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WEAK CONVERGENCE OF PROCESSES RELATED TO
LIKELIHOOD RATIOS!

By W. J. HaLL? AND R. M. LoYNES
University of Rochester and Sheffield University

Material in Chapter VI of Hajek and Sidak’s book is extended to a
sequential analysis setting: conditions are given under which a sequence
of log-likelihood-ratio processes (log-likelihood-ratios for sequential sam-
pling, represented as jump processes in continuous time) converges weakly
to a Wiener process with drift, the drift parameter depending on which
hypothesis, in a suitable neighorhood of a null hypothesis, prevails. Con-
ditions for convergence of other ‘‘test statistic’’ processes, related to like-
lihood ratios, are also given. Asymptotic sequential tests can thereby be
constructed. Some ‘‘two-sample problem’’ examples are treated.

1. Sequential analysis motivation. In order to construct tests of hypotheses
from “large samples,” the asymptotic distribution of a suitable test statistic is
needed when the null hypothesis is true. For a more complete description of
the behavior of such tests, for example to approximate the power or to study the
asymptotic efficiency of one test relative to another, the asymptotic distribution
is needed under alternative hypotheses. To get beyond generalities the problem
must be specified more closely, and this can be done in various ways; we choose
the Pitman approach, in which the null hypothesis and error probabilities are
fixed, but the alternative hypothesis tends towards the null, thereby ensuring
large samples: then power can be investigated in the neighborhood of the null
hypothesis.

An elegant and powerful way of structuring this approach was introduced by
Le Cam (1960), and utilized in the book of Hajek and Sidak (1967) (hereafter
H-S), using the notion of contiguous hypotheses. Roughly speaking, it goes like
this:

Consider a sequence of specific alternative hypotheses, and a simple null
hypothesis H,, so chosen that the log-likelihood-ratio statistic log L, is asympto-
tically normal under H, with mean equal to minus one half of the variance, as
the sample size n tends to infinity. Let us say the hypotheses are then “close.”
(According to Le Cam, this implies the weaker concept of “contiguity.” This hap-
pens, for example, in one-parameter exponential families if the parameter under
the alternative tends to the parameter under H, at the rate n=t.) This log-likeli-
hood-ratio statistic is of course suitable, even optimal, for hypothesis testing.
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Now consider another test statistic §,. Typically, if it is to be comparable
to log L,, it too must be asymptotically normal under H,. Suppose slightly more:
namely, suppose S, and log L, are asymptotically bivariate normal, rather than
just marginally asymptotically normal. (The Cramér-Wold device, as described in
Billingsley (1968), is the usual tool, requiring only consideration of the one-dimen-
sional distributions of linear combinations.) Le Cam then showed that S, and
log L, must also be asymptotically bivariate normal under the sequence of alter-
natives; moreover, the asymptotic second-order central moments are the same,
the asymptotic mean of S, is shifted by the covariance, and the asymptotic mean
of log L, has its sign changed. Thus, asymptotic marginal distributions under
the alternatives are inferred from those under H,. If S, is standardized to have
the same H-limit as log L,, then it also has the same limit under the sequence
of alternatives except its mean is possibly smaller—by the amount (1 — p)d?,
where p and ¢* are the correlation and variance in the bivariate normal limit
distribution. Thus, if p = 1, §, and log L, have the same asymptotic distribu-
tion under both hypotheses. Otherwise, o* turns out to be a convenient index
of asymptotic efficiency (Pitman efficiency), of a test based on S, relative to one
based on log L,.

