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POWER-ONE TESTS BASED ON SAMPLE SUMS'

By Tze LEUNG LAl

Columbia University

This paper studies the properties of open-ended power-one tests of H:
6 < 6o versus Hy: 6 > 6o or of H: 6 = 6, versus K: 6 + 6, based on sample
sums stopped at moving boundaries. The behavior of the expected sample
size is analyzed and certain asymptotic results as § — 6y are obtained in
the case of a location parameter and also in the case of an exponential
family of distributions.

1. Introduction. Suppose X;, X,, - - - arei.i.d. random variables with distribu-
tion function F,, 6 ¢ ©, where O is an open subset of the real line. Let §,¢€ ©.
We want to test the hypothesis H,: § < 6, versus H,: § > 6,. Assume that the
family of distributions F, is stochastically increasing, and that for all § > 6,,
E, X, exists and is > p for some real number p. Given 0 < a < 1, let b(n) be
a sequence of real numbers such that

(1.1) lim sup,,_, b(n)/n < p and

Py[S, = b(n) forsome n=m]< a,
where S, = X, + --- 4+ X,. Consider the following test: Stop sampling at stage
(1.2) T=inf{n=m: S, = b(n)}

and reject H,. (We do not reject H, as long as we continue sampling.) For
6 > 6,, since E, X, > p and lim sup,,_,, b(n)/n < p, the strong law of large num-
bers implies that P)[Reject H)] = P,[T < o] = 1, and in fact E,T < oo. Since
the family of distribution functions F, is stochastically increasing, it follows
from (1.1) that for 8 < 6,, P)[Reject H)] = P)[T < o] < a, i.e., the Type I
error probability is < . Hence we have a level-a power-one test of H, versus H,.
The expected sample size E,T is infinite for § < 6, and is a finite nonincreasing
function of ¢ for § > 6,. This monotone property of E,T follows easily from
the fact that the family of distribution functions F, is stochastically increasing
(cf. [8]). In Sections 2 and 3, we shall study the asymptotic behavior of E,T
as f | 0,

Similar ideas as above can be used to obtain level-a power-one tests of the two-
sided hypothesis H: § = 6§, versus K: 6 = §,. Here we assume that E, X, = p
and that for 6 + 6,, E, X, exists and is not equal to . Given 0 < a < 1, let
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b,(n) > by(n) be two sequences of real numbers satisfying the following condition:
(1.3) lim, ., b,(n)/n = p for i=1,2 and
Py [by(n) < S, < by(n) forall nzmj=z1—a.
We stop sampling at stage
(1.4) N =inf{n = m: S, ¢ (by(n), by(n))}

and reject H when we stop. For 6 = 6,, since E, X, + p and lim,_,, b,(n)/n = p
(i=1,2,), the strong law of large numbers implies that P)[N < o] = 1, and
in fact E,N < co. By (1.3),

P,[Reject H] = P,[N < wa] < a,

and so the test has level a. The asymptotic behavior of E,N as § — 6, will be
treated in Sections 2 and 3.

In [1], [2], [3], [4], [9], [10], [13], [14], [15], [16], by making use of sharp
martingale inequalities, sequences b(n) satisfying (1.1) and b,(n), by(n) satisfying
(1.3) have been constructed for certain families of distributions. In the statisti-
cal literature, open-ended tests based on sample sums as described above for
the unknown parameters of various parametric families have been considered
by Darling and Robbins [1], [2], [3], [4], Fabian [5], Farrell [6], Robbins [14],
Robbins and Siegmund [15], [17], [18], Pollak and Siegmund [13] and Lai and
Siegmund [11]. The references [4], [11] and [13] contain some Monte Carlo
studies of the expected sample sizes and the error probabilities of these tests.

In [18, page 429], Robbins and Siegmund have discussed the importance of
finding the asymptotic behavior of the expected sample size of a power-one test
at alternatives close to ¢, for two-sided tests of H: § = 6, versus K: § = 6, or
for one-sided tests of H,: 6 < 6, versus H,: § > 6,. This kind of asymptotic
behavior was first investigated by Farrell [6] who, in the case of a normalized
exponential family ‘of distributions, found the asymptotic mean (as 6 — 6, =
0 = p) of the two-sided stopping rule N as defined in (1.4) with b(n) =
—by(n) = b(n) and

(1.5) b(n) = a{2n[log, (n 4 e) + clog, (n + €°)]}t,
where o* = E X,%, ¢ > $ and log, denotes log log, etc. For the special case where
X,, X,, - - - arei.i.d. normal random variables, Farrell’s result has been extended

to the one-sided stopping rule 7' of (1.2) by Robbins and Siegmund {17] who,
besides considering the iterated-logarithm boundary of (1.5), also consider the
logarithmic case b(n) ~ (nlog n)t such that b(n) is concave and increasing.

The above results of Farrell, Robbins and Siegmund will be extended to a
general class of boundaries b(n) in Section 3 where we study the asymptotic
behavior (as § — 6,) of the expected sample size of open-ended power-one tests
of H, versus H, or of H versus K in the case of a general exponential family of
distributions. These results are similar to the corresponding results in the case
where 6 is a location parameter. The location-parameter problem, which has
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a simpler formulation, will be treated in Section 2 and we now briefly sketch
the main results thereof. Since @ is a location parameter, we can write X; =
Z, + 6 so that the distribution of Z, does not depend on #. Assuming that
EZ, = 0 and letting S, = Z, + - --Z,, the stopping rule of the power-one test
of Hy: 6 < 0 versus H,: & > 0 as given by (1.2) can be written as

(1.6) T(0) = inf{n = m: 8, + nf = b(n)} .

