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A NOTE ON INDEPENDENCE OF MULTIVARIATE
LIFETIMES IN COMPETING RISKS MODELS

By DouGrLas R. MILLER
University of Missouri, Columbia

Given the joint distribution of cause of failure and system lifetime of
a series system in which components fail simultaneously with probability
0, it is possible (under mild regularity conditions) to assume a model for
the system in which component lifetimes are independent.

1. Introduction and summary. A system is subject to competing risks if fail-
ure of the system may result from each of k causes—for example, a biological
organism susceptible to k different fatal diseases or a series system consisting of
k components. It is assumed that system failure is due to exactly one of the
causes. It is possible to observe the system lifetime, L, and the failure pattern,
1, the index of the cause of failure. The joint distribution F, , is assumed to
satisfy the following requirement:

HypoTHEsis A. The conditional distributions F,,.,,i = 1,2, - .., k, have no
common atoms.

The purpose of this paper is to show that under Hypothesis A it is possible to
use independent component lifetimes as a model for this system, namely:

THEOREM 1. Let F, , be a probability distribution on [0, o0) x {1,2, ---, k}
which satisfies Hypothesis A. Then there exist independent random variables T,,
T, -+, T, such that (min (T, T,, - - -, T}), i(Ty, Ty, - - -, T})) has distribution F,_,,
where i(t,, ty, - -+, t,) = jif t; = min(t,, t,, - -+, t,). Furthermore, at least one of
T,, Ty, - -, T, has a proper distribution; and the distributions are uniquely defined on
[0, inf {r: F,(r) = 1}). (Note thati(+) need not be defined in the case of “ties.”)

Before proving Theorem 1 in Section 2, several remarks are in order:

(i) This research was performed without the knowledge that Tsiatis (1975)
had recently proved Theorem 1 under the assumption of absolutely continuous
system lifetime distributions. Subsequently Peterson (1975) studied the problem,
arriving independently at Theorem 1. Most recently Langberg, Proschan and
Quinzi (1976) have done a rather exhaustive analysis, considerably extending
Theorem 1. Their proofs are all based on failure-rate functions. The proof in
this paper differs considerably: it is based on an attempt to find a test for inde-
pendence.

(ii) There may be other considerations (such as restrictions to certain
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parametric families, see Moeschberger and David (1971)) which make models
assuming dependent lifetimes attractive or necessary even when by Theorem 1 it
is not mathematically necessary; see also the discussion in Barlow and Proschan
(1975), Chapter 5.

(iii) If simultaneous failures of components can occur with positive proba-
bility, then the conclusion of the theorem need not hold and a model with
dependent lifetimes is necessary. In this instance, it is interesting that Marshall
and Olkin’s (1966) bivariate exponential distribution consists of a component
corresponding to the joint distribution of independent exponentials plus a sin-
gular component corresponding to simultaneous failures. They show this dis-
tribution to be a much more natural model in reliability theory than are other
bivariate exponential distributions. )

(iv) A word should be said about the possibility of improper random variables
in Theorem 1: using Tsiatis’ (1975) approach, it can be shown that, for k = 2, if
P(L>1f)=exp(—t)and P =1|L=1t)= (1 4+ 1) then (T, <t)=1—
exp(— V& (1 + s)~*ds); thus P(T, < o0) =1 — e”*. It would be interesting to
characterize the distributions F, , for which T}, . - -, T, all have proper distribu-
tions. One conjecture is that if L and 7 are independent, then T,, T, -, T},
are proper.

2. Proof of Theorem 1. The proof of Theorem 1 for the case k = 2 illus-
trates the general idea without cumbersome notation required for arbitrary k.
The proof consists of 3 lemmas. Lemma 2 is the crux. Lemmas 1 and 3 involve
only approximating a general distribution F, ; by a discrete distribution.

LemMA 1. Let F, ; be a probability distribution on [0, co) x {1, 2} such that
Fp -, and Fp;_, have no common atoms. Then, given ¢ > 0, there exists a set

A={{sys s} x {1}V {{t, 6, -, 0} x {2},
(21) 0<Ss<8sH< <5, 02,<t,< -+ <1y,
s;#t, 1=Zi,j<n.

and a probability distribution G, ; with support A such that sup |F, ; — G, ;| < e.