Our goal is to extend all of this to a sequential analysis setting. A SPRT, as
a typical example, is based on the sequence {log L,}, with fixed stopping barriers,
n being the sample size. If we are to consider asymptotic behavior we shall have
a sequence of alternative hypotheses, indexed by an integer v. (In the fixed
sample-size situation discussed above, v and n could in effect be identified, but
here this simplification is no longer possible.) Thus we have a sequence {L,,}
for each v. Our method of treating the problem is to set each sequence {L,,}
into continuous time by writing L (f) = L,, at n = [vt] (later in the text, for
greater generality, we write n = [n, t] for some increasing n,). Then frequently
{log L,,} (or more precisely log L,) can be shown to behave asymptotically (v —
o) like a Wiener process with drift (under H,), and if the alternative hypotheses
are “close” to the null, the drift parameter may be expected to be minus one
half the variance parameter; the change to a sequential setting has forced us to
deal with random processes rather than random variables. If we now have
another sequence {S,} (or more precisely {S,,}) on which we may want to base a
sequential test, it too may, when similarly embedded in continuous time, behave
asymptotically like a Wiener process with drift (under H,). By extending the
Le Cam theory, we show that if {S,, log L,} behaves jointly like a “bivariate
Wiener process” under H, then it will do likewise under the sequence of alter-
natives, with different drift parameters, paralleling the results reviewed above.
Hence a test for the drift of a Wiener process can be used to provide a sequential
test based on {S§,}, whose asymptotic properties are those derived from Wiener
process theory. Such asymptotic sequential analysis is described more fully in
Hall (1975).

In this reformulation in continuous time, it is enough (for proving limit
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theorems) to consider finite time intervals [0, K] for a sequence of K-values
tending to infinity; the processes are then in the function space D[0, K] (or
D[0, co)—see Appendix). It turns out, in developing the theory summarized
above, that it is enough to consider (Sy,,;, log L, x1), @ “process” in D[0, K] X R,,
rather than the bivariate process (S;,,;, log L;,,;) in D[0, K] X D[0, K]. The cor-
responding limit process, with one “marginal” being a Wiener process and the
other a normal random variable (with appropriate “joint” structure), we call a
W-N process. These processes, and their role as weak limits of processes related
to likelihood ratios, are described in Section 2. This material constitutes a
natural extension of Le Cam’s third lemma (described in H-S, and in Hall and
Loynes, 1977—hereafter H-L-I). Le Cam’s second lemma is extended to this
stochastic process setting in Section 3: it is useful for verifying the hypotheses
(convergence under Hy) in Le Cam’s third lemma.

Armed with this machinery, the weak convergence of the log-likelihood-ratio
process is verified in Section 4, in the case of an H, hypothesis specifying i.i.d.
observations and an alternative specifying various location shifts (“regression in
location,” H-S); weak convergence is also verified under other “nearby” regres-
sion alternatives.

Sections 5 and 6 present applications to the two-sample problem, both para-
metric and sign-test versions. Another paper by us (referred to as H-L-III) will
present linear rank statistic applications. A t-fest application appears in Hall
(1973).

Some topological and weak convergence questions are summarized in the
Appendix.

2. Wiener-normal processes and convergence to them. In this section we
define certain stochastic processes with paths in spaces such as D[0, c0) X R,,
and this enables use of an extension of Le Cam’s third lemma (H-S) to prove that
various processes related to log-likelihood-ratios converge to Wiener processes
with drift.

We first consider bivariate Wiener processes Z on C[0, o0)* or C[0, K]*. For
each ¢, label the coordinates Z,(f) and Z,(f). The process Z has independent
increments and multinormal finite-dimensional distributions. Also EZ(t) = ut,
EZ,(f) = at, and the covariance matrix of Z(f) is Xt where

Z= <T2 72> (written hereafter as £ = Z(z, 7, 0)) ;
y o
Z(0) = (0, 0).

Now consider Z on C[0, K]?, relabel the first coordinate Z (dropping the sub-
script 1) and replace the second coordinate by ZX = Z(K). We refer to (Z, Z¥)
as a W-N (Wiener-normal) process in C[0, K] X R,, with parameters (u, 4; Z);
note that Z is a Wiener process W, ., with drift ¢ and variance 7*, Z¥ is a
N(K2, Ko*) rv, and Cov (Z(f), ZX) = rt. The process is characterized by the
joint distribution of Z(t,), - - -, Z(#,), ZX foreverykand0 < 1, < --- < 1, = K;
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it is multinormal with means pt,, - - -, pt,, 2K and covariance matrix with (i, j)-
element 7> min (¢, t;) foriand j < k, and with (k 4 1)throw yz,, rt, - -, 7, 0°K.