Suppose that b(f) is a concave, increasing, positive continuous function on [m, oo)
such that lim,_, b(¢)/t = 0 and P[S, < b(n) foralln = m] > 0. Then the equa-
tion @t = b(r) has a unique root t = g(¢) > m for all sufficiently small positive
6, and under certain weak regularity conditions, we shall show in Section 2 that

(1.7) lim,,, ET(6)/9(6) = P[S, < b(n) for all n > m].

Since power-one tests of H,: # < 0 versus H,: 6 > 0 are of particular interest
when detection of a small positive value of ¢ is important, it is desirable to know
the expected number of observations required for such detection when 6 is
small, and (1.7) gives us a general asymptotic formula for evaluating this ex-
pected sample size.

The result (1.7) also suggests a new class of problems in the field of extended
renewal theory and first passage times. For example, it would be interesting
to compare (1.7) with corresponding results for lower-class boundaries. The
particular lower-class boundary b(n) = 0 has been studied by Lan [12] who has
shown thatif X}, X,, - . - arei.i.d. with EX; = Oand EX* = ¢* > Oand if T*(f) =
inf{n = m: S, 4+ nf = 0}, then

(1.8) lim, , 0ET*(0) = 27t exp{ 25, "' (P[S, < 0] — $)} < oo

In the case of an exponential family of distributions, as will be shown in
Section 3, the analogue of (1.7) becomes

(1.9) limy o By T/g(pg) = P[T = o],

where y, = E, X, and the family is normalized so that 1, = 0. For the iterated-
logarithm boundary defined by (1.5),

(1.10) o) ~ 120t logy ™) as 610,

The above first-order asymptotic approximation does not involve the constant
¢ of (1.5). In view of (1.9), (1.10) and the law of the iterated logarithm, one
may suspect that power-one tests using iterated-logarithm boundaries as defined
in (1.5) have asymptotically minimal (up to the first-order approximation) E,T
as 0 | 0 among all tests of the form (1.2) having the same significance level.
In fact, it has been shown by Farrell [6] that for any stopping rule = such that
Pt = 00] > 0,

(1.11) lim sup, |, ¢,°E,7/(20° 10g, 1£,7") = Pj[r = oo].

While 7 in (1.11) need not be of the form (1.2), it suffices, however, to restrict
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ourselves to the class of stopping rules of the form (1.2). In fact, from con- ’
siderations of sufficiency and monotonicity for the exponential family, it can be
shown that given any stopping rule  such that P[z = co] > 0and Pj[r < oo] =1
for 6 > 0, there exists a sequence f(n) of constants such that the stopping rule
T =inf{n = 1: S, = B(n)} satisfies P[T = co] = Py[r = oo] and P,[T > n] <
P,z > n]foralln = 1,2, ... and § > 0. In particular E,T < E,7 forall § > 0.
(See [18, pages 424-425] and [6, pages 48-55]).

2. Power-one tests for a location parameter. The main results of this section
are contained in Theorems 1, 2 and Corollary 1 and are illustrated in Example
1. Let ¥ be a known distribution function such that {, |x| d¥(x) < co. Let
Fy(x) = ¥(x — 6), €0, i.e., 0 is a location parameter. The family F, then is
stochastically increasing. Suppose we want to test H,: 6 < 6, versus H,: 0 > 0,.
It suffices just to consider the case 6, = 0 and >, xd¥(x) = 0. In this case,
we use the stopping rule 7 = inf{n > m: 37 X, = b(n)}, where b(n) is a sequence
of positive numbers such that lim,_., b(n)/n = 0 and P[T = oo] > 0. Let Z,,
Z,, - - - bei.i.d. with distribution function ¥ and let T'(f) = inf{n = m: 3t Z, +
nf = b(n)}. Obviously the distribution of T(¢) is the same as the distribution
of T under P,. As indicated in Section 1, E,T = oo if § < 0 and E,T is a finite
nonincreasing function of ¢ for § > 0. From the definition of T(9), it is easy
to see that E,T is right continuous in ¢ for ¢ > 0, and if T(x) is continuous,
then E, T is continuous for § > 0. Considering the random variables T(f), we ob-
serve that T(0) = oo implies that lim,  , 7(6) = oo, and s0 £, T' = ET(6)175)=)— ©
as 6 | 0 since Pj[T = oo] > 0. The following theorem studies the asymptotic
behavior of E,T as 4 | 0.

THEOREM 1. Suppose Z,, Z,, - - - are i.i.d. random variables such that EZ, = 0
and E(Z,*)* < oo for someyv > 1. LetS, = Z, + --- + Z,. Let b(1) be a positive
continuous function on [m, co) with m > 1 satisfying the following conditions:

(2.1) b(t) is concave, increasing and lim,_, b(t)[/t = 0

(2.2) For ¢, <e< 1 (where ¢, issome positive number < 1),
B(e) = lim,_, b(et)/b(t) exists andis > e, and lim., f(e) =1;

(2.3) P[S, < b(n) forall n=m] > 0;
(2.9 lim,_ t~*b(t) = oo ;
Forany 0<p<1,
(2.5) lim,_,, P[S; < b(i) — ipb(n)/n forall n =i = m]

= P[S; < b(i) forall i = m].

For each 0 > 0 such that 6m < b(m), let t = g(0) be the root of 6t = b(t) with
t > m, and let T(0) = inf{n = m: S, + nb = b(n)}. Then

(2.6) lim, , ET(6)/9(8) = P[S, < b(n) for all n = m].
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ReMARKs. (i) If b(¢) is any continuous concave function on [m, co) such that
lim,_, b(t) = oo, then for 0 < e < 1, (b(et) — b(m))/(et — m) = (b(t) — b(m))/(t — m)
and so liminf,__ b(et)/b(t) = ¢. Condition (2.2) in Theorem 1 requires that
lim, ., b(et)/b(¢) actually exists and is > e. If there exists a € (0, 1) such that
b(t) = t*U(t) + O(t%), where U(f) is a slowly varying function such that
lim, ., U(f) = oo, or if b(f) = ct* + o(1%), where ¢ > 0, then (2.2) holds.

