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MAXIMUM LIKELIHOOD ESTIMATION OF
DOSE-RESPONSE FUNCTIONS SUBJECT
TO ABSOLUTELY MONOTONIC
CONSTRAINTS

By H. A. Guess aAnND K. S. Crump
National Institutes of Health and Louisiana Tech University

Statistical properties are derived for maximum likelihood estimates ot
dose-response functions in which the response probability is related to the
dose by means of a polynomial of unknown degree with nonnegative
coefficients. Dose-response functions of this form are predicted by the
multistage model of carcinogenesis. We first establish necessary and suf-
ficient conditions for strong consistency of the estimates. For these results
no assumptions are made about the polynomial degree, so the number of
coefficients to be estimated is effectively infinite. Under some additional
assumptions, which do involve restrictions on the polynomial degree, we
obtain the asymptotic distribution of the vector of maximum likelihood
estimates about the true vector of polynomial coefficients. Because the
coefficients are constrained to be nonnegative, the limiting distribution
will generally not be normal.

1. Introduction. The procedures currently used to assess the human cancer
risk associated with a potentially carcinogenic chemical often involve estimating
the cancer risk to laboratory animals at very low doses of the chemical on the
basis of data from experiments conducted at much higher doses. This problem
of interpolating a dose-response relation in the low-dose range between the back-
ground (usually zero) dose and the other test doses is frequently referred to in
the cancer literature as the low-dose extrapolation problem. The qualitative out-
come of this extrapolation depends strongly on the statistical model used for
estimating dose-response relations.

Several standard dose-response models are capable of providing a reasonably
good fit to the data in the high dose range (e.g., where the cancer risk at the
given dose exceeds the risk at background dose by about 10~* or more) but yield
risk estimates differing by several orders of magnitude in the very low dose range,
where the increased risk over background is perhaps 10-° or less. These large
differences in estimated low-dose risks are due to differences in the assumed
shapes of the dose-response curves in the low-dose range. Some models (e.g.,
the one-hit model) assume that the increased risk over background is roughly
linear in dose in the low-dose range. Other models (e.g., the probit model and
the multi-hit models) assume the low-dose part of the dose-response curve to be
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extremely flat, so that the increased risk over background decreases with de-
creasing dose at a much faster than linear rate.

To help resolve questions regarding the shapes of dose-response curves for
chemical carcinogens, we have developed an estimation technique which assumes
a parametric dose-response curve form which is biologically plausible and is
general enough to include both linear dose-response curves and curves that are
much flatter than linear in the low-dose range. Our dose-response relation is
taken from a general multistage carcinogenesis model developed by Armitage
and Doll (1961), extended by Peto (1974) and by Crump, et al. (1976), and investi-
gated by Brown (1976). In this multistage model it is assumed that some unknown
number of different random events (e.g., mutations) must occur in a single cell
before cancer is initiated. The occurrence times of the events are assumed to
be exponentially distributed. The time from cancer initiation ina single cell
until an observable tumor develops in a tissue is assumed not to depend on the
dose rate. These assumptions can be used to show that the excess rate of cancer
incidence over background should be given by the product of a function of dose
and a function of the exposure duration. The function of dose is a polynomial
with nonnegative coefficients, representing sums of products of the nonnegative
rate coefficients for the exponential event time distributions. Expressions of
this form for the excess rate of incidence over background lead to dichotomous
response probabilities of the form

(1) P{O(d)} = 1 — exp{—-0Q(d)},

where Q(d) is an absolutely monotonic polynomial of unknown degree in the
dose rate d, that is

(2) Q(d) = Xioqid" s

where g, = 0 for all i and only a finite number of the g, are nonzero. We call
P{Q(d)} the response probability at dose d or the cancer risk at dose d. When
d, is a background dose level we call P{Q(d)} — P{Q(d,)} the increased risk over
background at dose d > d,.