We prove weak convergence of various processes (Z,, Z,¥) in D[0, K] X R, to
(Z, Z¥), for a sequence of K’s 1 co. It is sufficient to prove weak convergence
of Z, to Z in D[0, K], weak convergence of Z X to ZX, and convergence of the
finite-dimensional distributions of (Z,, Z,*) to those of (Z, Z¥) (because “joint
tightness” follows from “marginal tightness”—see Billingsley (1968), page 41,
Problem 6).

We also need the following:

Lemma 1. If (Z, Z¥) is W-N(p, 2; Z(z, 7, 0)) on C[0, K] X R, under P with
A= —4d*, and if dQ = exp(ZX)dP, then (Z, Z¥) is W-N(u + 7, —A; Z) under Q.

Proor. First note that Q is a probability measure since § dQ = exp(iK +
$0’K) = 1. It is now sufficient to evaluate the characteristic function of
Z(t), - -5 Z(t,), Z* under Q and see that it is consistent with the conclusion of
the lemma.

Now let X}, X,, - - - be rv’s (real- or vector-valued) on a fixed measurable space
(Q, %), and write .7, for the subfield generated by the first n X’s. Let {z,} be
a sequence of measures thereon and write 4, for the restriction to .%,. Let
P,, Q, and R, be absolutely continuous probability measures specifying densities
(w.r.t. p,,) for X, ..., X, denoted by p,,, q,,, and r,,, respectively, and write
L.=4q.pnand M, =r,p, (withL, =1ifg, =p,=00rn=0, =vif
9y > P =0and n >0, and = 1)vif p,, > ¢,, and n > 0, and similarly for
M,,). Let S, bean 97 ,-measurable (real) function. Finally, let {n,} be a mono-
tone sequence of integers increasing to co with v. (Q, % and X, could also
have suffices v with minor changes in what follows.)

We set various (real) .97, -measurable functions in continuous time as follows,
as elements of D[0, oo): L, at tis L,(t) = L,, at n = [n,t]; write L ¥ for the
restriction of L, to D[0, K]; likewise for M,, S,, etc. The log-likelihood-ratio
process (@, to P,) is then defined as log L, in D[0, o), representing at time ¢
the log-likelihood-ratio of the first [n,¢] X’s. Write P,X for the restriction of
P, to 71, ), etc.

An extended form of what H-S call Le Cam’s third lemma appeared as Theorem
2 in H-L-I; part of that theorem in the present setting (using Lemma 1) is:

THeorEM 1. If (S5, log L,(K)) = W-N(u, 2; Z) in D[0, K] X R, under {P}
where X = X(t, 1, 0), andif A = —4d*, then (S,%,log L(K)) = W-N(¢ + 71, —4; Z)
under {Q,}.

A version of this theorem with the process L, rather than the rv L,(K) is pos-
sible but unnecessary here. Indeed, W-N convergence under {Q,} almost re-
quires the hypothesis of the theorem, and mutual contiguity of {P,X} and {Q,¥}
(but not of {P,} and {Q,}) can also be inferred; see H-L-I.

Taking S, to be log L,, and eliminating the redundancy, we obtain a corollary
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(analogous to part of Corollary 1 in H-L-I and to Theorem 7.2 in Roussas
(1972)):

CorOLLARY 1. If log L, = W, , in D[0, oo) under {P,} with drift parameter
0 = —1a? for some ¢ = 0, then it converges under {Q,} 1o W_, .

As a second immediate corollary, we have

CoroLLarY 2. If (log L%, log M, (K)) = W-N(—%7*, —40% X(z, 1, 0)) in
D[0, K] X R, under {P,} for every K, thenlog L, = W,_,s 2 in D[0, co) under {R.}.

In sequential analysis applications, Corollary 1 enables construction of tests
of P, vs. Q,, based on log L,, with asymptotic properties determinable under
both hypotheses; Corollary 2 enables determination of asymptotic properties
under another hypothesis R,. Of necessity (see H-L-I), these various hypotheses
are (essentially mutually) contiguous.

