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ASYMPTOTIC BEHAVIOR OF LEAST-SQUARES ESTIMATES
FOR AUTOREGRESSIVE PROCESSES WITH
INFINITE VARIANCES

By VICcTOR J. YOHAI AND RICARDO A. MARONNA
Universidad Nacional de Buenos Aires and Fundacién Bariloche

Let y: be an order p autoregressive process of the form y; + 3,7_,; Bs yi—s =
ut, where the us’s are i.i.d. variables with a symmetric distribution F such
that E log* Jug| < co. For the Yule-Walker version 87* of the least-squares
estimate of 8= (f1, - -+, Bp), it is shown that T#(Br* — B) is bounded in
probability.

1. Introduction. In this paper we consider the order p autoregressive model.
(1‘1) yt+zg=lﬁsyt—3:”t —00<t< —I-OO,

where the #,’s are independent identically distributed (i.i.d.) random variables
with a common distribution function F. In classical theory (Anderson, 1970) it
is assumed that Eu® < oo, and under this hypothesis it is proved that the least
squares estimator 8,* of the vector 8 = (§,, - - -, 8,) is consistent; and, more-
over, that T¥8,* — B) converges in law to a multivariate normal distribution.

In the last decade, several authors, especially Mandelbrot (1963 and 1967),
have pointed out that some economic data (e.g., stock price changes) may be
better represented by time series with infinite variances (see Granger and Orr
(1972) for more complete references). This has raised the question of whether
the classical estimators are still reliable when variances do not exist. A partial
answer was obtained by Kanter and Steiger (1974), who showed the consistency
of the least squares estimators when F is symmetric and satisfies

(1.2) lim,_, t*[1 — F()] =k >0

for some a € (0,2). It is well known that this condition is satisfied by stable
laws, and that if F satisfies (1.2), then it belongs to the domain of attraction of
a stable law with characteristic exponent a.

In this paper it is shown, more generally, that if the u,’s are symmetric and
satisfy

(1.3) Elog* |u,| < oo,

then B,* is consistent; and moreover, T#B,* — B) is bounded in probability.
It is easy to show that distributions satisfying (1.2) also satisfy (1.3), and hence
our result includes the class considered by Kanter and Steiger. The condition
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(1.3) is stated only to ensure the stationarity of the process {y,}, and it seems
difficult to relax it.

Finally we make some considerations about the order of convergence of the
estimator B,*.

2. Consistency theorems. Consider the autoregressive process {y,, t € Z} de-
scribed in (1.1). In classical theory (Anderson (1970), Section 5.2.1) it is assumed
that Eu? < oo; and under this hypothesis it is proved that if the roots x;, - -+, X,
of the “associated equation”

2.1) XP 4 PR Bt

have all modulus less than one, then there exists a representation of the process
in the form N

(2.2) Vo= Dve00pllyoy s

where the series converges in L,, and a fortiori, the process y, is stationary.
The sequence {d,} is a solution of the difference equation.

(2’3) 43r+ Z£=1‘8Ik6r-—k=0 r=P9P+ 1 ...
with 6, = 1. If (2.1) has no multiple roots, then
(2.4) 0, = Nl kX r=0,1,2,.

where the k,’s are constant coefficents depending on the g;’s.

Now it is desired to ensure the stationarity of {y,} and the validity of (2.2)
under conditions less restrictive than Eu,? < oo. It is clear that if the right side
of (2.2) converges in probability, then the process {y,} defined by (2.2) and (2.3)
is stationary. We shall now consider the convergence of (2.2). From now on
it will be assumed without further notice that |x,) < 1 (i =1, - - -, p) and that
(2.1) has no multiple roots (in the case of multiple roots, all results remain valid,
but some modifications must be made in the proofs, related to changes in (2.4)).

LemMA 1. (a) In order for the series Yo, 0,.u,_, (where 0, satisfies (2.4)) to
converge absolutely with probability one, it is sufficient that:
(2.5) Elog* |u,| < oo .

(b) If the series converges, then it is the (a.s.) only stationary process satisfying
(1.1).

Proor. (a) From (2.4) it is enough to prove that for all x with |x| < 1, the
series '
(2.6) 7o [t X[
converges a.s. Since (2.6) is a power series, according to Cauchy’s root criterion
it suffices to prove that lim sup,_., |#,|” < 1a.s.; and hence by the Borel-Cantelli
lemma, it is enough to prove that, for every ¢ > 0:

0o > 1oy Pflu > (1 + )} = v, P{log* |uy| > rlog (1 + ¢)};

and the last condition is equivalent to (2.5).
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(b) It is easy to show that if the series (2.2) converges, then it defines a sta-
tionary process satisfying (1.1). The unicity is proved as in Theorem 5.2.1 of
Anderson (1970), replacing convergence in L, by convergence in probability.