In the experimental setting which we shall consider, a population of laboratory
animals is partitioned into n - 1 treatment groups, the jth group consisting
of N, animals, 0 < j < n. The animals in the jth treatment group are exposed
toadoserated; (0 < d, < d, < --- < d,)of a chemical carcinogen whose dose-
response curve is to be estimated. Let X, be the number of animals in the jth
treatment group that are observed to have a positive response (e.g., a specific
type of tumor). Each animal in the jth treatment group is assumed to have a
probability P{Q(d;)} of responding, independently of all other animals in the
experiment. Thus the likelihood of the experimental outcome is given by

) L = L0 LA — PO

We wish to obtain and study maximum likelihood estimates of, first, all of
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the coefficients ¢,, and subsequently the function P{Q(d)}, 0 < d < d,. The
present paper is devoted to the statistical properties of the estimates. Their
mathematical properties (e.g., existence and uniqueness of the maximum likeli-
hood estimates and algorithms for their computation) are described in Guess
and Crump (1976). Applications of this work to the problem of obtaining risk
estimates for specific carcinogens from experimental animal data are discussed
in Crump, Guess and Deal (1977).

In the present paper we establish the asymptotic properties of the constrained
maximum likelihood estimates as all of the sample sizes N, increase with the test
dose levels 4, - - -, d, remaining fixed. We first show that a necessary and suf-
ficient condition for.strong consistency of the maximum likelihood estimates of
all of the ¢; (0 < i < oo) is that the true polynomial Q(d) be determined uniquely
within the class of absolutely monotonic polynomials by its values Q(d,) at the
experimental doses d;, 0 < j < n. Necessary and sufficient conditions for the
latter follow at once form the work of Krein and Rehtman (1959, Theorems
4.3 and 3.1) and Karlin and Studden (1966, Chapter 7). In essence, our result
means that the statistical interpolation problem yields consistent estimators as
long as the idealized deterministic interpolation problem has a unique absolutely
monotonic solution, which it will have whenever the number of test doses is
somewhat larger than the true number of stages in the multistage carcinogenic
process. It is interesting to note that in a certain sense we have consistent esti-
mators for infinitely many parameters using data from only a fixed finite set of
doses. Although only finitely many ¢, can be nonzero we do not know which
these are and hence we admit an infinite number of maximum likelihood esti-
mators, all but finitely many of which will converge to zero.

Once strong consistency established we obtain the asymptotic distribution of
the vector of maximum likelihood estimates about the true coefficient vector.
To prove this result we must assume the degree of the true polynomial Q to be
known and we must limit the number of estimated coefficients to be no greater
than the number of test doses. Since the true values of some of the coefficients
to be estimated can be zero and since the estimates are constrained to be non-
negative, the limiting distributions will generally not be normal.

We summarize below some mathematical properties of the maximum likeli-
hood estimates. These properties are needed for the statement and proof of the
statistical results. For a more detailed discussion, the reader is referred to Guess
and Crump (1976).

In many, but not all, cases there will exist a unique absolutely monotonic poly-
nomial Q whose likelihood (3) is higher than that of any other absolutely mono-
tonic polynomial. In some cases it is not possible to attain the supremum of the
likelihood functions within the class of absolutely monotonic polynomials. An
example of this is given in Guess and Crump (1976). The reason for this has to
do with the shape of the dose-response curve near d,, the highest dose tested.
If the response frequency X,/N, at d, lies above the general trend of responses
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at the lower doses, then as absolutely monotonic polynomials of increasingly
high degree are admitted into the class over which the maximum is taken, it
becomes possible to fit the response at the highest dose with a high order term
¢(d/d,)* which hooks up sharply at d, and is vanishingly small at all lower doses.
In the limit it is therefore possible for the maximum likelihood polynomials of
increasingly high degree to approach a curve having a positive jump disconti-
nuity at the highest dose tested and to approach a smooth curve at all doses
d < d,. The easiest way to accommodate any mathematical difficulties caused
by this behavior in the high-dose range is to enlarge the class of functions over
which the maximum is taken, so as to include functions which are absolutely
monotonic polynomials on the interval [0, d,) and are permitted to have a non-
negative jump at d,. Let

4)  AMI = {f|f(d) = Qd) + 9.04,(d), Q(d) = L q:",
9, = 0 forall i, g, =0 for all but finitely many i}
where
0;,(d) =0 d<d,
=1 d>d,.
Henceforth we shall assume the response probabilities to have the form

() P{f(d)} =1 — exp{—[(d)}, feAMJ.

