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DISTRIBUTION AND EXPECTED VALUE OF THE RANK
OF A CONCOMITANT OF AN ORDER STATISTIC!

By H. A. Davip, M. J. O’CoONNELL?
AND S. S. YANG

Iowa State University

Let (X;, ¥;) be n independent rv’s having a common bivariate distri-
bution. When the X; are arranged in nondecreasing order as the order sta-
tistics Xp.n (r = 1,2, -+ +, 1), the Y-variate Yi,.n) paired with X, is termed
the concomitant of the rth order statistic. The small-sample theory of the
distribution and expected value of the rank R;,, of Y{,:n) is studied. In
the special case of bivariate normality an illustrative table of the probabil-
ity distribution of Ry, is given. A more extensive table of E(R,,n) is also
provided and it is found that asymptotic results require comparatively small
finite-sample corrections even for modest values of n. Some applications
are briefly indicated.

1. Introduction. Let (X, Y,) (i = 1,2, --., n) be n independent rv’s having
a common bivariate distribution corresponding to (X, Y). When the X are ar-
ranged in nondecreasing order as the order statistics X,,, (r = 1, 2, -- -, n), the
Y-variate associated with X, may be denoted by Y|,.,; and termed the concomi-
tant of the rth order statistic. These concomitants have been put to a variety of
uses, recent examples including Gross (1973) and O’Connell and David (1976).

In this paper we are concerned primarily with the distribution and the expected
value of the rank R,., of Y|,.,; among the n Y,. By way of motivation note that
(X;, Y;) may refer to two tests taken by the ith individual 4,. We address our-
selves to the following questions: If 4, has rank r in the first test, what is the
probability that he will have rank s in the second test and what is his expected
rank in the second test? Again, X, may represent an observable (or phenotypic)
rv, used as a basis for ranking or selection, and Y, the true (or genotypic) rv
that is really of interest.

Asymptotic results for the behavior of R, , have been developed in David and
Galambos (1974). Here we concentrate on the small-sample theory. In the special
case when X and Y are bivariate normal an illustrative table of the probability
distribution of R, , is given. A more extensive table of E(R, ,) is also provided
and it is found that the asymptotic results require comparatively small finite-
sample corrections even for modest values of n.

2. Probability distribution of the rank of Y, . Let the indicator function
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I(u) be defined by
2.1) Iu) =1 for uz=0
=0 otherwise.

Then the rank of Yi,.,; is given by
(2.2) R,,= 20 (Y, — Y,..) r=1,2,.--,n.

Let X and Y have the absolutely continuous joint cdf F(x, y), with pdf f(x, y).
Since R, , is from (2.2) location and scale invariant with respect to both X and
Y, we take F and f to refer to the standardized variates. Writing r(X;) for the
rank of X; among the n X’s, with a similar meaning for r(Y,), we have for r =
1,2, --o,n;s=1,2, .-, n

(2.3) Pr{R,, = s} = Xr, Pr{r(Y,) = s, r(X;) = r}
=nPr{r(Y,) = s, rX,) =r},
where the subscript is taken to be n for definiteness. The manner in which the

compound event r(Y,) = s, r(X,) = r can occur is best seen from the following
2 x 2 table with fixed marginals:

X, > X, s—1—k n—r—s+14+k n—r

s—1 n—s n—1
Corresponding to the four cell entries write
2.4) 0.(x, ) =Pr{X < x, Y <y}, Oy(x,y) =Pr{X < x,Y >y},
O,x,y) =Pr{X >x, Y <y}, O x,y) =Pr{X >x,Y>y}.
By conditioning on X,, Y,, we then have from (2.3)

(2.5)  Pr{R,, =5} = n{=. {%0 Dt o C,0 40,1402+, o1+ f(x, y) dx dy

where
(2.6) t=min(r — 1,5 — 1),
(2.7) Cy(r, s, n) =  (n=1)

K(r—1 I (s—1—kl(n—r—s+ 14k’

Equation (2.5) provides the distribution of R, ,. However, it is quicker to
obtain the following two symmetry relations directly from (2.3). Write 7, =
Pr{R, , = s}.