An example of Corollaries 1 and 2, and Theorem 1, is provided by considering
exponential family rv’s with parameters, within order n,~* of each other (as in
Hall (1975)). Specifically, let the parameter be 6, under P, = P, 0, + 6/v* under
Q,, and 6, + cd/vt under R,, with the origin so chosen that &, X = 0, and
writing &,X? = ¢* (n, = v). It may be shown that (logL,*,log M,(K)) =
W-N((2 — })0*, —4c%? 0°Z(1, ¢, |c|)) under P (with 2 = 0), by Donsker’s theo-
rem. This implies convergence of log L, under Q, (2 = 1) by Corollary 1 and
under R, (1 = c) by Corollary 2. Letting S,, be the sign test statistic defined in
Hall (1975)—specifically, S,, = v~* Y7, sgn (X, — m) where m is a median
(but not an atom) under P—Donsker’s theorem and the Cramér-Wold device
enable verification of the hypothesis of Theorem 1; we thus obtain the conclusion
that S, — W,,,, under P, Q,, and R, (with 2 =0, 1 and ¢, respectively) where
p = corr (sgn (X — m), X) under P. Implications in sequential analysis are dis-
cussed there.

Further applications appear in Sections 5 and 6 below, in Hall (1973) and in
H-L-IIT; all are in the spirit of applications of Le Cam’s third lemma in H-S.

We mention one final fact here. By proving the joint weak convergence of
log L, and log M, to a bivariate Wiener process under P, (as an extension of
Theorem 1 or Corollary 2), the joint weak convergence under both Q, and R,
can be concluded. By differencing the two coordinate processes, we thus ob-
tain the weak convergence of the log-likelihood-ratio process of Q, to R, under
both Q, and R,. Thus, a sequential test of Q, vs. R, could be constructed and
evaluated, only carrying out convergence proofs under P,.

3. Le Cam’s second lemma. The hypotheses of the theorems and corollaries
of Section 2 may be verified in special cases using Donsker’s theorem or a theo-
rem of Loynes (1976). These latter theorems require second moments (or mo-
ments of order one, at least). Some of the variables to which we shall apply the
previous section will, however, be log-likelihood-ratios, which will not in general
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have such moments. It is therefere convenient to extend Le Cam’s second lemma
(H-S, page 205) to cover weak convergence of processes.

Consider an infinite sequence X, X,, - - - of rv’s on a fixed measurable space
(Q, ), as before. According to P,, they are independent with densities
(Lebesgue measure) f,,, f,,, - - -, and according to Q, they are independent with
densities g,,, ¢,, - - -. The whole development parallels H-S very closely, and
we begin by writing
(1) Z,, =2 N {[9.(X) (X)) — 1}

with its continuous-time analog Z,(r) = Z,(f) at n = [n,t]. The uniform asymp-
totic negligibility of the summands needs slight strengthening to

) lim,_, max, .z, » P, <

9:X) -0 f K.
) } > e> or every

We then have

LemMA 2. If (2) kolds and Z, — W _, 5 ,» in D[0, co) under {P,} for some s = 0,
then P,(sUpyg,<, [log L,(t) — Z,(f) 4 16t > ¢) — 0 for every K and ¢ > 0, and
log L, = W_, 3 2 in D[0, co) under {P,}.

The first part may be proved in parallel to H-S, taking care that convergence
is uniform for ¢ € [0, K], and the second part follows from the first.

4. Weak convergence of log-likelihood-ratio processes. We now apply the
results of previous sections to obtain conditions for the weak convergence of
log-likelihood-ratio processes, the null hypothesis specifying i.i.d. observations
and the (contiguous) alternatives specifying location shifts (or regression in loca-
tion, H-S). The treatment parallels that of Section VI.2.1 of H-S, with modest
changes. Our rv’s X are now real.

AssUMPTION A. F is an absolutely continuous df with density f with finite
Fisher information I(f).

Write ¢(u) = ¢(u, f) = —f'[F~(u)]/f[F*(u)] sothat § #(u) du = 0 (H-S, mid-
dle of page 17 and Lemma 1.2.4a) and I = § ¢(u)’ du < oo.

For given f, consider a sequence of location alternatives {Q,}; O, is a probability
measure on (2, ©7) according to which X, - .., X, have joint density

qun: ?:1 (xi_dvi) n=1’2""'
The following assumption is made about the d,; (limits are as v — oo):

AssumPTION B. For some d,, some positive integers n, — oo, some d > 0, and
for each positive ¢,

(i) MAX; <i<n,t d,;,—4d)y—0;

(i) d,, =n13r d(atn =[nt]) =d, + o(n,);
(i) X0 (de — d)at n = [n,1]) - % .