Proor. The proof is a routine exercise in approximating a distribution func-
tion by a discrete one.

LEMMA 2. Let G, ; be a distribution supported on A, (2.1). Then there exist
unique independent random variables S and T taking values [s;,i = 1, - .., n} and
{t.;;i =1, .-+, n}, respectively, (at least one of which has a proper distribution) such
that (min (S, T), i(S, T)) has distribution G ;.

Proofr. Let G, /(s;,1) = a,and G, ,(1,,2) = b;,i = 1,2, ..., n. Combine {s;,
i=1,...,n}and {t,i =1, ..., n} into one ordered set {u;,i =1, -+, 2n}; in
particular u;, = s; if 1,_; < s; < t,_;,,. Define the distribution of independent
random variables Sand T, P{S = s5,} = p,, P[T =t} =¢q;, i =1, .-, n, as fol-
lows: If u, = s,, let p, = a;; then, if u, = 1,, in order that P{S = s,, T = t,} =
P{S = 5,}P{T = t,} it is necessary that b, = (1 — p,)q,, so define ¢, = b,/(1 — p)).
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If u; =1, let ¢, = b,. Continuing formally by induction: If u; = s;, then p,,
k=1,...,j—1,and g,, k =1, ..+, i — j have been defined. In order for in-
dependenceof Sand T',a; = P{(S = 5;, T = tl_ﬁl} =PS=s5}-PT=t,_;.,}=
pi(1 — 23izi q,). Thus define p; = aj/(l — 2z qi). If u, = t;, then define g¢;
similarly. By the above arguments it follows by induction that for any sequences,
5<85< - <s,and, < 1, < -+ < t,, when pooled to form u, < u, < -+
< u,,, that

(2.2) 1 — Yhaa — b = (1 = Ziap)( — 2190 »

j =1,...,2n,
if {uy, -+, u;} = {s, -+, 8} U {t, -+, t;,_;}. The left-hand side of (2.2) is non-
negative and monotonically decreasing as j T 2n and consequently so is the right-
hand side. This proves thatp, =0, 3i_,p, < 1,9, =0,and }}i_,q, < 1, for
i=1,2,...,n. Thus{p,,i =1,...,n}and{g,,i = 1, - . ., n}are indeed (possibly
improper) probabilities. The left-hand side of (2.2) equals O when j = 2n; thus
at least one of S or 7 must be proper. It follows by the above construction that,
if S and T are independent, (min (S, T), i(S, T)) has the distribution G ;, com-
pleting the proof.

Forany 0 < 5, < 5, < --- < 5, and O<t1<t2< <tn, there exist 2n
sets of the form {S =, T > t;}, where ¢, , < s, <t;, or {T=1,S>s,},
where s,,_, < t, < s,. These sets partition the plane into 2x cells, which would
correspond to “observable” events in a contingency table for testing the inde-
pendence of S and T; cf. diagram 2.1 of Rose (1973). The 2n equations of (2.2)
each constitute a constraint imposed by an independent model. This leaves
2n — 2n = 0 degrees of freedom to test the hypothesis of independence; roughly
speaking, this is equivalent to the fact that an independent model fits the data
perfectly.

LEMMA 3. Let the random variables L and I have joint distribution F, ; which
satisfies Hypothesis A. Assume, for ¢ > 0, there exist independent random variables
S, and T, such that sup |F s, r.),s.,79 — F1,1| < & Then there exist independent
random variables S and T such that (S,, T.) —, (S, T) as ¢ —» 0 and (min (S, T),
i(S, T)) =, (L, I). The random variables S and T are uniquely determined on [0,
inf {t: F,(t) = 1}) and at least one of them has a proper distribution.

Proor. The Helly selection theorem ([2], page 227) implies the existence of
a convergent subsequence with limit (S, 7). Independence follows from inde-
pendence of (S,, T.). The continuous mapping theorem ([2], page 30) implies
that (min (S, T), i(S, T)) =, (L, I). The proper distribution of L and the inde-
pendence of S and T together imply that either S or T must have a proper dis-
tribution. Uniqueness is proved by contradiction.
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