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EXPONENTIALLY BOUNDED STOPPING TIMES OF
INVARIANT SPRT’s IN GENERAL LINEAR
MODELS: FINITE mgf CASE

By S.-S. PERNG

Howard University
A general theorem which is useful in proving the exponential bounded-
ness of the stopping time of sequential tests for parameters in general linear
models is formulated; this theorem is formulated under the assumptions
that the squared error has a finite moment-generating function and the se-
quence of the running averages of the concomitant variables converges.
Applications are given.

1. Introduction. Let y,, y,, - -- be independent random variables (vectors)
with common distribution P, and for each n let L, be a function of y,, ---, y,
and n. For [ > 0, let the stopping time N be defined as

(1.1) N=min{n = 1: L, ¢ (-1 1)}.
This research will be concerned with the exponential boundedness of N, i.e.,
(1.2) P[N > n] £ cp™, n=1,2,...

for some ¢ > 0 and 0 < p < 1. If (1.2) cannot be satisfied, then P is called
obstructive. The stopping time N is said to be finite a.s. (P) if P[N = oo] = 0.

When the y,’s are i.i.d., the exponential boundedness of N has been extensively
investigated by Wijsman [16-21] and Lai [9]. See also Savage and Sethuraman
[12], Sethuraman [13] and Stein [15]. For the non-i.i.d. case, the field is rela-
tively unexplored. Berk [2] considered the stopping time of SPRT based on
exchangeable models. In this paper another situation of the non-i.i.d. case where
the y,’s are the observed values of linear models is studied. Some examples of
this type were found in Perng [11]. It is noted that the test of hypotheses about
the parameters in linear models is widely studied. References can be found in
[5] or [6].

To keep the paper from being too long, some generality in the “true” distribu-
tion P of the random error and in the concomitant variables is sacrificed. It is
assumed throughout that under P the error has 0 mean and its square has a finite
moment-generating function (mgf) and that the sequences of the running averages
of the concomitant variables and the running averages of the squares converge.

The exponential boundedness of N is proved for the sequential 7*-test of pa-
rameters in general linear models under the above assumptions, unless the random
error e satisfies

(1.3) Plfley=0]=1,
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for a particular function f. Similar results for other sequential tests are also
noted.

General theorems about the exponential boundedness of N are given in Sec-
tion 2.

2. Theorems in exponential boundedness. In this section general theorems are
proved that present sufficient conditions for the validity of (1.2) with N defined
by (1.1) and L, being a sequence of random variables satisfying certain condi-
tions. The theorems are generalizations of Theorem 2.1 in [17] suited for the
application to the case where the observations come from linear models.

Let u, u,, u,, - «- be i.i.d. random vectors with common distribution P. Write
E(+) for Ep(-).

AssUMPTION A. Let {y,} be a sequence of numbers such that y, — y as n — oo
and Tat1 — Ta = O(n—l)'

AssUMPTION B. Assume that (i) E(u) = & and (ii) E(exp?||#||*) < oo for ¢ in
some neighborhood of 0.

AssumpTiON C. Let {d,} be a sequence of bounded vectors and let {D,} be a
sequence of bounded matrices such that as n — oo, d, —d and D, —» D. (As
usual, ¥, = (1/n) 337 x;.)

Letz, = D,u,. The following theorem is an extension of a theorem of Chernoff
[3] and the proof is similar.

THEOREM 2.1. Under Assumption B with § = 0, zZ, converges to 0 exponentially,
i.e., for any ¢ > 0, P[||z,|]| >e] S cp”, n=1,2, ... for some ¢ >0 and 0 <
o < 1, provided that {D,} is bounded.

The first corollary is an immediate consequence of the theorem by noting
that

(1/m) 2% Dyup — DE = (1/n) 27 (Dye — DY — €) + (1/m) X7 D(wy — €)
+ (1/m) ¢ (D — D)S .

CoRrOLLARY 2.1.1. Under Assumptions B and C, Z, converges to z = D& expo-
nentially.

CoOROLLARY 2.1.2. In Theorem 2.1 or Corollary 2.1.1 z, — z = D¢ a.s. (P).

This corollary is an immediate consequence of Theorem 2.1 or Corollary 2.1.1.
It also holds without Assumption B(ii) (see, e.g., [4], page 122).

Write v,/ = (z,/, d,’) and w,’ = (V,, r,). Also, write v' = (2, d’) and w’' =
(v',7) = (Z,d, 7). Inour application L, may be uniformly approximated by a
random variable n®(w,). To prove the exponential boundedness (and finiteness)
of N, we may write L, = n®(w,) (cf. e.g., [21]). Let(d/ow)P(w)denote a column
vector of partial derivatives.
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AssumpTION D. The function ® has continuous first partial derivatives on a
neighborhood V of w. Let P = (9/0z)® evaluated at w' = (2, d’, 7). Let a, =
P'D, so that P'z, = a,’u,. Assume that a, converges to a and

(2.1) Pld(u —§)=0]<1.
THEOREM 2.2. Under Assumptions A, B(i) and C, if ®(w) + 0, then N is finite
a.s. (P). If Assumption B(ii) also holds, N is exponentially bounded.