(ii) Suppose Z,, Z,, - - - are i.i.d. with EZ, =0, 0 < EZ? < oo. Let b(r) be
a positive continuous function on [m, co) (m = 1) satisfying conditions (2.1),
(2.2), (2.3) of Theorem 1. Suppose further that b(¢) satisfies

(2.7) lim, ., b(r)/( log, 1)} = oo .

Then condition (2.5) holds. To see this, we note that for 0 < p < 1 and i, (> m)
sufficiently large, if n = i > i,, then

b(i) — b(m) = (i — m)f(n — m)}(b(n) — b(m))
= 3(1 + p)ib(r)/n

and so ipb(n)/n < 20b(i)/(1 + p) for n = i = i,. Therefore in view of (2.7), the
law of the iterated logarithm implies that given ¢ > 0, we can choose n, = i,
such that for n > n,,

P[S; = b(i) — ipb(n)/n for some n =i = ny]
< P[S, = (1 — p)b(i)/(1 + p) for some i = n)| <c.

Since lim,_,, b(n)/n = 0, it is now clear that (2.5) holds. Noting that EZ;* < oo,
we can set v = 2 in Theorem 1 so that (2.7) also implies (2.4).

(ili) The growth condition (2.7) in (ii) rules out the most delicate (such as
given by (1.5)) among the upper-class boundaries. To show that condition (2.5)
still holds for these boundaries, we shall use a more delicate argument by con-
sidering the Wiener process and using the Skorohod embedding. This argument,
which will be given in detail after the proof of Theorem 1, yields the following
corollary of Theorem 1.

COROLLARY 1. Suppose Z,, Z,, - - - are i.i.d. nondegenerate random variables
with EZ, = 0 and E{Z l0g,(|Z,| + e)} < co. Let b(t) be a positive continuous
function on [m, oo) belonging to the upper class so that (2.3) holds. Assume that
b(r) satisfies the regularity conditions (2.1), (2.2) and

(2.8) t=tb(t) is ultimately nondecreasing.
Define T(0) and g(0) as in Theorem 1. Then (2.6) holds.
We now proceed to prove Theorem 1. First we establish the following lemma:

LemMA 1. Let b(t) be a positive continuous function on [m, oo) (m = 1) such that
lim,__, b(f) = oo and conditions (2.1), (2.2) of Theorem 1 are satisfied. Let the
function g(0) be as defined in Theorem 1. Then
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(a) 9(09) is a strictly decreasing function and lim, , g(f) = oo.
(b) Let f: (0, a) — [m, oo) where a is any positive number. Then

lim inf, ,, 6((6))/(6f(6)) = 1 = lim sup,,, f(6)/9(8) < 1,
lim sup, |, b(f(0))/(6f(6)) = 1 = lim inf,,f(0)/9(6) = 1,
b(f(0)) ~ 0f(6) as 6| 0=f(0) ~9g(0) as 60.
(c) Takeany6* > 0 such that 6*m < b(m). Then there exists ¢: (0, 6%)— [m, o0)
such that lim, , ¢(0) = oo, lim,, ¢(0)/g() = 0 and lim, , b(¢(0))/b(9(6)) = 0.
(d) Let b*(t) be any positive, continuous, strictly increasing and concave function
on [m*, co) with m* > m such that b*(f) ~ b(t) as t — oo. For all § > 0 such
that Om* < b*(m*), let t = g*(0) be the root of 6t = b*(t) with t > m*. Then
9*(0) ~ g(@)as 6 | 0.
(e) There exists a function 7 : [p,, 1) — (0, 1) where p, is some positive number
< 1 such that lim sup, , 7(0)9(00)/9(6) < 1 for all p € [p,, 1) and lim,;, 7(0) = 1.

PROOF. (a) is obvious. We shall only prove the second implication of b),
since the first implication can be proved similarly and the third implication fol-
lows from the first two implications. Suppose that lim sup, ,b(f(6))/(6/(0)) = 1.
Then lim,,, f(6) = oo and so lim, , b(f(f)) = co = lim, , 6f(¢). Assume that
liminf,,,f(6)/9(6) < 1. Then there exist a positive sequence ¢, | 0 and 1 >¢e>¢
such that m < f(0,) < ¢g(d,). Using (2.2) and the concavity of b(), we obtain
that

I < lim, .. {b(zg(8,)) — b(m)}/{eb(g(6,)) — mb,}
= lim,_, {6(¢9(0,)) — b(m)}/{0.(c9(0,) — m)}
< lim inf, ., {6(f(6,)) — bm)}{8.(f(0.) — m)} .
contradicting the assumption that 1 > lim sup, , b(f(0))/(0f(0))-

To prove (c), define =(x) = inf{y = m: b(y) = (b(x))}} for x > m. Then

lim, . n(x) = oo and b(x(x)) = (b(x))} for all large x. By the concavity of b,

£ —00

lim, _ =(x)/x = 0. Let ¢(6) = n(g(f)). Then ¢ satisfies the desired conclusions.
To prove (d), we observe that as 6 | 0, g*(6) — co and b(g*(0)) ~ b*(g*(0)) =
6g*(6), and so g*(0) ~ g(6) by (b).