2. Strong consistency of the risk estimates. We establish necessary and suf-
ficient conditions for strong consistency of the risk estimates for the case of
biological interest, where the true function f in (5) is an absolutely monotonic
polynomial, i.e., ¢, = 0. Of course we must allow the maximum likelihood
estimates of g, to take on positive values in order to guarantee that the likeli-
hood function will attain its supremum over the class of absolute monotonic
polynomials. It will follow from the theorem that the maximum likelihood
estimates of g, will converge to zero with probability one. Thus we assume
that the true response probabilities P are of the form (5) with ¢, = 0 and we
use data from tests conducted at a fixed finite set of doses {d,}?_, to estimate
P{f(d)} for all d, 0 < d < d,. The type of limit theorem appropriate to this
experimental setting is one in which the sample sizes N, at the doses d; are in-
creased but the set of doses is fixed and finite.

It is easy to state a necessary condition for strong consistency: The finite set
of true response probabilities, [ P{f(d;)}]7-,, at the experimental doses must deter-
mine the true response function f uniquely within the class of absolutely mono-
tonic polynomials. What is remarkable is that this condition is also sufficient.
To prove this result we will need to introduce a definition and some notation.

DEfFINITION. Let fe AMJ have the form (4). The index of f, written I(f), is
defined as follows. Let k; < k, < --- < k,, be the subscripts of the coefficients
g; in the definition of f (0 < i < oo0) such that ¢, > 0. Divide the numbers k;
beginning with k, into groups in the following manner. If k,, — k,_, > 1 orif
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k, = oo then the first group consists only of k,; otherwise the first group con-
sists of k,, and k,,_,. Remove the first group from the sequence k; < k, < -
< k,, and repeat the above operation on the sequence which remains. Once all
subscripts in the sequence have been grouped in this manner we compute I(f)
by counting one for each group consisting of oo alone or 0 alone and two for
each other group.

This definition is adopted from Krein and Rehtman (1959, page 127). What
we call /(f) is what they call the index of the sequence of subscripts k, such that
gy, > 0. Itiseasy tosee that /(f) is greater than or equal to the number of posi-
tive coefficients in the representation of f in the form (4).

A function g(d) = 37, a,d’ will be said to be absolutely monotonic on the
closed interval [0, D] if @, = O for all i and g(D) < co. This definition is equiva-
lent to the definition of Krein and Rehtman (1959, page 130).

LEMMA 1. Let f e AMJ have the form (4). If d, > O then I(f) < n is a necessary
and sufficient condition that Q be the only absolutely monotonic function on [0, d,]
satisfying the conditions

(6) 0(d;) = f(4;) 0<j=n-—1
0(d,) < f(d,) -

If d, = O then a necessary and sufficient condition is that I(fp) < n — 1, where

fr(d) = Q'(d) + 9..9,,(d)-

Proor. First take the case d, > 0. By Theorems 4.3 and 3.1 of Krein and
Rehtman (1959) a necessary and sufficient condition that Q be the only absolutely
monotonic function on [0, d,] satisfying (6) is that the index of the canonical
representation of the set {f{(d;)}7_, in the form of their equation 3.4 be less than
or equal to n where, translating their notation into ours, ¢; = f(d;), u,(i) = d;

for i < oo and u,(c0) = d,,. This index is the same as our I(f).
When d, = 0 we have g, = f(0) and the conditions (6) are equivalent to

M Q'(d;) = d;{f(d;) — f(0)} I<sjsn—1
0'(d,) = d,7{f(d,) — f(O)} -

By the argument for the case d, > 0 a necessary and sufficient condition that Q"

be determined uniquely by (7) within the class of functions absolutely monotonic

on [0, d,] is that I(f;) < n — 1. Since g, = f(0) holds automatically, uniquely

determining Q' is equivalent to uniquely determining Q. This completes the

proof.