Write d), = d,; — d,, and ¢ = 6I*. (H-S require d, to be our d,,, but they
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only need consider n, (their N,) X’s whereas we have an infinite sequence. Our
n, is simply an index which could be replaced by v; it has no special interpreta-
tion. Also, by rescaling, 9 could be taken to be unity.)

Let P, be a probability measure on (2, /") according to which X, ..., X,
have joint density

Pv’n: ?=1f(xi—dv) n:1927"'-

Thus, P, is consistent with the null hypothesis of i.i.d. observations, and it may
be shown that {p,, } and {q,, } are mutually contiguous. Obviously, P, depends
on v only through the location parameter d,.

Let L,, = q,,/p,. (With the same conventions as in Section 2 when p,, or ¢,
orn=0). Let logL,(t) =logL,,atn = [n,t]; log L, is the log-likelihood-ratio
process, clearly in D[0, co) for each v. (Alternatively, and asymptotically equiv-
alently, we could set L,(7) equal to L,, when t = 7, d}, but equal spacing of
observations seems more natural when motivated by sequential analysis.)

The main result of this section is the following theorem, giving sufficient con-
ditions for the convergence of the log-likelihood-ratio process.

THEOREM 2. Under Assumptions A and B, and with o* = ¢* I(f), log L, —
W_, ., under {P} and log L, — W,z ,» under {Q,} in D[0, co).

Note that the limit behavior depends only on §°/(f): thus the d,; enter only
through 4, and f only through /(f). It may also be noted in passing that the
theorem implies as a corollary that {p,, } and {g,, } are mutually contiguous
(H-L-I).

Proor. This is analogous to Theorem VI.2.1 of H-S, and our proof closely
parallels theirs: we introduce a process Y, which is easily studied, and by this
means show that the hypotheses of Lemma 2 are satisfied. Application of Co-
rollary 1 of Section 2 then completes the proof.

Let

3) Y,, = Nr.d,¢(U),  where U,=F(X,—d),

and define the process Y, by Y,(¥) = Y,, at n = [n,¢t]. Under P, the U, are in-
dependent and uniformly distributed on [0, 1]. (Our Z,, and Y,, (defined in (1)
and (3)) corresponds to W, and T, of H-S VI.2.1 (3) and (13).)

Condition (2) is a consequence of Assumption B, and it is therefore sufficient
(by Lemma 2) to show that under P,, Z, — W_,,, » in D[0, K] for every K, and
this follows easily from the corollary in Loynes (1976). His conditions (i) and
(ii) are easy. Conditions (iii) and (iv) with Y, replacing Z, (W, . in (iv)) are
easily verified, the latter by using the Cramér-Wold device and Theorem V.1.2
of H-S; Lemma VI.2.1b of H-S and Lemma 3 below then allow one to con-
clude that conditions (iii) and (iv) are also satisfied for Z,, completing the proof.

To obtain asymptotic behavior under other (contiguous) alternatives, suppose
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AssUMPTION B(iv). e,, e, and ¢ satisfy Assumptions B (i) (ii) (iii) (replacing
d,, d,; and §), for the same n,’s; and

B(v): foreach 1, tadiel (at n=[nt]) oyt (p] < de).

Let R, be the probability measure corresponding to Q, but with the d,,’s replaced
by e,;’s. Proceeding very much as in H-S (Section VI.2.4) and above, we obtain
from Corollary 2 of Section 2

THEOREM 3. Under Assumptions A and B(i)—(v), and with ¢ = &’I(f) and y =

71(f),
logL,—= W, _,,, under {R)} in D[0, co).

Simple sufficient conditions for B(i)—(v) are:

AssumPTION B’. For some § > 0, ¢ > 0 and some 5, and bounded sequences
{d/’} and {e,"’},

(a) for arbitrary d,, d,, = d, + d/"[vt, n, = v,
nt e, d” —0 and ntyr d/"— 3 as n—oo;

(b) (a) holds with d’s and 4 replaced by e’s and ¢;
(c) n7t v ,d/ e > npasn— co.

i=1

According to the above results weak convergence of log-likelihood-ratios is
guaranteed under Assumptions A and B. Joint finite-dimensional distributions
with other statistics need to be evaluated from time to time, however, and it is
then often convenient to apply the following lemma (essentially implied by H-S
Theorem VI.2.1 and Lemma VI.2.1.b): it implies that for such purposes any one
of log L,(t), Y,(1) — %0*, Z,(t) — 10°t may be replaced by another.

