it is clear that L = 1 with prob-
ability one and further that all n configurations (k, 1, m) are equally likely. Let
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(K’, L', M’) denote the rank configuration of X, among X, ---, X,. Theorem
4.1 is useful in the proof of Theorem 4.2, the latter providing optimal properties
of G, and G,. The proof of Theorem 4.1 is omitted because part (i) is well
known, part (ii) is straightforward, and part (iii) is readily obtained from Theorem
3.4.

THEoREM 4.1. If X, -.-, X,, - -+, X, is a sample from a continuous distribution
function F and if G = K + $(L + 1) and G’ = K" + (L' + 1), then:
(1) The distribution of F(X,) given G = g is beta with parameters (g, n — g + 1).
(ii) X, and G’ are conditionally independent, given G = g.
(iii)
4.1 EG|IG=g)={r—1(g—1D/n—-1}+1,
4.2) Var(G'|G =g) = (r— I)(n — r)(n — 1)*(n — 2)~(n — g)(g — 1) .
Theorem 4.2 establishes an optimality property of the estimators G, and G,
defined in equations (1.4) and (1.3), respectively.

THEOREM 4.2. (i) In the class of linear rank order estimators of the form aG' + c,
the estimator G, minimizes the average mean square error under model 1.

(ii) In the class of linear rank order estimators of the form aG’ + bF(X,) + c,
the estimator G minimizes the average mean square error under model 1.

Proor. For the general estimator aG’ + bF(X,) + ¢, the average mean square
error & (say) is given (using part (ii) of Theorem 4.1) by:

1 ,
S = — Do {@E(G G = g) + BEFAX)|G = g) + ¢* + ¢

(4.3) — 2agE(G'|G = g) — 2bgE(F(X))|G = g) — 2cg

+ 2abE(G’ |G = g)E(F(X))|G = g) + 2acE(G’|G = g)

+ 2bcE(F(X,)|G = 9)} .
The first and second conditional moments of G’ and F(X,) are obtained from
Theorem4.1. With b = 0, solving the two equations (0.5/da) = 0, (0.5/dc) = 0,
yields @ = (n 4 1)/(r + 1), ¢ = 0, corresponding to G,. Similarly, solving the
three simultaneous equations (0.5/da) = 0, (0,/0b) = 0, (0.54/oc) = 0, yields
a=1,b=n—r,c=0, corresponding to G,. Since the second partial deriva-
tives of (4.3) are positive, G, [G] is the desired minimum for part (i) [(ii)] of
the theorem. []

Johnson (1974) considered the rank order estimation problem when F is non-

random, for the case where F is unknown and the case where F is known.
When F is unknown, he showed that for r > 1,

(4.4 T=(@r—-1)"Yn—-1)G—1)+1

is, conditional on G = ¢, an unbiased estimator of g. When F is known, Johnson
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showed that
(4.5) T =[G + (n —r + 1)F(X)
— {(n = n)f(n — DI/ +{2r — n — D/(»* = }]

is, conditional on G = ¢, an unbiased estimator of g.

Tables 4.1 and 4.2, for the nonrandom model and Dirichlet model (to be
discussed below), respectively, give average mean square errors for G, G,, G, T
and 7. Comparisons are for the cases 3 < n < 5, r < n, and a(#) = 1.0 and
10.0. The estimator T is not defined for r = 1; this is indicated by an asterisk
in Tables 4.1 and 4.2. Average mean square errors in Table 4.1 are obtained
via (4.3), and average mean square errors in Table 4.2 are obtained from ex-
pression (4.6).