REeMARK. It follows from Karlin and Studden (1966, page 230) that if g is an
absolutely monotonic function on [0, d,] satisfying (6) then there exists an abso-
lutely monotonic polynomial satisfying (6). Thus Lemma 1 also provides a neces-
sary and sufficient condition for the polynomial Q to be determined uniquely
within the class of absolutely monotonic polynomials.

Let (Q, <&, ) be a probability space on which all of the random variables
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in the subsequent discussion are defined. For each vector p = (p,, - - -, p,) with
0 < p; < 1, we define the likelihood function of X = (X, - - -, X)) with respect
to p by

%) L(X, P) = T30 (1,51 — p3)"s~s
Let
©) S=[plp; = Plo(d)), 0 < j< n;ge AMJ].

Then, for each w €2, a maximum likelihood estimate of f is defined to be any
function f,, satisfying

(10) f., € AMJ
and
(11) L[X(w), P{f.(+)}] = sup [L(X(w), p)[p € S].

Let 0 <dy<d < --- <d, be a fixed finite set of doses and let {N,™, ...,
N,™}m_, be a sequence of sample sizes such that

(12) lim, ., N,™ = oo
and
(13) 0 < lim sup,, {Nj(m)/Ni(m)} < oo

for all 0 < i, j < n. We are now ready to state and prove a strong consistency
theorem for the maximum likelihood estimates.

THEOREM 1. Let f be an absolutely monotonic polynomial satisfying the applicable
uniqueness condition of Lemma 1. If the sample sizes N\, ..., N, ‘™ satisfy (12)
and (13) and if f,, satisfies (10) and (11) for each m,

fm(d) = Z?:O qimdi + qioo Bdn(d) ’

then
(14) lim, . 4m=¢  for 0<i<oo wp.l,
(15) lim,, ., sup,y, |fu(d) — f(d)] =0 w.p. 1,
(16) lim,, ... Sup,z, [P{fa(d)} — Pfd)}| =0 w.p. 1,
and
(17) lim, ... E[P{f,(d)}] = P(f(d)} d=d,.
Proor. By the result (i) of Rao (1973, page 356) it follows that
(18) tim,,_... £,(d) = f(d,) 0<j<n, wp.l.

Hence to prove (14) it suffices to show that ¢,,, — ¢, for all 0 < i < co when-
ever w € Q is such that f, (d;) — f(d;) for 0 < j < n.

Without loss of generality we will assume throughout the remainder of the
proof that d, = 1 so that the g,,, are uniformly bounded by sup,, f,..(1) < oo.
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To prove (14) it suffices to show that the limit q, = (qou> - *> G.,) Of any com-
ponentwise convergent subsequence q,,, is the vector q. Since 0<d;, <1 for
0 < j < n— 1, we have by the dominated convergence theorem

frrald;) = Do Qimads = Lm0 Gi0ds’
and so by (18)
(19) Lo gt = fd;) 0<sj=n-—1.
By Fatou’s lemma we have
(20) TG+ Guo = HMinf (T Gime + Goma) = lim fr(1) = f(1)
and hence

21 Y0 G = f(1) -

By Lemma 1 there exists only one absolutely monotonic function on [0, 1] satis-
fying (19) and (21). This implies g;, = ¢; for 0 < i < co. Using this fact in
(20) and recalling that ¢, = 0 and that ¢, = 0 (because f is an absolutely
monotonic polynomial by hypothesis) yields ¢.., = 0 = g,,. This proves (14).

Since the g,,,, are uniformly bounded by sup,, f,.(1), the dominated conver-
gence theorem and (14) together imply that

(22) lim,, .. fa(d) = f(d) w.p. 1

for each de[0, 1]. Since f,, and f are bounded right continuous functions on
[0, 1], (15) and (16) follow from (22) by the standard argument used to prove
the Glivenko-Cantelli theorem. (See Chung (1968), pages 124-125.) The
reasoning there applies to our case even though f, and f are not probability
distribution functions. Equation (17) follows from (16) since the terms in (16)
are uniformly bounded. This completes the proof.