LeEMMA 3. Under Assumptions A and B(i)—(iii), for each t the quantities (a), (b),
() differ by amounts which tend to O in P -probability:

(a) log L,(?); (b) Y, () — io’t; (c) Z,(t) — Lot.

Stronger results are true (the difference between (b) and (c) tends to 0 in mean
square, and all differences of the corresponding processes converge weakly to
0), but do not seem of great value.

5. The two-sample problem—parametric version. Observations, the X’s, now
come (independently) from one of two populations; we say they are Y’s or Z’s
respectively. Let p, be the proportion of Y’s among the first n observations and
4, = 1 — p,. We assume that p, does not depend on the values of the oberva-
tions and p, — p for some pe(0,1); g =1 — p.

According to P, = P, all observations have a specified density f, satisfying
Assumption A of Section 4; according to Q,, the Y’s have density f(x 4 ¢d) and
the Z’s f(x — pd), and we set d = d(vpq)~* (0 fixed). Also, consider R,, analog-
ous to Q, but with d replaced by cd for some ¢ = 0. Then Q, and R, are loca-
tion shift alternatives, with population means differing by d and cd, respectively.
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Assumption B’ is readily verified, with & = ¢%® and 5 = ¢é* (and d, = 0,
d" = —(qlp)t or a(p|g)t, and e/ = cd,").

Under these assumptions, Theorems 2 and 3 imply that the log-likelihood-
ratio-process for Q, to P converges weakly to a Wiener process with drift (1 —
1)¢* and variance ¢* = ¢’I(f), with 2 =0 under P, =1 under Q,, and =c under
R,.

This result is not of much practical interest in this form since the P-hypothesis
is simple: f needs to be completely specified in order to calculate the log-likeli-
hood-ratio statistic. In the remainder of this section, we assume f to be N(¢, ¢°)
and show how the various nuisance parameters can be estimated. A second
version of the problem, invariant under common shifts, is given in the next
section. Variations, based on linear rank statistics, appear in H-L-III.

Assuming now that fis a N(g, ¢*) density (I = ¢~%), we find, after n’ ¥’s and
n'" Z’s (n=n" 4+ n"),

log L,, = —n'qdo(¥,, — 11 + gd) + n"pdo=(Z,,, — 1 — }pd)

where ¥,, and Z,,, are the respective sample averages. Setting this in continuous
time (n = [vt]), we have a Wiener process limit with drift (1 — 4)d°/o* and vari-
ance #%/¢*. If x is unknown (but ¢ and p known), we now replace it by a pooled
estimate p, = p¥, + ¢qZ,.. Also, we delay “start-up” of the process (a device
which enables collection of sufficient data to estimate parameters well (Hall,
1975)) and thus define, for some C > 0,

Sn = I(n = [CA]) - log L, ,—,
= I(n = [CH]) - (W'q* + n"p)do(Z, — ¥, — }d) .

Now let D(r) = |logL,, — S,,| at n = [v] and J, = {¢|C/v* < 1 < K} for
fixed K. Then D, = sup,, D,(1) = sup|g, — |- |n"'p — n'q|do™’ where d =
3/(vpq)t, n' = np,, "’ = nq, and n = [vt]. We find

D, < Asup|p, — p| - {p[sup ¥, — ¢ + qtsup|Z,., — pl}

where 4 = dKo~*(pq)~*. Since the term in curly brackets can be shown to con-
verge weakly to a rv, and since sup,, |p, — p| = MaXgiicngir [Pn — pl— 0 as
y — oo, we have that D, — 0 in probability, for every K. This is sufficient, by
Lemma Al (with # = 0 and V, = 6 = 1), to assure that log L, and S, have the
same weak limit under P.