Model 11:  The Dirichlet model. Assume X, --., X, is a sample of size n from
a Dirichlet process with unknown parameter a(+), where, for convenience of
mean square error calculations, «(.) is assumed to be nonatomic. With the
relationship a(— oo, x) = a(F2)F(x), it suffices to write the average mean square
error . (say) for estimators of the form aG’ 4 ba(— o, X;) 4 ¢, where a, b,
and ¢ can depend on n, r, and a(<#7). In this case, for the rank order configura-
tion (K, L, M), the event {L = 1} does not occur with probability one, so that
averaging, over all possible nonnegative integer triples (k, /, m) such that k +
I + m = n, is necessary. Let 4 denote the event {(K, L, M) = (k, [, m)}. Then,
using Theorem 3.8 we find the average mean square error is

= Zatmikriem=n PT{(K, L, M) = (k, I, m)}[a*E ,((G")?)
+ OE (a}(—o00, X)) + ¢ + (k + ¥( + 1))?
(4.6) + 2abE (G")E ,(a(— o0, X)) + 2acE (G') + 2bcE ,(a(— oo, X))
— 2a(k + $(I + 1)ELG') — 2b(k + §(I + 1))E,(a(— oo, X))
— 2c(k + 3(I + 1))]-
For particular values of a, b, and ¢, ., can be calculated by using.(3.5), (3.6)
and (3.11)—(3.13).

TABLE 4.1
Average mean square errors for model 1

AMSE (G)

noor AMSE (G,) AMSE(Gr) AMSE(T) AMSE (7)
a(#) =10 a(#) =100
3001 .417 .336 .667 .333 * .667
3 2 .194 .168 222 .167 .333 .250
4 1 .688 .506 1.250 .500 * .833
4 2 444 .340 .556 .333 1.000 AT2
4 3 .193 .169 .208 .167 .250 215
5 1 1.000 678 2.000 .667 * 1.000
5 2 .750 .516 1.000 .500 2.000 678
5 3 .438 .343 .500 .333 .667 .417
5 4 .190 .170 .200 .167 222 .201
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TABLE 4.2
Average mean square errors for model 11

a( ) n r AMSE(G) AMSE(G.,) AMSE(Gr) AMSE(T) AMSE(T)
1.0 3 1 .278 .361 .361 * 1.028
1.0 3 2 .093 .102 .125 139 .292
1.0 4 1 .521 .708 .708 * 1.540
1.0 4 2 .231 .269 .361 .417 .690
1.0 4 3 .087 .092 .125 .104 .257
1.0 5 1 .833 1.167 1.167 * 2.167
1.0 5 2 .417 .500 .708 .833 1.208
1.0 5 3 .208 .229 .361 .278 .611
1.0 5 4 .083 .087 .125 .093 .250

10.0 3 1 .343 .619 .346 * .740
10.0 3 2 .157 .198 .159 .290 .258
10.0 4 1 .554 1.174 .561 * .985
10.0 4 2 .339 .501 .346 .871 .518
10.0 4 3 .156 .184 .159 .218 224
10.0 5 1 .792 1.894 .803 * 1.258
10.0 5 2 .545 .909 .561 1.742 .795
10.0 5 3 .335 .445 .346 .581 .460
10.0 5 4 .156 .176 .159 .194 212

In Table 4.1, G, has uniformly the smallest average mean square error and
AMSE (G,) < AMSE (T), results that follow from Theorem 4.2. Note that for
the value «(<2) = 10, AMSE (G) is close to (but greater than) AMSE (G,).
(Recall that as a(#) — oo, G — G,.) In view of the prior sample size inter-
pretation of a(57) (see, for example, Ferguson (1973)), Table 4.1 suggests that
with just one prior observation, G is to be preferred to G, and with as few as
ten prior observations, G performs well relative to the optimal estimator G.
Since Johnson’s estimators were developed using an unbiasedness criterion it is
not surprising that they do not do well in terms of average mean square errors.

Table 4.2 reflects the (Bayesian) optimality of G. Note that, as in Table 4.1,
as a(2) increases from 1 to 10, the gap between AMSE (G) and AMSE (G,)
narrows (but of course in model II, AMSE (G) is less than AMSE (Gy)). Again,
not unexpectedly, Johnson’s estimators lag behind.
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