Consider now a sequence of observations y, with t = 0,1, ---, T. We shall
define the modified least-squares estimator (Yule-Walker estimator) 8,* of the
vector 8 = (B, - - -» B,) ina form similar to equations 5.4.24—5.4.26 of Anderson

(1970). Forh=0,1, ---,p let

(2.7) Citr = ZimnVide-n

2.8) rir = Ciz/Ciy »

and define r,* as the column vector with coordinates (rf, - - -, ;). For any

p-dimensional vector r, define R(r) as the p X p-matrix with (i, j)-elements equal
to r,_;. Put R,* = R(r,*). Then the Yule-Walker estimator 8,* is defined

as the solution of
(2.9 R *B,* = —r,*.

It is well known (Theorem 5.5.7 of Anderson (1970)) that in the case in which
Eu} < oo, the sequence T#(8,* — B) has a limit normal distribution, with mean
0 and a certain covariance matrix W which depends on 8 but not on F.

Now we are ready to state our main result.

THEOREM 1. Let the process {y,} verify equation (1.1), where the u,’s are i.i.d.
with a symmetric distribution F verifying (2.5) and not concentrated at 0. Then
TYB,* — PB) is bounded in probability.

The theorem will be proved by showing that, for T — oo

(2.10) THBr* — B) = by + 0,(1)
where Eb, = 0; the covariance matrix of b, is of the form
(2.10") Var (b;) = (1 — 7,)Wy,

where W, depends on 8 but not on F; W = lim,_., W, exists; and the sequence
rp is defined as
(2.11) rr = E Dicut{(Ni-ou’) s

and hence 0 < 7, £ 1.
The proof of the theorem will be broken up in several lemmas. The hy-
pothesis of the theorem will be assummed throughout.

LEMMA 2. Define forh =0,1, ---,p

(2.12) = Gi/C,
where
(2°13) Ch = Z:;o 5r5r+h

where the 8,’s are the coefficients in (2.2). Define r as the vector with coordinates

—

T~
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(rys -+ -, 1,), and put R = R(r). Then R is nonsingular and
(2.14) RB = —r.

Proor. To prove (2.14), assume for a moment that Eu? < co. Then the
correlation coefficient between y, and y,,, is equal to 7, as defined in (2.12), and
it is then easy to verify (2.14) (the so-called Yule-Walker equations, in Section
5.2.2 of Anderson (1970)). But since the r,’s depend only on the 4’s, which in
turn depend only on B, it results that relations (2.12)—(2.14) are valid inde-
pendent of F.

The fact that R is nonsingular follows from Lemma 5.5.5 of Anderson (1970).
This completes the proof.

LemMA 3. Define forh =0,1, ---,pandi,j=1,"---,pand T = 1

(2.15) Ghijr = Dirahat act” Uply X770 (x; x )mex (Mt (£ 5)
and
Sr = Diou’.
Let g, be the vector with coordinates g,,;;r.. Then for each T
(2.16) Var (Tig,/S;) = (1 — 72)Vs

where 1, is defined in (2.11) and V, depends only on B. Moreover, V = lim,_,, V,
exists.

Proor. In what follows the subscript T will be generally dropped from g
and S. Note first that the Cauchy-Schwarz inequality implies that g,;,/S is
bounded, so that second moments exist. The symmetry of the u,’s implies that
E(g/S) = 0 for all T.

To calculate the covariance matrix, note first that, if r == s and ' # s’ then
E(u,u,u, u,/S* is nonnull only when r =" and s = s’, orr = s"and s = r'.
Hence the elements of Var (g/S) are

E((94:5/S)(9nri5/S))
(2. 17) — Zf=h+1 ZZ';Ih (xixi')_r(xj xj')_(s+h)(xixjxi/ le)max (r,s+h)
X I(r # s)E(u,*ul[S?) .
Now by the interchangeability of the ’s,
(w8 = (1 — p)[[T(T — 1)].
This proves (2.16). The convergence of V, follows easily upon calculating the
double geometric sum in (2.17).

LEMMA 4. Under the same hypothesis as in Theorem 1

Tirn* —n) = Gy 200 2k a1 - xixj)kiij!(Coghij - Chgoij)/S -+ Op(l) .

Proor. From the definition we may write

@2.18)  r* — = (C,C*S)[CHC,/S — Cp) — Cu(C¥IS — C].-
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Now (2.7), (2.2) and (2.4) yield

(2.19) Chr = 20y 20, kik,; Dy
with
(2.20) Dyi; = 2 [ Dree XU, [ 02 0 X7 Uyp—s] -

It is easy to verify that
C,= Db Db kik;x (1 — x;x;) .