We now prove (e). Let p, = &/B(s;) < 1. For pe[py, 1), let 7(p) = sup {e:
¢ < ¢ < 1 and pf(e) = ¢}. Since lim,;; ¢/B(e) = 1 > p, (o) < 1. It is easy to
see that lim,;, 7(0) = 1. Therefore we can choose p, € [g,, 1) such that for all
p€low 1), 27(0) — 1 > &. Foreach pe [p,, 1), we can choose 7(p) € (27(0) — 1,
7(0)] such that p8(7(s)) = 7(o). Obviously lim,,,7(g) = 1. By (2.2),as 0 | 0,

b(r(0)9(00)) ~ B(r(0))b(9(00)) = p0B(r(0))9(00) = O7(0)9(00) »

and so lim sup, , 7(0)9(00)/9(6) = 1 by (b). [

Proor oF THEOREM 1. Set P* = P[S, < b(i) for all i = m]. We shall first
show that

(2.9) lim inf,,, ET(6)/9(6) = P* .
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For n > m, define ¢, = (b(n) — b(m))/(n — m). Then c, is nonincreasing and
lim,_. ¢, = 0. Let p, and 7 be given by Lemma 1(e). Take any p € [p,, 1) and
any sequence 6, such that oc,,, < 6, < pc,. Obviously
P[T(8,) > n] = P[S, + i0, < b(i) forall n =i = m]

< P[S; < b(i) forall n=i=m]=P*+ o(l) as n—oo.
The key to our proof of (2.9) lies in the fact that the reverse inequality also
holds as n — oo so that
(2.10) lim,_., P[T(0,) > n] = P*.
To see this, we take p’ € (o, 1) and note that for all large n,

P[T(8,) > n] = P[S, < b(i) — ip'b(n)/n for all n =i = m]
— P* as n— oo by condition (2.5).

Since (n 4+ 1 — m)c,,, = b(n + 1) — b(m), Lemma 1(d) implies that g(c, ) ~ -
Using this and (2.10), we obtain that

(.11)  ET(0,) = nP[T(0,) > n] ~ 9(c,)P* = (1 + o(1))r(0)9(0.)P* .

To see the last inequality above, we note that ¢,,, < 6,/p implies that g(c,,,) =
9(0,/0) and apply Lemma 1(e). Therefore we have proved that for any p € [p,, 1)
and any sequence 6, such that oc,,, < 6, < pc,, (2.11) holds. This implies that

lim inf,,, ET(6)/9(6) = r(0)P*. Sincelim,;, y(0) = 1, we have established (2.9).
For 6 > 0, Sy, + 0T(0) < &(T(0)) + X+, + 0 + |Sn| + mb. Therefore ap-

plying Wald’s lemma, we have

(2.12) OET(0) < Eb(T(0)) + E*(X}))” + 0 + m(E|X,| + 0).

Now E(X#,,)" < E Y19 (X,*)” = (ET(0))E(X,*)*. From condition (2.4), it fol-
lows that lim, 4 5(9(6))/(a(6))" = oo, and so lim,, 6(g(6))"~ = co, implying
that lim, , 6(ET(0))*"* = oo in view of (2.9). Hence lim, , 0ET() = oo and
EV*(X},,)" = O(EY*T(6)) = o(9ET(6)). Putting this in (2.12), we obtain
(2.13) , OET(0)(1 + o(1)) < EN(T(0)) .

Let ¢ be the function constructed in Lemma 1(c). We note that

Eb(T(0)) = E[6(T(6))| T(0) > ¢(O)]P[T(0) > ¢(6)]
(2.14) + bP@)PIT(O) = $(0)]
< BE[T(6) | T(0) > $O)DPIT(O) > $(0)] + 0(b(9(0))) -

The last relation above follows from Jensen’s inequality (since b is concave)
and Lemma 1(c). Now b(g(6)) = 0g9(0) = O(GET(6)) by (2.9). Hence letting
f(6) = E[T(0)| T(6) > ¢(6)], we obtain that

(2.15) 1 < liminf, , b(f(0))P[T(6) > ¢(0)1/(PET(6)) , by (2.13)and (2.14),

< liminf, , b(f(0))/(0f(8)) , since ET(6) = f(G)P[T(6) > ¢(0)] -
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By Lemma 1(b), (2.15) implies that

(2.16) lim sup, ,, f(9)/9(0) < 1.
Since lim, |, ¢(6)/9(6) = 0 by Lemma 1(c), we obtain using (2.16) that
(2.17) ET(0) = ¢(6) + fOP[T(O) > ¢(9)]

= 0(9(9)) + (1 + o(1)9(9)P[T(0) > $(0)] -
Noting that lim,,, P[T(0) > ¢(0)] = P[T(0) = oo] = P*, the desired conclusion
(2.6) follows from (2.9) and (2.17). []

Proor oF CoroLLARY 1. Without loss of generality, we shall assume that
EZ? = 1. Since b belongs to the upper class and (2.8) holds, lim,_, 1~35(f) = oo
by the Feller-Kolmogorov integral test (cf. [7, page 132]), i.e., (2.4) holds if
we set v = 2 in Theorem 1. Therefore it remains to show that condition (2.5)
is also satisfied. For 0 < p < 1,

P[S, = b(i) — ipb(n)/n for some n =i = m]
(2.18) = P[S; = b(i) for some n =i = m]
— P[S; = b(i) for some i = m] as n— oo.

For each n, let k(n) be a positive integer > m such that
(2.19) lim,_,, k(n) = oo and lim,_,, k(n)b(n)/n = 0.