RELATION 1. If there exist monotone increasing transformations from X to
X’ and from Y to Y’ such that the joint pdf g(x’, y’) of X’ and Y’ is symmetric

(i-e., 9(x', ') = g()'» X)), then

(28) Tpy = T r,s=1,2,...,n.
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Proor. We have Pr{r(Y,’) = s, r(X,)) = r} = Pr{r(X,)) = 5, n(Y,)) = r} and
hence that Pr {r(Y,) = s, r(X,) = r} = Pr{«(Y,) = r, r(X,) = s} which by (2.3)
gives (2.8).

RELATION 2. If f(x, y) = f(—x, —y), then
(2'9) Tpe = nn+1—r,n+1—a *
Proor. Put V;* = —Y,, X;* = —X,fori=1,2, ..., n Then
Pri{r(Y,)=srX,)=r}=Pr{r(Y,})=n+1—s5,r(X,*)=n+1—r}
=Pr{r(Y,)=n+1—s5,r(X))=n+1~—1r},

since the n pairs X;*, Y,* have the same joint distribution as the n pairs X,, Y,.

1

This completes the proof.
3. Expected rank of Y|, ;. We require forr =1,2, ..., n
E(R,,) = 2. sPr{R, ., = s}
=14+ 3"3uPr{R,,=u+ 1}.
Noting that C(r, u 4 1, n) of (2.7) may be written as
Ce = GZDCNGEZR)
and setting ¥ = k + j we have from (2.5)
E(R,.) =1+ n(2) §20 §20 20550 2350 (k + )
X ()(57)0,0,71710,0," 7 f(x, y) dx dy .
Now 6, + 0, = Fy(x) by (2.4). Hence from binomial-type summations such as
ZiSo k()0 0,178 = (r — DO[Fy(x)]
we obtain
(€Y E(R,,) =1+ n{{2, [§25 0, f(y | x) dy]fr-1cna(x) dx
+ 320 [120 0 f(y | %) dY] frina(x) dx}

where f,_,.,_,(x) is the pdf of X, _,.,_,, etc.
Higher moments of R, , can be obtained via the factorial moments (cf. O’Con-
nell, 1974).

4. Numerical results when X and Y are bivariate normal. For the case

fxy) = ; eXp{—3[¥ — 20xy + ']} o] <1

ﬁ
(2.5) may be simplified somewhat by setting
cu=y— px with ¢ = |p|(1 — p%)~t.
This gives Pr {R, , = s} as
4.1) To(0) = ne 2, (= 21h_0 G 0,40, 1= F0 21740 »~r =+ ko (x)p(cu) dx du
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where the 6’s are now functions of x and u; e.g., for 0 < p < 1

O(x, u) = Lo @(t + x){1 — P[e(t — w)]}at,

¢, @ denoting the standard normal pdf and cdf.
Relations (2.8) and (2.9) clearly hold in this case. Also results for negative

p are given by

(4'2) TEN(P) = nr,n+l—a(_10)

219

rhs=12,...,n.