3. Asymptotic distributions. In this section we obtain the limiting distri-
bution of the maximum likelihood estimates for the true vector of polynomial
coefficients. Using this result it is straightforward to compute asymptotic dis-
tributions for other quantities of interest, such as the increased risk over back-
ground. To derive the limiting dlStI‘lbuthn we must restrict the number of
coefficients that are allowed to be nonzero in maximizing the likelihood to belong
to a fixed finite set whose cardinality is no greater than the fixed finite number
of experimental doses.

The main idea of the proof is to use the Kuhn-Tucker conditions for the
likelihood maximization problem to express the difference between the maximum
likelihood estimate of the coefficient vector and the true coefficient vector as a
function of an asymptotically normal vector. We can then deduce the limit
theorem via a continuous mapping argument. For the proof we will need some
additional notation.

Let T be a nonrandom fixed finite subset of {0, 1, - - -, oo}, let card (') denote
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the number of elements in T, and let

(23)  AMIT) = {fe AMJ| f(d) = X721 4:d* + 4. 04,(d), 4: 2 O
forall i=0,1,...,00 and ¢, =0 for igT}.

In this section we will assume that the true function f is in AMJ(T) and we
will maximize the likelihood function over AMJ(T) instead of over AMJ as in
the previous section. For all results except Theorem 3 we will require that
card (T) < n if both d, =0 and 0¢ T and that card (T) < n + 1 otherwise.
Using Descartes’ rule of signs it is simple to show that this condition guarantees
that a function f ¢ AMJ(T) is determined uniquely within AMJ(T) by the values
fldy), ---, f(d,). Since we can have card (T) = n 4+ 1 = I(f), it can happen that
these values determine f uniquely in AMJ(T) but not uniquely in the larger set
AMJ.

Take a sequence of sample sizes satisfying (12), let N,, = (n + 1)=* 37, N,;™

and let N, be the vector (N,™, ..., N,). In place of (13) we impose the
stronger condition that

) N.(m
(24) lim,, . (W - rj> (Ny™)t = 0

for positive constants r; and for all 0 < j < n. Let X,, = (X,", -+, X,'™) be
the response vector associated with the sample size vector N,, and let B, (u) =
[6im(w)], ;e be the matrix whose elements are defined by

0*In L
bmu) = —— = (X, Plg(+)}),
i = 2 (X PlaC))
where g e AMJ(T) and u is its coefficient vector. Further let Z = [g, ], ;. be
defined by

(25) o, = "+ D Zioor, PRUAT — Pfd)}1d "
Y

In (25) it is to be understood that d°=1 (even if d,=0) and that
P Y f(d)}d*** =0 if 0 = d, = f(0) and k + [ > 0. Since we shall not consider
the case for which d, = 0, f(0) = 0, 0 ¢ T all hold simultaneously, Z will be well
defined. In order that X be strictly positive definite it suffices that Z, ., x, d;* = 0
forj=0, ..., nimplies x, = 0 for all k'e T. Under the hypotheses of Theorem
2 below, this follows easily from Descartes’ rule of signs.

Let q = (¢;);cr be the coefficient vector associated with the true function
fe AMJ(T) and let q,, be the coefficient vector associated with a maximum like-
lihood estimate f,, of fin AMJ(T).

THEOREM 2. Suppose q, > 0 for at least one i ¢ T|{co} and (12) and (24) hold.
Assume card (T) < n + 1 except when d, = 0 and f(0) = 0. If both d, = 0 and
f(0) = 0 assume card (T) < nand 0 ¢ T. Then

Nm,}(qm - q) =Y )
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where = denotes convergence in distribution and Y = (Y,),.r is a random vector whose
distribution is uniquely determined by the conditions
(26) . XY=Z+C,
(27) C, =20, Y, =20 if ¢,=0, C,Y, =0, and
Cq, =0, forall ieT,

andZ = N(0, Z). For a given value of Z (26) and (27) uniquely determine Y and C.