Given ¢ > 0, since b(f) — 1 obviously also belongs to the upper class, we can
choose n, such that P[S; = b(i) — 1 fori = n)] < ¢and pb(n)k(n)/n < 1 for n = n,.
Then for n = n,,
P[S; = b(i) — pib(n)/n for some m < i < k(n)]
(2.20) < P[S; = b(i) — pnyb(n)/n for some m < i < ny] + ¢
= P[S;, = b(i) forsome m < i< n]+o(l)+¢ (as n— o)
< P[S; = b(i) forsome i =m]+ ¢+ o(l).

In view of (2.18) and (2.20), it suffices to show that
(2.21) lim,_,, P[S; = b(i) — ipb(n)/n for some k(n) <i<n]=0.

Since EZ, = 0, EZ? = 1and E{Z,log,(|Z,| + e < oo, by the Skorohod embed-
ding theorem (cf. [7, page 128]), we have (by redefining the random variables on
a new probability space if necessary)
(2.22) lim,_, |S, — S,*|/{n*(log, n)"t} = 0 a.s.,
where S,* =Y, + ... +Y,and Y, Y,, --. are i.i.d. standard normal random
variables. Take any 2 > 0 and let 5(f) = b(t) — Ati(log, t)~t. A standard argu-
ment involving the Feller-Kolmogorov test shows that f(¢) also belongs to the
upper class. Therefore by Lemma 2 below, letting p < o’ < 1,
(2.23)  lim,_ P[S{* + ig/(b(n) — b(m))|(n — m) = B()

for some k(n) <i<n]=0.
From (2.22) and (2.23), the desired conclusion (2.21) follows. []
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LEMMA 2. Suppose that under Py, X,, X,, - - - arei.i.d. N(0, 1) random variables.
SetS, = X,+ .-+ + X,. Let B(n) be a positive sequence such that lim,,__, f(n)/n =0,
lim,_, n=*8(n) = oo and P,[S, < B(n) for all large n] = 1. Let c(n) be a positive
nonincreasing sequence such that lim,_, ¢(n) = 0 and lim,,_, nc(n)/B(n) = 1. Sup-
pose k(n) < n is a sequence of positive integers such that lim,_, k(n) = co. Then
for any pe (0, 1),

(2.24) lim,_, P, [S; = B(i) for some k(n) <i<n]=0.

ProoF. We shall use the ideas of Farrell’s proof of Lemma 4 in [6]. Let m(n)
be a sequence of nonnegative integers such that

(2.25) lim,_, m(n) = oo, lim,_,, c(m(n))/c(n) = oo and

lim,_,, c(n)(m(n))t = oo .

Such a sequence can be constructed as follows. Set d, = nic(n). Then d, — oo
since ne(n) ~ f(n). Let a, be a decreasing sequence of positive numbers such
that lim,__ «, = 0 and lim,__, a,d, = co. Define m(n) = sup {m: c(m)/c(n) =
a,d,} (sup @ = 0). Then m(n) satisfies (2.5).

Let T, = inf{i = k(n): S; = B(i)}. We now make use of a standard likelihood-
ratio argument in sequential analysis. If k(n) < m(n), we have

(2.26) P[T, < m(m)] = 7% Sir, o €52 dP, .
Hence
2
@21 LPIT, < mn)] = T Sirgen (S, — 107 — PSP,

Choose n, such that for i > n,, p(i) > pic(i) + i*. Therefore if i > n,, § < pc(i)
and x = B(i), then (x — i6)* — i = (x — if — i*)(x — i6 + i*) > 0. Since S; = (i)
on the event [T, = i] and ¢(i) = ¢(j) if i < j, it then follows from (2.27) that
we can choose n, such that for n > n,, P,[T, < m(n)] is a convex function of ¢
in the interval [0, pc(m(n))]. Therefore by (2.25), for all large n, c(n) < c(m(n))
and

Ppc(n)[Tn é m(n)]

(2.28) =< (e(m)[e(m(n)P oo imenn[ T = m(n)]
+ {1 — e(m)fe(m(m)}P,[S; Z A(i) for some k() < i < m(n)]
-0 as n-—oo.

Clearly m(n) < n for large n. Again by using likelihood ratios, we obtain

Ppc(n)[m(n) é Tn é n]

(2.29) = Tlewin Stz ] — (1 = p)e0)S, + - (1 = P)E()} aP.,

IA

X 200 P — (1 — () (50) — £ (1 + prem)}
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since S; = f(i) on the event [T, = i]. Let1 > ¢ > (1 + p)/2. Then for all large
i, B(D)[i > ec(i) = ec(n) if n = i. Hence letting 6 = (1 — p){e — 4(1 + p)}, we
have for all large n and m(n) < i < n,

(230)  exp{—(1 = p)e(w) (B — = (1 + o))} < exp{—semmn)} — 0

in view of (2.25). From (2.28), (2.29) and (2.30), the desired conclusion (2.24)
follows. []

ExampLE 1. Let Z,, Z,, ... be i.i.d. with EZ, = 0, 0 < EZ? < co and let
S,=Z,+ .-+ + Z,. Let b(t) be a concave, increasing, positive continuous
function on [m, co) such that P[S, < b(n) for alln > m] = P* > 0. Define T(6)
as in Theorem 1.

(a) If b(t) ~ (tlog 1)}, then by Theorem 1 (see Remarks (i) and (ii)),
lim, , *ET(6)/(2|log 0]) = P*.
(b) Letd < a < 1. If b(r) ~ 1%, then' again by Theorem 1,
lim,,, 0= ET(6) = P*.

The analogue of Theorem 1 for stopping rules of two-sided power-one tests
also holds. More specifically, we have the following theorem.