From results more generally true for any variates X and Y, respectively inde-

7rs = Pr{Ry,n = s} as a function of p forn =29

TABLE 1

0
T .10 .20 .30 .40 .50 .60 .70 .80 .90 .95
9 9 .1407  .1746 2133 .2576  .3087 .3686 .4404 .5306 .6564 .7510
8 .1285 1459  .1631  .1797 .1952 .2087 .2185 .2207 .2033  .1725
7 L1211 1296 1363 .1408  .1424  .1401 .1321 .1152 .0817  .0523
6 L1152 1173 (1171 (1143 (1085 .0989  .0846  .0640 .0350 .0169
5 .1100 1069 1015 .0938 .0836 .0706 .0546 .0357 .0149 .0053
4 .1051  .0973 .0877 .0765 .0638 .0497 .0345 .0192 .0059 .0015
3 .0999 .0877 .0747 .0611 .0472 .0334 .0205 .0095 .0021 .0004
2 .0939  .0773 .0612 .0462 .0324 .0204 .0107 .0040 .0006 .0001
1 .0856 .0635 .0451 .0300 .0183 .0097 .0041 .0011 .0001  .0000
8§ 8 L1220 .1334  .1458 1602 .1779 .2014  .2355 .2907 .3992 .5129
7 1177 01247 1323 (1409 .1509  .1628  .1771  .1934  .2057 .1976
6 (1142 1175 1208 1241 1273 1299 .1304  .1254 .1044  .0762
5 .1109 1108 1102  .1090 .1066  .1022 .0941 .0793 .0511 .0281
4 .1078 1042 .0999 .0946 .0877 .0785 .0656 .0477 .0233 .0094
3 .1043  .0972 .0893 .0803 .0699 .0575 .0430 .0264 .0093  .0027
2 .1001  .0890 .0773 .0650 .0520 .0385 .0250 .0124 .0030 .0006
1 .0946 .0773 .0612 .0462 .0324 .0204 .0107 .0040 .0006 .0001
7 17 L1154 01205 1266 .1345  .1449 1597 .1824  .2222 3104  .4163
6 L1133 1165 1205 .1259  .1331 .1428 .1561 .1743  .1964  .2002
5 1114 .1124 1141 (1164 .1193 (1225  .1253  .1249 .1112  .0864
4 1094 1082 1071 .1059 .1043  .1013  .0955 .0834 .0573  .0332
3 .1071  .1033  .0991 .0942 .0881 .0797 .0680 .0508 .0259 .0108
2 .1043  .0972  .0893 .0803 .0699 .0576 .0430 .0264 .0094 .0027
1 .1000 .0877 .0747 .0611 .0472 .0334 .0205 .0095 .0021 .0004
6 6 1126 .1150 1188  .1242  .1321  .1438 .1625 .1961 .2742 .3738
5 L1116 (1132 (1160 .1202  .1263  .1350 .1475 .1657 .1908  .1995
4 1107 1110 1122 .1141  .1169  .1202 .1234  .1242 .1127 .0892
3 .1095 .1081 .1071 .1060 .1043  .1013  .0955 .0834  .0573  .0332
2 .1078  .1042  .0999 .0946 .0878 .0785 .0657 .0477 .0233  .0094
1 .1048 0973 .0877 .0766 .0638 .0497 .0345 .0192 .0059 .0015
5 5 L1117 1134 1165 1213 1285  .1394 1570  .1889  .2640  .3614

H NB dﬁi;ide the r%mge of the table, use relations (2.8), (2.9), (4.2), (4.3) and (4.4).
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pendent or with Y a monotone increasing function of X, we also have

4.3) 7,.(0) = 1/n,
4.4 (1) =0 if r+s,
=1 if r=s.

Values of 7, have been computed on an IBM 360/65 from (4.1) forn = 3, 5,9
and p = 0.1(0.1)0.9, 0.95 (O’Connell, 1974). Table 1 gives the results for
n = 9. Among other interesting features of this table it may be observed that for
small and ‘moderate p-values =, is not necessarily a maximum for r = s; e.g.,
Tge (= Tge) > g fOr p < 0.60.

EXAMPLE. Suppose that the scores of candidates taking two tests are bivariate
normal with p = 0.8. Out of 9 candidates taking the first (screening) test the
top k are selected and given the second test. What is the smallest value of k
ensuring with probability at least 0.9 that the best of the n candidates, as judged
by the second test, is included among the k selected?

We require the smallest k such that
) Tgg + Tgg + - -+ 4 Tygpe = 0.9
l.e.,

Ty + Tog + .- + Ty 10—k z 0.9.
Since, from the column for p = 0.8, we have

0.5306 + 0.2207 + 0.1152 4 0.0640 = 0.9305

the required value is k = 4.
The computation of E(R,,,) is facilitated by noting that (3.1) may be expressed

as
(45)  E(R,.) =1+ n(n — 1)() {2 [Q@T L — P0)]"6,(x, -)o(x) dx

+ n(n — 1)) §2 [PET [T — PT-"16,(x, +)o(x) dx,
where
0.(x, ) = §=,, 0,(x, u)cp(cu) du
= (% [1 — ©2tct)]o(t + x)dr, etc.

From (2.9) we also have

(4‘6) E(Rr,n) =n + 1 - E(Rn«rl—r'n)
and, for negative p, we can use by (4.2) /
(4.7) E(R,,|0) =n+ 1 — ER,,|—p).