Then by (2.19),
221)  GFS = Cp = Dty Dhua kiki[DyyslS — x(1 — xix,)] -

Rearrangement of the order of summation in (2.20) yields
(2.22) (1 - x.xj)DW

'r=--oo Z:;ltm U U X, “Tx. —(s+h)[(xixj)max(h,r,s+h) — (szj)TH] .

Now it will be shown that
(2'23) (1 X; xy)th - x Zr =h+1 ll,, + ghij + Op(l) *
First note that

r=—oo Zs:—hoo U ux, =Ty —(s+h)(xixj)T+1 = 0,,(1)

and hence the last term in brackets in (2.22) is already dealt with. Now de-
compose the remainder of (2.22) as

(2'24) r=—oo Zo——-oo + Zr =h+1 Zs—-—oo "l' Z =h+1 Zs 1

Taking into account the absolute convergence of (2.6), it is easy to prove that
the first two terms of (2.24) are O,(1). Finally, the last term of (2.24) is obvi-
ously equal to the right-hand side of (2.23). Hence (2.21) and (2.23) yield

(2.25) C*IS — Cp = By s (1 — %,%,)70,0,1S + O,(1))S .

The desired result follows upon inserting (2.25) into (2.18) and recalling that
the law of large numbers implies that lim, ., S/T* = oo a.s.

LEMMA 5. Under the same hypothesis as Theorem 1,

(2.26) THr* —r) = a, + o,(1),
where Ea, = 0 and
(2.27) Var (a;) = (1 — 7,)Uy,,

where U, depends on B8 but not on F; and there exists a matrix U with
(2.28) U = lim,__ U,.
ProoF. Immediate from Lemmas 3 and 4.

Proo¥ oF THEOREM 1. Now to prove (2.10), define the function ¢ of R” into
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R? as ¢(z) = —R(z)'z (z € R?), where the matrix function R is defined after
(2.8). It follows from Lemmas 4 and 2 that for T large enough, R* is non-
singular, and hence ¢(r,*) is well defined, and ¢ is differentiable at r,*. Hence
B* = ¢(r*) and B = ¢(r). ;

Call D the derivate operator of ¢ at the point r. Then by the mean value
theorem
B* — B=D(@* —r1) + o,(r* —r).
Hence by (2.26) »

THB* — B) = Da, + o,(1)

and application of Lemma 5 completes the proof.

It seems difficult to give in general a more precise estimate of the order of
convergence of B,* to B. For the case in which F satisfies (1.2), it has been
pointed out by a referee that the proof of Theorem 3.1 of Kanter and Steiger
(1974) implies that

(2.29) TY(B,* — B) = o0,(1)

for any 6 > a. For the general situation, some information may be obtained
from the limit behavior of the covariance matrix of the random vector b, in
(2.20), which is (1 — 7,)W,. As respects W, it was shown that it converges
to a matrix W, which depends only on 8. It will be shown in Theorem 2 that
this W coincides with the covariance matrix of the limit normal distribution
of B* when Eu? < oo. As to the constants y,, the result (2.29) implies that
lim y, = 1 when F satisfies (1.2); and it is easy to show that lim y, = 0 when
F has finite variance. It would be interesting to find distributions F such that
lim 7, € (0, 1).

THEOREM 2. Let W = lim,__ W, where W, is defined in (2.10"). If Eu}? < oo,
then the distribution of b, converges to N(0, W).

ProoF. Let g, and V be the vector and matrix defined in the statement of
Lemma 3. It will be first shown that when Eu? = ¢* < oo, T'ig;/S, converges
in law to N(0, V). Since lim,_, S/T = ¢* (a.s.), it suffices to deal only with
4:;/(¢T) in order to prove the asymptotic normality of g/S.

For fixed k, define

Ois = DFohir Lao U Uy X7 X7 O (x, x )X (oW (r £ HM(r— s| < k).

Let V,* be the covariance matrix of T¥{g},;}. Using Theorem 7.7.5 of Anderson
(1970), it may be shown that when T — oo, Ttg},;/(¢T) converges in law to
N(0, V¥), where V¥ = lim,_, V,*. Besides, it is easy to show that

lim,_,, sup; TE(gy:; — 9%:;)' = 0.

Then Theorem 7.7.1 of Anderson (1970) yields that Tg/(¢T) converges in law
to N(0, V,), where V, = lim,_,, V*. Straightforward and tedious calculations
show that V, = V.
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Then, from Lemmas 3 and 4 it is easy to show that the vector a, in Lemma
5 is asymptotically N(0, U), where U is defined in (2.28). Finally, the same
reasoning as in the final proof of Theorem 1 completes the proof.

Acknowledgment. We thank the referee for having pointed out to us the results
contained in the paper by Kanter and Steiger.
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