THEOREM 2. Suppose Z,, Z,, - - - are i.i.d. random variables such that EZ, = 0
and E|Z\|* < oo for somev > 1. LetS,=Z, + --- + Z,. Fori=1,2,let b(r)
be a positive continuous function on [m, o) with m = 1 satisfying the following
conditions:

(2.31) b,(t) is concave, increasing and lim,_, b(f)/t = 0;
(2.32) For ¢ <e< 1 (where ¢, is some positive number < 1),
Bi(e) = lim,_, b,(et)/b;(t) existsandis >e, and lim,, By(c) = 1;
(2.33) P[—by(n) < S, < by(n) forall n=zm]>0;
(2.34) y lim,_, t7*b,(t) = oo ;
For any 0<‘p< 1,
(2.35) lim,_, P[—by(k) < S}, < by(k) — kpb,(n)/n forall n = k = m]
= lim,_,,, P[—by(k) + kpby(n)/n < S, < by(k) forall n=k = m]
= P[—by(k) < S, < by(k) forall k = m].
(2.36) P[S, = by(n)] = P[S, = —by(n)] =0  forall n>=m.
For each 6 > 0 such that 6m < b,(m), let t = g,(0) be the root of 9t = b,(t) with

t > m, while for each 6 < O such that 0m > —by(m), let t = g,(6) be the root of
0t = —by(t) witht > m. For any real 0, let

N@O) =inf{n =z m: S, + nb = by(n) or S, + nf < —by(n)}.
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Then EN(0) < oo if 6 + 0, EN(0) = oo, lim,_,, EN(6) = m, and
lim,_o, EN(0)/9,(6) = lim,_,_ EN(6)/9,(0)
= P[—by(n) < S, < by(n) forall n=m].

PrOOF. We shall only restrict ourselves to the asymptotic behavior as 6§ — 0+
since the argument for § — 0— is similar. Set p = P[—b,(i) < S, < b,(i) for all
i =z m]. Forn > m, define ¢, = (by(n) — by(m))/(n — m). Let p, and y be given
by Lemma 1(e) with g = g,. Take any p € [p,, 1) and any sequence 6, such that
0C, 1 = 0, < pc,. We shall first show that
(2.37) lim,_,, P[N@,) >n]=p. .

By condition (2.35), taking o’ € (p, 1), we obtain that for all large n,
P[N(0,) > n] = P[—b,(i) < S, < by(i) — io’b(n)/n forall n =i = m]
—p as n—oo.
On the other hand, in view of (2.33), given ¢ > 0, we can choose n, > m such
that P[S; < —b,(i) for some i > n)] < ¢, and so for n > n,,
P[N(0,) > n] < P[—b,(i) — ipc, < S; < by(i) forall n=i= m]
= P[—b,(i) < S, < by(i) forall n =i = m]
+ P[—b,(1) — ipc, < S; < —by(i) forsome ny=>i=m]+ ¢
—pte as n— oo by condition (2.36).
Since ¢ is arbitrary, we have established (2.37). Making use of (2.37), we can
then prove as in Theorem 1 that
(2.38) lim inf, , EN(0)/9,(0) = p .

Let ¢(6) be as constructed in Lemma 1(c) with b = b, and g = g,. Set f(§) =
E[N(0)| N(@) > ¢(0)]- Noting that for & > 0, Sy, + ON(O) < b(N(©6)) + Xt +
0 + |S,.| + mb, we can apply Wald’s lemma and Jensen’s inequality as in the
proof of Theorem 1 to show that
(2.39) ‘ lim sup,,, f(0)/9:(0) < 1.

Define N, (0) = inf{n = m: S, + nf = b(n)}, N_() =inf{n=m: S, + nf <
—by(n)}. Then by (2.39) and Lemma 1(c), we have for § > 0,
(2.40)  EN(9) = ¢(0) + fO)P[N(©) > ¢(0)]
= 0(9.0)) + (1 + o(1)gu(O)PINL(0) > $(6), N_(9) > $(0)] -
Observe that
0 = PIN.(0) > ¢(8), N_(6) > ¢(6)] — P[N,(0) > ¢(6), N_(0) > ¢(0)]
< P[S; > —by(i) — i forall m < i < ¢(0)
and §; < —b,(i) for some m < i < ¢(0)]
—0 as 60 by (2.33) and (2.36).
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Since lim, , P[N,(0) > ¢(6), N_(0) > ¢(6)] = p, it follows from (2.40) that
(2.41) lim sup,,, EN(0)/9,(0) < p . O

Suppose Z,, Z,, - - - arei.i.d. with EZ, = 0and 0 < EZ? < co. Fori= 1,2,
let b,(¢) be a positive continuous function on [m, o) satisfying conditions (2.31),
(2.32), (2.33) and (2.36) of Theorem 2. Suppose further that

(2.42) lim,_,, b,(¢)/(t log, t)} = oo for i=1,2.

Then condition (2.34) holds with v = 2 and condition (2.35) is also satisfied.
(See Remark (ii) to Theorem 1.) Alternatively, instead of assuming (2.42), we
can obtain the same conclusion by assuming that

(2.43) E{Z 1log,(|Z,| + e)f < oo and t%b(r) is ultimately
nondecreasing for i=1,2.

(See the proof of Corollary 1.) Hence Theorem 2 gives the analogue of Corollary
1 for N(6).

3. The case of an exponential family. Suppose X, X,, - - arei.i.d. random
variables having a common density exp(6x — k(f)) with respect to some non-
degenerate measure z on the real line, where 6 ¢ © is an unknown natural pa-
rameter of the exponential family and © is an open interval of the real line.
Let py = E; X, = I'(0). For a given 6,c ©, we want to test the hypothesis H:
0 = 0, versus K: 6 + 6,. By considering X;* = X, — #'(0,) and 6* = 6 — 0, if
necessary, we may assume without loss of generality that 6, = 0 and g, = 0.
The following theorem studies the asymptotic behavior of the expected sample
size as § — 0 for power-one tests of H versus K based on sample sums and suitable
stopping boundaries b,(n) and — by(n).