Proor. The proof follows the same lines as those in case 1 of Theorem 2.1
in [17] (cf. also Theorem 2.3 in [21]).

THEOREM 2.3. Under Assumptions A, B(i), C and D, if ®(w) = 0, then N is
finite a.s. (P). If Assumption B(ii) also holds, then N is exponentially bounded.

Proor. Without loss of generality, suppose that w = 0. Following an argu-
ment similar to the one found in the proof of Theorem 2.1, case 2, in [17], we
can show (with w,., L;., w,,, and Li;41, playing the role of x,, ®,, %,,, and
®, ., respectively, and using Assumption A in deriving the counterpart of (2.12)
in [17]) that
(2.2) Wir€Viwiine € Vi |Liyn, — L] < 2]

C [l > By or [No,,| <2+ 23] = E,,,, say,

where V' is a small convex neighborhood of w = 0, A — (3/aw)®(0),

@i = (J + Drwisin, — jrws, = (D Yirwo (J + DT Gane — J730)
0 > 0 and r(B)) is a positive integer (large real number) to be chosen later. Note
that the E;’s are independent.

Since Z, — z(= 0) a.s. (P), by Assumptions A and C and Corollary 2.1.2
w, — w(= 0) a.s. (P), so that for each ¢ > 0 there is an integer j, such that
P[F] < ¢, where F is the complement of [w;, eV, j= j]. By the following
lemma for the proper choice of r and B,, P[N;_; E,;] = 0. Thus following the
same argument as in the paragraph containing (2.16) in [17], it can be shown
that P[N = o] = 0.

Next, note that if w;,, e V and |L;,| = [, then N < jr. Thus

(23) PN > jr + 1)l < T4z, Pwris € V]
+ PWiinr € Vi Lo, <Li=0,1,...,jr] ..
By Assumptions A and C, when j is sufficiently large, j = j, say,
Weiror € V] = [Zs0r 2 Vil i=0,1,2, ...,

where V, is the cross-section of V' in the space of Z,. Hence, by Theorem 2.1
or Corollary 2.1.1, for j = j,

2.4) PlW i, @ V] < cyp,09%07, i=0,1,2, ...,
for some ¢, > 0 and 0 < p, < 1. By (2.2) and the lemma below, the second
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term on the right-hand side of (2.3) does not exceed
(2.5) Z;l P[Ej+i] < plj((r+1)c1/z—1)

for j = j,, say. Thus, by (2.4) and (2.5), P[N > j(r + 1)r] < c,p,’ for some
¢; < 0and 0 < p, < 1. The exponential boundedness of N follows (cf. [15]).

LEMMA. For proper choice of r and B,, there is a set J of positive integers such
that for je J, P[E;] < p, < 1 and thatlim inf k’[k = ¢, > 0, where k' is the number
of integers in J not exceeding k.

ProOF. Write A'w; = s; + d;*, where s; = 37_,a(;_,),,;4;_1),+:» the a’sare
defined in Assumption D and d;* = A’w; — s,. It can be shown (see the proof
of (5.8) in [11]) that for a proper choice of r, there is a set J of positive integers
and ¢ > 0 such that for je J,

(2.6) P[|NNw,| = 21 + 20] > ¢

and lim inf k'/k = ¢, > 0, where &’ is the number of integers in J which are less
than or equalto k. Next, by Assumptions Aand C, ||o,|| < B; 217_, ||# -1y, |* +
rB, for some B;and B,. Hence P[||w,||* < B;] = P[B, 227_, ||w||* + rB, < B,] > 1
as B, — co. Thus for je J, by (2.6), B, may be chosen so large that

2.7 P[E;] = P[||lo,]| < By |Nw;| = 21 4 28] = ¢7/2,

where E, is the complement of E;. The lemma follows with p, = 1 — ¢7/2.

3. Applications. Consider the linear model

(3'1) yi:ﬁlxli+‘32X2i+ei9 i=1’2’ )

where the e,’s are i.i.d. distributed random p-vectors, 8, and $, are p x 1 and
px(q — 1) parameters, and {x,;} and {x,} are sequences of real numbers and
(9 — 1)-vectors respectively. Write x,/ = (x,, x},). Let Y, = (y,, ---, y,). De-
fine X, E,, X, and X,, similarly. Let

(32 K= AmErx) = (o) = () (At X Xon)

Ky K X X, X, X1,/
(3.3) F, = (1/n)E, X, = (F,, F,,) = (1/n)E (X.,, X3,
(3.4) kn = Ky — Ko Kin Ko
(3.5) U, = (nk,) Y (I, — X5,(X,,X},) 7 X,,) X,
= (n7%,) ¥k, By + Fip — F1K5LK,,,)
(3.6) W, =Y, - X,)(X,X,))"X,)Y,) = n(M, — F,K,7F,)),

where M, = E,E,’ and I, is the n* identity matrix.
Throughout this section, it is assumed that:

AssuMPTION B’. Under the true distribution P, E(e) = 0, E(ee’) = X, where
Z is positive definite and E(e''”) < oo for ¢ in some neighborhood of 0.