Table 2 effectively gives E(R, ,) for n = 9, 19 and p = 0.05 (0.05) 0.95, 0.99
and for n = 39 and p = 0.5 (0.05) 0.95, 0.99. This is done by providing finite-
sample correction terms, A(p, 4,) to the n = oo rows containing the asymptotic
expectation ratio

F(o, 4,) = lim,_, E(R, ,/(n + 1)) with r/(n + 1) = 4, (constant).
Values of 7(p, 4,) to 3 decimals were given in David (1973). It may be noted here



Asymptotic expectation ratio ¥(p, 2r) = liMy—co E(Ry,n/(n + 1)) with r/(n + 1) =2,
and A(p, Ar) = E(Ry,a/(n + 1)) — ¥p, Ar) for n =9, 19, 39.
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TABLE 2
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Ar
o n -
.55 .60 .65 .70 .15 .80 .85 .90 .95

05 o .5018 .5036 .5055 .5075 .5096 5119 .5147 5181 .5233

9 —.0001 .0002 .0001 +.0007

19 .0001 —.0001 .0001 .0001 .0001 .0001 .0001 +0.003 .0014
10 oo .5037 .5073 5110 .5149 .5192 .5239 .5294 .5363 .5465

9 —.0003 .0004 .0002 +.0014

19 .0002  —.0002 .0002 .0002 .0002 .0001 .0001 +.0007 +.0029
15 o .5055 .5109 5165 .5224 .5289 .5359 .5441 .5545 .5698

9 —.0003 .0006 .0003 +.0021

19 .0002 —.0003 .0003 .0003 .0003 .0001 .0002 +.0011 +.0042
.20 oo .5073 .5146 .5221 .5300 .5385 .5480 5590 L5727 .5930

9 —.0005 .0007 .0003 +.0027

19 .0003 —.0003 .0004 .0004 .0003 .0002 .0003 +.0014 +.0055
.25 oo .5092 .5183 5271 .5376 .5483 .5601 .5739 L5911 .6162

9 —.0006 .0008 .0004 +.0032

19 .0003 —.0003 .0003 .0004 .0004 .0002 .0004 +.0018 +.0067
.30 o 5110 .5220 5334 .5454 .5582 5725 5890 .6095 .6394

9 —.0007 .0010 .0005 +.0035

19 .0003 —.0004 .0004 .0005 .0004 .0001 .0005 +.0021 +.0076
.35 o 5129 .5258 5392 .5533 .5683 .5850 .6043 .6282 .6626

9 —.0007 .0011 .0006 —.0038

19 .0003 —.0004 .0004 .0005 .0004 .0002 .0005 +.0023 +.0084
40 5148 .5298 .5452 .5614 .5787 .5978 .6199 .6470 .6859

9 —.0008 .0013 .0008 +.0038

19 .0002 —.0004 .0005 .0005 .0004 .0002 .0005 +.0024 + .0086
45 o 5168 .5338 5513 .5697 .5894 .6110 .6358 .6661 .7091

9 —.0009 .00015 .0011 +.0036

19 .0002 —.0004 .0005 .0006 .0005 .0003 .0005 +.0024 -+ .0089
.50 o .5189 .5380 5577 .5784 .6004 .6245 6520 .6856 L7324

9 —.0001 .0017 .0015 +.0080

19 .0002 —.0004 .0006 .0006  —.0006 .0004 .0003 +4.0022 +.0086

39 .0001 —.0001 .0002 .0002 .0002 .0000 .0004 +.0014 +.0048
.55 oo .5211 .5425 .5644 .5874 .6118 .6385 .6688 .7053 7558

9 —.0011 .0020 .0020 +.0021

19 .0003 —.0005 .0006 .0008 .0008 .0006 .0000 +.0019 +.0079

39 .0001 —.0001 .0002 .0003 .0002 .0001 .0003 +.0013 +.0045
.60 o .5234 .5471 5714 .5968 .6238 .6530 6860 7255 7790

9 —.0013 .0024 .0027 +.0008

19 .0003 —.0005 .0008 .0010 .0010 .0009 .0004 —.0013 +.0068

39 .0001 —.0002 .0003 .0003 .0004 .0003 .0007 +.0010 +.0040
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TABLE 2 (continued)