THEOREM 3. Suppose that under P, X,, X,, - - - are i.i.d. with a common density
exp (9x — h(0)) with respect to a fixed nondegenerate measure = on the real line such
that p, = 0, where y, = E,X,, 0 € ©, © being an open interval (possibly infinite)
containing 0. Let S, = X, + ... + X,. Fori= 1,2, let b(t) be a positive con-
tinuous function of [m, co) with m = 1 satisfying conditions (2.31), (2.32) of Theorem
2 and the following two conditions:

3.1) lim,.,, t73b,(f) = oo for i=1,2;

(3.2) P[—byn) < S, < by(n) forall n=m] >0.

Let N=inf{n zZ m: S, = b(n)or S, < —by(n)}. Define g,(9) for & > 0 and g,(6)
for 0 < 0 as in Theorem 2. Then E,N < oo if 6 + 0 and

(3.3) lim,_,, E,N/g:(¢ts) = limy_,_ E;N|gx(pt) = Po[N = o] .

ProOF. As shown in [6, page 40], P,[N < oo, Sy = b,(N)] is a nondecreasing
and left continuous function of 8, while PN < oo, Sy < —b,(N)] is a non-
increasing and right continuous function of #. This fact will be used in the
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proof. We shall only consider the case § — 0+ in (3.3) as the proof for § —0—

is exactly analogous. Let o> = E,X,>. As is well known, p, ~ ¢°¢ as § — 0.
For n > m, define ¢, = (b,(n) — b,(m))/{s*(n — m)}. Let p, and y be given by

Lemma 1(e) with g = g,. Take any p € [p,, 1) and any sequence 6, such that

0Cpiy < 0, < pc,. Like Farrell’s proof of Lemma 4 of [6] (see also our proof

of Lemma 2 above), it can be shown that

(3.4) lim,_., P, [N < n, Sy = b(N)] = P[N < 00,8y = b(N)] .

(This result corresponds to relation (41) of [6].) By the right continuity of
P,[N < o0, S, < —by(N)] as a function of §, we obtain that
(3.5) lim,_, Py [N < 00, Sy = —by(N)] = P[N <00, Sy = —by(N)] .
From (3.4) and (3.5), it follows that
lim, ... Py [N = n, Sy = b,(N)]
(3.6) =1— P[N< 00,8y = b(N)] — P[N < 00, Sy < —by(N)]
= PN = 0] .

Since (n + 1| — m)d’c,,, = b(n + 1) — b(m), Lemma 1(d) implies that
9(d%,.,) ~ n. Using this and (3.6), we obtain that
3.7 E, Nz nP, [N = n, Sy = b(N)] ~ g,(0%, )P [N = o0]

= 9:(0°0,/0) [N = oo] = (1 + o(1))7(0)9:(0°0,)P[N = oo] .

Since lim,_, ¢,/6 = ¢°, the monotonicity of g, and Lemma 1(e) imply that

N —00

(3.8) 9.(0%0) ~ g,(¢s) as 0—0.
From (3.7) and (3.8), it then follows as in the proof of Theorem 1 that
(3.9) liminf,,, E,N/g,(¢5) = P[N = oo].

We note that E,|X,| < E}(3Y X)) ~ 6E2N as 6 |0 by Wald’s lemma.
Since lim,, (9,(0))"b,(9,(0)) = co by (3.1), lim, ,6’¢,() = oo, Therefore
lim, , py E;AN = oo in view of (3.9). Hence lim, , #yE,N = co and Ej|Xy| =
o(pyE,N). Therefore using Wald’s lemma, we obtain that
(3.10) 1 E;N = E,S, < E,b(N) + E,|X,| + mE,|X,|

= E;b,(N) + o(¢sE;N)
as 6 | 0. For 6 > 0, let ¢*(6) be the greatest integer < |log6|. Since g, is a
strictly increasing function of 6, E,[N|N > ¢*(0)] can be written as a function
of y,, say Ej[N|N > ¢*(0)] = f(¢s). By Jensen’s inequality,

(3.11) Eyby(N) = bi(fea))PoN > $*(0)] + bi(9(9)) -

Since by(¢*(0)) = 0(¢*(0)) and p9.(1t5) = b:(9x(1t0)) Z bi(pts™) > 671 > ¢*(0)
for all small positive #, we obtain that b,(¢*(0)) = o(¢, E,N) as 8 | 0 in view of
(3.9). Therefore from (3.10) and (3.11), it follows as in the proof of Theorem 1
that lim inf, , b,(f(¢))/(¢t6 f(¢ts)) = 1. By Lemma 1(b), this implies that

(3.12) tim sup, ;o f(19) 0:(1e) < 1.
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Therefore as 6 | 0,

(3.13) E,N < ¢*(0) + f(e)Po[N > ¢*(6)]
< 0(gy(t) + (1 + 0(1)gu(et6)Po[N = $*(9)] -

In view of (3.9) and (3.13), it remains to prove that
(3.14) limy o P,[N = ¢*(6)] = PN = o] -

We note that for 0 < § < 1,0 < exp(—¢*(0)) = 0(cyv). Therefore given any
pe (0, 1), 6 < pcyuy, for all small positive 6. Since for every fixed k, Py[N < k,
Sy = by(N)] is nondecreasing in 6, it then follows that as 610,
Pocju[N < $%(6), Sy Z b(N)] Z Po[N < ¢*(0), Sy = bi(N)]
(3.15) = PN < ¢*(9), Sy = b(N)]
— P[N < o0, Sy = by(N)] -

Now limg o Poe, [N < $*(6), Sy = by(N)] = P[N < o0, Sy = b(N)] by (3.4),
and so (3.15) implies that ‘

(3.16) lim,,, P)[N < ¢*(8), Sy = by(N)] = P[N < oo, Sy = b(N)].
Given any k = m, we have for all small positive 6,

PN < 00, Sy < —b,(N)] Z PJ[N < 00, Sy = —b,(N)]
(3.17) > PN < 4*(0), Sy < —b,(N)]
> PN < k, Sy < —b(N)]
S P[N<k Sy < —b(N)] as 0]0.