PRrOOF. By a minor adaptation of Guess and Crump (1976, Theorem 2) there
exists a unique f,, € AMJ(T) for m sufficiently large maximizing the likelihood

function L over .AMJ(T). Let G,(q) = (d1n L/dg,);cr. Then the coefficient
vector q,, associated with f, satisfies the Kuhn-Tucker conditions

’ (= , (>)
(28) G.(4,); = 0 if ¢, =0,

for all ie T. Expanding G, in a Taylor series about q and using (28) we get

(= . (>)
(29) G.(q); = —{B.(¢0.)  @n — @)} if ¢, =0,

where q,,’ lies on the line joining q and q,,. Adapting the argument in Zacks
(1971, pages 246-247) and using standard asymptotic normal theory it is not
difficult to show that N,,!G,,(q) = Z, where Z = N(0, Z). Next define

(30) Z, = N,”*G,(q) + {£ + N,,7'B,.(9,,)}Y.. »

where Y,, = N,%q, — q). As in the proof of Theorem 1 it can be shown that
q, —q w.p. 1. It follows easily that N,,~'B,(q,,) — —Z w.p. 1. Thus the second
term in (30) converges to zero in probability and hence we have

(31) ZzZ,—71.
It now follows from (29) that Y,, satisfies the Kuhn-Tucker conditions for the
quadratic programming (QP) problem
(32) minimize ;ZmTy + Ly"Zy
subject to  y, = —N,Yq,, ieT.

Since X is strictly positive definite this QPlproblem has a unique solution for
each value of the vector Z,. Thus we may write Y, = F,(Z,) where F (z)
denotes the unique solution to (32) when Z,, is replaced by z. If {z }5_, is a
sequence of vectors converging to a vector z it is readily seen that Fm(zm) —
F(z) = y, where y is the unique solution to the QP problem
(33) minimize —z"y + }y’Zy

subjectto y, =0 if ¢, =0, ieT.
Hence by the continuous mapping theorem of Billingsley (1968, Theorem 5.5)
it follows from (31) that F (Z,) = F(Z). In other words Y,, = Y where Y is a
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random vector whose distribution is uniquely determined by the requirement
that Y solve (33) when z is replaced by Z. Since (26) and (27) are the Kuhn-
Tucker conditions for this problem they determine the distribution of Y unique-
ly. This completes the proof.

COROLLARY. If g, > O for all i€ T then, under the hypotheses of Theorem 2,
N.A(@, — @) = N0, Z7).

This follows from the fact that C = 0 in (26) when all the ¢, are positive.

In conclusion we state without proof a theorem about the asymptotic distri-
bution of the vector (P{f,(d,)}, - - -, P{fn(d,)}) when the number of coefficients
g, which are positive is greater than the number of test doses at which the
response probability is positive. In this case the coefficients are not uniquely
determined by the response probabilities at the doses and an approach along the
lines of Theorem 2 cannot be used. In such a situation the theorem below could
be used in conjunction with linear, or in some cases nonlinear, programming
to compute conservative confidence intervals for the increased risk over back-
ground. The particularly simple form of the limiting distribution in the follow-
ing theorem does not, of course, hold under the hypotheses of Theorem 2.

Let

yom — (N;")P{f(d))} = P{Ad)}]
’ {PUfn(dHT — P{fu(dp}I}

and let I, denote the k X k identity matrix.

THEOREM 3. Suppose f, f, are defined as in Theorem 2 and N;™ — oo for
each j.

(i) Ifdy > 0 or f{0) > O then q, > O for at least n 4 2 elements k ¢ T implies
Vo™, -, V™) = N, I.,).

(ii) If both dy, = 0 and f(0) = O then q, > O for at least n + 1 elements ke T
implies (V,™, --., V™) = N, I,).
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