By considering the finite-dimensional distributions of (S,, log L,(K)), we can
now verify that the hypothesis of Theorem 1 holds with ¢* = z* = y. Hence,
S, and log L, have the same weak limit under Q, also. Replacing L, above by
M,, the same holds under R,. Hence, S,, may be used for constructing sequen-
tial tests as if it were log L,,, without affecting the asymptotic properties under
P,Q, or R,.

If p, ¢ and ¢* are also unknown, they may be estimated by p,, ¢, and S’
(the usual pooled estimate) for n not too small. By similar methods, based on
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Lemma Al, it can be shown that S,, with p, g and ¢* replaced by these estimates
has the same asymptotic behavior as log L,,. Alternatively, the methods of Hall
(1975) may be applied directly to the sequence S,, (with estimates throughout).

6. The two-sample problem—sign test version. We now suppose that one
observation is taken from each population at each stage, and let X, =
(—H~Z, — Y,). We confine attention to procedures based on the sequence of
X’s which are invariant under common location shifts.

Under P, = P, Y, and Z, have identical densities g(x — 6,) (6, unspecified) so
that X, has density f(x) = § g(x + u)g(u) du. Under Q,, Y, has density g(x — 6,)
and Z, density g(x — 6, — A,), so that X, has density f(x — d,,) with d,, =
(—1)"A,; thus A, is the hypothesized location shift, and it will be convenient to
write A, = d/vt. Define R, similarly to Q,, with d,, replaced by cd,,. We as-
sume Assumption A for f; Assumption B’ is readily verified (d,” = (—1)"d, ¢ =
cd, n = cd?).

Thus, by Theorems 2 and 3, the log-likelihood-ratio process converges to a
Wiener process with drift (2 — £)¢* and variance ¢ = ¢°/(f), under P, Q, and
R, (with 2 =0, I and ¢).

We now proceed to give a sign-statistic analog of the above. Let S, =
sgn(Z, —Y,)=(—1)"sgnX,, S, =vt 3, S, and S,(r) = S,, at n = [vr].
Now S, = W under P (by Donsker’s theorem); the finite-dimensional distribu-
tions of (S,%, log L,(K)) converge to those of W-NO0, —40* Z(1, 7, 0)) where
r = covp(sgnX, —df'(X)/f(X)) = —0 {sgnx - f'(x)dx = 20f(0) = 26 § g(x)*dx.
Hence, Theorem 1 applies and S, = W, , under Q,. Replacing L, by M,, S, =
W, under R,.

Equivalently, letting T,, = 2f(0)A, 217, S, — 2nf(0)*A,’, we have T, —=
W =, in D[0, co) under P, Q, and R, (with 2 = 0, 1 and ¢). Hence, assum-
ing f(0) is known, a sequential test may be carried out based on T,,, with Wald’s
constants as stopping barriers. The hypotheses tested are H,: {Z,} = _ {Y,} vs.
H :{Z,} =_{Y, + A}, the various densities being translations of g with f(0) =
{ 9* dx assumed known. The test will have asymptotic efficiency p* = y*/o* =
4f(0)*/I(f), relative to the optimal (invariant) SPRT based on log L, (see Hall
(1975)).

Now suppose f(0) = § ¢g°dx is not known but the “type” of g is assumed
known—i.e., g is known except for a scale parameter, say g(x) = h(x/£)/é for
a given density 2. Then, with k = { A(x)* dx (assumed known), we have f(0) =
k/¢ and only & is unknown. We can replace ¢ in the statistic T, by a strongly
consistent location-invariant scale estimate En, if we introduce a “delayed start-
up” factor 1,, = I(n > Cv?), and the asymptotic behavior of T,, will be un-
changed. The location invariance assures that the distribution of &, is constant
over v, P, Q, and R,, and the strong consistency (a.s. convergence) is then suf-
ficient for the application of Lemma A1 (see remark following it). For example,
we can take £, = 215,71, where g, is the (known) standard deviation of the
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density # and 6, is the sample standard deviation of Z, — Y3, - -+, Z, — Y. of
course, the statistic 7, is no longer simply a sign statistic.