Since (3.17) holds for all k = m, it follows that
(3.18)  lim,,, P,[N < ¢*(6), Sy = —by(N)] = PN < 00, Sy = —by(N)] -
From (3.16) and (3.18), (3.14) follows immediately. []

ExaMPLE 2. Let X,, X,, - - - be the same as in Theorem 3 and let 6> = E, X%,
by(t) = by(f) = of2t[log, (t + €) + ¢ log, (t + €*)}t, where ¢ > 3. Choose m = 1
such that b,, b, are concave on [m, co) and Po[ — by(n) <8, < by(n)foralln>m]>0.
Then fori = 1,2, 0 < ¢ < 1, lim,_,, b,(¢)/b,(t) = ¢t. Solving b,(f) = 0t for ¢t in
terms of 6, we obtain that t = g,(f) ~ 0-*(20* log, 6-7) as 6 — 04 . Likewise
9,(0) ~ 0-*(20% log, |6]7") as § — 0—. Hence defining N as in Theorem 3, we
obtain by the theorem that

(3-19) lim,_, ¢£5°Ey N/(20" log [log||]) = PN = oo],

which was obtained by Farrell in [6]

Using a similar argument as the proof of Theorem 3, we can prove the fol-
lowing analogue of Theorem 3 for power-one tests of the one-sided hypothesis
H,: 6 > 0 based on sample sums and upper-class boundaries.
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THEOREM 4. Let X, X,, ..., S,, ©, P;, y, be as in Theorem 3 (¢, = 0). Let b(?)
be a positive continuous function on [m, co) with m = 1 such that lim,_, t=3b(t) = oo
and P[S, < b(n) for all n = m] > 0. Assume that b(t) also satisfies the regularity
conditions (2.1) and (2.2) of Theorem 1 and define g(0) as in Theorem 1. Let T =
inf{n = m: S, = b(n)}. Then

(3.20) lim, o E,T/g(1ts) = P[T = oo] .

REFERENCES

[1] DArRLING, D. A. and RoBBins, H. (1967). Iterated logarithm inequalities. Proc. Nat. Acad.
Sci. 57 1188-1192.
[2] DARLING, D. A. and RoBsins, H. (1967). Inequalities for the sequence of sample means.
Proc. Nat. Acad. Sci. 57 1577-1580.
[3] DARLING, D. A. and RoBBins, H. (1967). Confidence sequences for mean, variance and
median. Proc. Nat. Acad. Sci. 58 66-68.
[4] DARLING, D. A. and RoBBiNns, H. (1968). Some further remarks on inequalities for sample
sums. Proc. Nat. Acad. Sci. 60 1175-1182.
[5] FABIAN, V. (1956). A decision function. Czech. Math. J. 6 31-41.
[6] FARReLL, R. H. (1964). Asymptotic behavior.of expected sample size in certain one-sided
tests. Ann. Math. Statist. 35 36-72.
[71 JaN, N. C., Jocpro, K. and StouT, W. F. (1975). Upper and lower functions for mar-
tingales and mixing processes. Ann. Probability 3 119-145.
[8] Lar, T. L. (1971). Confidence sequences and martingales. Ph.D. thesis, Columbia Univ.
[91 Lai, T. L. (1976). On confidence sequences. Ann. Statist. 4 265-280.
[10] Laix, T. L. (1976). Confidence sequences and boundary crossing probabilities for sample
sums. Ann. Probability 4 299-312.
[11] LAz, T. L. and SiegMUND, D. (1977). A nonlinear renewal theory with applications to se-
quential analysis. Ann. Statist. 5 946-954.
[12] LaN, K. K. (1974). On some moment problems. Ph.D. thesis, Columbia Univ.
[13] PoLLAk, M. and SiegmMuND, D. (1975). Approximations to the expected sample size of
certain sequential tests. Ann. Statist. 3 1267-1282.
[14] Roerins, H. (1970). Statistical methods related to the law of the iterated logarithm. Ann.
Math. Statist. 41 1397-1409.
[15] RoBBiNs, H. and S1eGMUND, D. (1968). Iterated logarithm inequalities and related statis-
tical procedures. Mathematics of the Decision Sciences 2, Lectures in Appl. Math.,
Amer. Math. Soc.
[16] Rosains, H. and SieGMUND, D. (1970). Boundary crossing probabilities for the Wiener
process and sample sums. Ann. Math. Statist. 41 1410-1429.
[17] Roerins, H. and SiEGMUND, D. (1973). Statistical tests of power one and the integral rep-
resentation of solutions of certain partial differential equations. Bull. Inst. Math.,
Acad. Sinica 1 93-120.
[18] Rossins, H. and SiegMuND, D. (1974). The expected sample size of some tests of power
one. Ann. Statist. 2 415-436.
DEPARTMENT OF MATHEMATICAL STATISTICS
CoLuUMBIA UNIVERSITY
New York, NEw York 10027