STOPPING TIME OF SPRT 89

AssumpTiON C’. The sequence {x,} is bounded and %,’ = (¥, X2.) — X, =
(X105 X3). The matrix K,, is positive definite for n = g and K, — K as n — oo,
where K = (¥u £n) is positive definite.

21 22

To apply Theorems 2.2 and 2.3, we identify u,/ = (e,, e, ¢,’), § = 0, Z),
D, =G5, zZn=Dyu, = (¢» ) and d, = x,x,’. Hence z,) = (F,, M,) and
d, = K,. Note that as n — oo

(3.7) b,—D= ()(;0 ‘;) and  k, >k = K, — K KKy, > 0

4

and that by Corollary 2.1.2
(3.8) z, = (F,, M,)— (F, Z) = (0, 2) as. (P).

T*-test. Consider the test of H,: 2 = A, vs. H,: 2 = 4,, where 2 = 3,/Z'8,and
0 < 4, < 4,. Togenerate the test, assume that the e,’s are i.i.d. N(0, Z). Then
it is shown (cf. [6] or [10]) that an invariant SPRT is based at stage n on the
probability ratio R, of T, = (n — ¢)U,’W~'U, which is noncentral F-distributed
with p and (n — p — g + 1) degrees of freedom and noncentrality nk,4; under
H,, j=1,2. It can be shown by using a result of Skovgaard [14] (a similar
result was obtained in [8]) that L, = log R, can be uniformly approximated by
n times

O(F,, M,, K, 1) = k(4 — 4) — H(Ass 7> ks 1) + H(Ass 7 ks ) 5
where H(2, 7, k, 7) = }(irkn + E(rkn)), £(x) = (x(1 + x))* + log (x! 4 (1 +x)*),
7. = n/(4n — 4q — 2p + 4) and 5, = T,/(1 4 T,), provided that 7, is bounded
away from 0. Note that by (3.5), (3.6), (3.7) and (3.8), T, — kZa.s. (P). Hence,
if 8, = 0 (which implies 2 = 0), then L,/n — 3k(1, — ;) # O, a.s. (P); therefore
by Theorem 2.2, N is exponentially bounded. From here on assume that 8, = 0
and replace L,/n by ®(F,, M,, K,,, 7,). Again by Theorem 2.2, if ®, = ®(0, z,
K, 1) = 0, N is exponentially bounded. Next consider the case ®, = 0. (It can
be shown that such a case exists.) It is shown that P in Assumption D is found
to be (except for a nonzero factor) P’ = ((4;;) (74;)) with

A, =2B/e andfor 2<j=<¢q, 4;= 2p/0% ki k
7y = —k(6”B)* andfor i>j, =m;= —2kB o*0"p,,
with =-1 = (a%), K-! = (k%) and ¢°¥(¢*") is the ith column (row) of Z~*. Thus
in Assumption D, @’ = P'D and ‘
(3.9) [@'(u — &) = 0] = [trace P'D(e/, e¢’ — 2)" = 0]
= [B/S7% = b+ (2 + B,
where b = x’k** and k*! is the first column of K~'. Since E(B3,/Z,%e) = 0, (3.9)
with probability 1 is equivalent to

(3.10)  B/Z%e = b & (A 4 b?)! with probability o and 1—p,
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respectively, where p = ((4 4 6%} — b)/(2(2 + 6% By Theorem 2.3, unless
(3.10) holds, N is exponentially bounded.

It is noted that if £ = ¢2/, then the T*-test takes the form of the general F-
test. A similar result for the F-test is obtained.

Other tests. For the case p = 1, similar results may be obtained for other
tests, such as the tests for different values of ¢%, 6 and j, (when ¢ = 1), where
0 = /o and ¢* = X. For these tests, L, can be written as n times a function
of W,, U,/W.,}, and U, respectively.

REMARK 1. Exponential boundedness of N implies the finiteness a.s. of N.
For the latter to be true the finite mgf assumption of ||e|| in Assumption B’ is
not needed (see Theorems 2.2 and 2.3).

REMARK 2. Assumptions B’ and C’ in Section 3 are unnecessarily restrictive.
There are cases where N is exponentially bounded with neither condition in the
Assumption B’. In Assumption C’, it suffices that X, and K, have special con-
vergent subsequences (cf. Example 6.1 in [11]). The results for the case without
the finite moment assumption will be reported separately.

REMARK 3. The distribution of (3.10) may be termed suspect (see [18], page
1710), i.e., we suspect that this distribution spoils the exponential boundedness
of N when ®, = 0. This certainly would be the case if the y,’s were i.i.d. (see
[18], Theorem 2.1, page 1710). However, this is not true for the non-i.i.d. case
since a counterexample can be constructed.
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