Now suppose even the type of g is unknown, and hence f(0) is completely
unknown. Then we can replace f(0) in T,, by a strongly consistent location-
invariant estimate fn, as in H-L-III, if we also introduce a delayed start-up factor
I,,, and the asymptotic properties again remain unchanged. A suitable estimate

is f, = (fin + fu)/2 Where fi, = n[Z[3 — ((Y: = Y;)/a,)']a, (Y, — Y;)/a,)]*,
fan is identical with Z’s replacing the Y’s, and a, = an—%, ¢ is the standard nor-
mal density, and the summation is over {i, j|1 < i < j < n}; it is shown in
H-L-III that it is strongly consistent whenever g has a uniformly continuous
and absolutely integrable derivative.

Finally, in the special case when g is assumed to be N(0, §*), then Z — Y is
N(2A,, 28 (with 2 = 0, L or ¢), y = d§/(éxt), I = 1/(2€*) and p* = 2/x. The cor-
responding sequential sign test is based on T,,, = TN 3 S, — n(2nE) A2,
where & may be replaced by &, = [n~* 37, (X, — X,)*]t (or possibly 1/2xtf,)),
and “start-up” delayed until n > n, = O(v*). A sequential test based on this sta-
tistic would have asymptotic efficiency (relative to a normal-theory SPRT) of
p* = 2/m, as in nonsequential theory.

APPENDIX

In this paper we deal with weak convergence of random (right-continuous)
functions on [0, co); it is convenient to carry out the analysis in the space
D[0, oo) with the Skorokhod J;-topology (see Billingsley (1968) and Stone (1964)).
Since our limiting measures are always those for Wiener processes, the details
of the topology are unimportant. Relying on Theorem 15.5 of Billingsley (1968)
and the theorem of Stone (1964) (with (2’) replacing (2)), we see that weak con-
vergence to a Wiener process in D[0, co) occurs if it occurs in D[0, K] for a
sequence of K-values increasing to infinity.

The following lemma is useful in sequential analysis applications since it asserts
that, if a process converges weakly, then modest perturbation of it (approximate
additional drift, approximate rescaling, and truncation on the time axis) does
not destroy its convergence. The proof is straightforward (similar to Hall (1975))
and omitted.

Lemma Al. Suppose U,, V, and X, are in D[0, co0), and 0 < ¢,/ | 0 and oo =
1, 1 oo; denote I(t) = I(t,) <t < t,)). If
(i) X, = W,,in D[0, co),
(ii) for each K, sup, o< |U(t) — pt| — 0 in probability as v — oo, and
(iii) for each K, sup,, <<k |V.(t) — 0| — O in probability as v — oo,
then (X, + U,)V,I, = W, s.02 in D[0, o).

In applications of this lemma, we frequently have U,(f) = g4,t and V() = 4,
at n = [n,t] for some £Z,-measurable #, and 6, where &, c 7, <, 1, and
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P, restricted to <7, is v-free for every n. Then, if n,t," — co, and if (4,, éﬂ) —
(¢, 0) a.s., (ii) and (iii) hold.

Now introduce absorbing barriers » < 0 < a, and for any x in D[0, co) write
T*(x) = inf {t|x(t) = a}, T*(x) = inf {t| x(r) < b} (or + o if otherwise undefined),
T = min (T°, T*), and ¢(x) = I[T*(x) < T*(x)]. Thus, T is the absorption time
and ¢ the indicator of absorption in [a, co).

The following lemma is necessary for sequential analysis applications: it as-
sures that, if S, — W, ,, = Z in D[0, oo) with the J,-topology, then T(S,) — T(Z)
and ¢(S,) = ¢(Z); that is, stopping times converge weakly, decision variables
(and their expectations—the OC-function) converge weakly, P,(T(S,) < o) — 1,
etc.; see Hall (1975). (Convergence of expected stopping times (ASN’s) requires
extra assumptions, however.)

LemMa A2. T¢, T* T and ¢ are measurable in C[0, o0) and D[0, o) and are
continuous almost surely with respect to Wiener measure with drift.

The continuity of 7° may be established by an argument similar to that on
page 232 of Billingsley (1968); the rest is standard. We could replace “>" by
“>” in the definition of T, etc., and exactly the same results hold. Whitt (1971)
has shown that such a T* is a continuous functional everywhere, but he used the
weaker M,-topology.
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