Ar
o n — ‘
.55 .60 .65 .70 .75 .80 .85 .90 .95
.65 .5258 .5520 .5789 .6068 .6363 .6682 .7039 .7461 .8022

o0

9 —.0015 —.0029 —.0035 —.0009

19 —.0030 —.0006 —.0009 —.0012 —.0014 —.0013 —.0009 +.0005 + .0052
39 —.0010 —.0002 —.0004 —.0005 —.0005 —.0005 —.0002 +.0006 +.0033

.70 o .5285 .5573 .5867 .6173 .6494 .6840 .7223 L7671 .8252
9 —.0018 —.0034 —.0045 +.0025
19 —.0004 —.0008 —.0011 —.0015 —.0017 —.0018 —.0016 —.0005 +.0033
39 —.0001 —.0003 —.0005 —.0006 —.0007 —.0007 —.0006 —.0001 +.0023

15 oo .5313 .5628 .5951 .6284 .6633 .7006 7415 .7885 .8480
9 —.0020 —.0040 —.0056 +.0033
19 —.0004 —.0009 —.0013 —.0018 —.0021 -—.0024 —.0023 —.0017 -+ .0009
39 —.0002 -—.0004 —.0006 —.0010 —.0010 —.0011 —.0010 —.0006 + .0011

oo .5343 .5689 .6041 .6404 .6781 7181 .7614 .8103 .8702
9 —.0023 —.0046 —.0067 +.0077

19 —.0005 —.0010 —.0016 —.0021 —.0026 —.0030 —.0032 —.0030 —.0016
39 —.0002 —.0004 —.0007 —.0009 —.0012 —.0015 —.0015 —.0013 —.0002

.80

.85 o .5376 .5754 .6139 .6533 .6939 .7366 7821 .8324 .8919
9 —.0026 —.0053 —.0079 —.0105

19 —.0006 —.0012 —.0018 —.0024 —.0030 —.0036 —.0041 —.0044 —.0032

39 —.0002 —.0005 —.0008 —.0011 -—.0014 —.0017 —.0019 —.0020 —.0017

.90 oo .5412 .5827 .6246 .6673 L7110 .7563 .8038 .8549 L9127
9 —.0027 —.0057 —.0089 —.0127

19 —.0006 —.0012 —.0019 —.0027 —.0034 —.0041 —.0049 —.0057 —.0065

39 —-.0003 —.0006 —.0009 —.0012 —.0016 —.0020 —.0024 —.0027 —.0029

.95 .5453 .5908 .6365 .6827 .7296 L1773 .8264 8774 .9321

[ee]

9 —.0027 —.0057 —.009% —.0134

19 —.0006 —.0012 —.0019 —.0027 —.0034 —.0043 —.0052 —.0062 —.0077
39 —.0003 —.0006 —.0009 —.0013 —.0017 —.0021 —.0025 —.0030 —.0036

.99 oo .5490 .5980 L6472 .6964 .7458 .7953 .8452 .8955 .9469
9 —.0017 —.0037 —.0059 —.0091
19 -.0004 —.0008 —.0013 —.0018 —.0023 —.0028 —.0035 —.0042 —.0055
39 —.0002 —.0004 —.0006 —.0009 —.0011 —.0014 —.0017 —.0021 —.0026

N.B. For 4, < 0.5 and for p < 0 use relations'(4.6) and (4.7).

that by a transformation of variables the integral expression for 7(p, 2,) previ-
ously derived can be simplified to

_ D®-1(4,)
4.8 Fo, 2,) = @(LA,,L.).
(4.8) (05 4,) @ oy
Likewise the formula for the limiting cdf of R, , developed in David and
Galambos (1974) reduces, for any constant z (0 < z < 1), to

(4.9) lim, . Pr (R, , < nz} = @(.q’f_,‘,(%—ﬁ‘j;;@r),> ,
—p
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As an example of how to use Table 2 considerr = 8, n = 9, p = 0.75. Then
4, = 0.8 and
E(R,,) = 10(0.7006 — 0.0056) = 6.95 .

Since the correction terms in Table 2 are quite small, even for n = 9, the table
and (4.8) are useful for a wide range of sample sizes. Similarly (4.9) provides
an approximation to the exact cdf of R, , but the approximation remains quite
rough, at least for n = 9, in spite of attempted continuity corrections.
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