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ON THE CRAMER-RAO INEQUALITY

BY VAcLAV FABIAN! AND JAMES HANNAN?

Michigan State University

Sufficient conditions for the Cramér-Rao inequality are formulated
which do not impose any requirement on the estimator and which are in-
dependent of the choice of the densities. A hereditary property is proved
for these conditions and the attainability of the lower bound is studied.

1. Introduction. We are concerned with the original form of the Cramér-Rao
inequality, a slight extension of Cramér’s (1946, Section 32) formulation (see
15.6 of Savage (1954) for some history and references). This is, of course, only
one among many possible inequalities, see Section 3.2 of Blyth and Roberts
(1972) for a survey and for references. The Cramér-Rao inequality deserves
some special interest if only because of its usefulness in asymptotic efficiency
considerations.

The usual sufficient conditions for the inequality put restrictions on the esti-
mator itself which is obviously highly undesirable. Barankin (1949), Corollary
5.1 shows that no requirement on the estimator is necessary if the derivative of
the relative density exists in the sense of the strong convergence. In fact, the
strong convergence can be replaced by weak convergence and one obtains a
condition on a statistical problem under which the Cramér-Rao inequality holds
for all estimators.

This result (Theorem 2.3 and the multidimensional Theorem 2.9) is very easy
to prove but seems to us a considerable improvement over the form in which
the Cramér-Rao inequality appears in current literature.

Our formulation of the Cramér-Rao inequality leads then to additional ques-
tions, which this paper solves. Section 3 shows that the conditions in Theorems
2.3 and 2.9 are hereditary in the sense that if they are satisfied for a problem
in which 1 observation is taken they are also satisfied if n independent observa-
tions are taken. In Section 4 we show that if under our conditions the variance
of an estimator is equal to its Cramér-Rao bound on an interval in R then the
probabilities form an exponential family. This is an analoguous result to that
which holds under the standard regularity conditions (see Wijsman (1973)).

The following assumptions and notation will be used throughout the paper.

We assume that (X, &, p) is a measure space, © a nonempty set, P, a prob-
ability on .o~ with a density p, with respect to p, for every 6 in ©. The symbols
E, and Var, stand for the expectation and variance under P,. By L,(#) or by
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L,(P,) we denote the set of all finite .%~measurable functions with a finite variance
under Py. The pseudonorm || ||, is called the norm for short. The inner product
in Ly(f) is denoted by ( , ),. The weak convergence wlimg, = g in L,(6) means
that g,, g are in Ly(0) and (g,, k), — (g, k), for every h in Ly@).

If M c Rand g is a function on M then lim,_, g(y) has an obvious meaning
for an accumulation point x of M. The function has a derivative §(x) at x if
g(x) = lim,_, (y — x)7[g(y) — 9(x)] exists and is finite; and a derivative ¢ if it
has a derivative at each point x in M. If 7 is a function on M into L,(@) and if
wlim,_,; (y — x)7[y(y) — r(x)] = ¢ in L,(@), we say that y has at x a weak de-
rivative in L,(f) equal to ¢ and we shall write this as y'(x) = q. Since weak
limits in L,(f) are not unique, y'(x) = ¢,, 7(x) = ¢, imply ¢, = g,a.e. (P,) only,
not g, = q,. '

The indicator function of a set 4 will be denoted by y,.

2. The Cramér-Rao inequality.

2.1. REMARK. In this section, # will be a given element in ® and we shall
shorten the notation ( , ),, || ||, by omitting the subscript.

Write r; = p,/p, interpreting 0/0 as 0. If P, € P, r, is a density of P, with
respect to P, or, as we may say, a relative density of P,. By r,” we mean the
weak in L,(#) derivative of d — r, at 6.

Suppose t € Ly(6), g € Ly(0), ||q|| > 0. We obtain

(1) It — Ept|| = (g, 1 — E,1)|
llgll

because the right-hand side is the norm of a projection of + — E,¢ on the space
generated by g, in L,(0). Since Var, (1) = ||t — E,#|[?, (1) becomes the usual
Cramér-Rao inequality if ||¢||* is the Fisher information at 6 (but we shall post-
pone this consideration until Remark 2.5) and if (¢, 1) = 0, (¢, {) = E,t, where
E,t is the derivative of § — E,r at . This is a condition involving f. But if
required of all 7, it can be formulated as

(2) (9. 9) = E,;t forall te Ly6)

(since 1€ L,(f) and E,1 = 0), and has an easy interpretation if (2.2.i) below is
satisfied.

2.2. LEMMA. Suppose 0 € ©® C R, g Ly(0) and

(1) P, K P, forevery d in O.
Then

(i) g=r/

if and only if (2.1.2) holds together with

(iii) {rs; 0O} C Ly9) .

Proor. Straightforward since under (i), E;¢ = (r;, ¢) if the latter has sense.
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2.3. THEOREM (Cramér-Rao inequality). Suppose 6 ¢ ® C R and

(i) forevery ¢ in O, P, P,
(ii) r, exists,
(ii) Var,r, > 0.
Then for every t in L,(P,) the derivative E,t exists and
P 4\2
1) var, t = _Eot)'
Var, r,

Proor. From (2.1.1) and (2.1.2) by Lemma 2.2.

2.4. REMARK. We have not assumed that © is an interval. Notice that if
the assumptions of the preceding theorem are not satisfied with the original 0,
they may be satisfied for a subset of ® or perhaps for a subset of © mapped into
another set. Then (2.3.1) holds, but the changes may affect the right-hand side
in (2.3.1).

2.5. REMARK. Suppose p, exists almost everywhere (P,) and r,’ exists. It is
easy to see that then p,/p, = r,’ a.e. (P;). On the other hand neither the existence
of p, nor the existence of r,’ implies the other. That p, may exist but not r,’ is
easy to see. In the following example, r,’ exists but not p,.

Take X = [0, 2x], A the Lebesgue measure on X, P, = (1/27)2, 6 =0, 6 =
{0,1,4,4, ...}, 9(x) = x — m, h,(x) = sin nx,

rl/n:1+§1;[hn+g]-

Then

n(ry, — ro) = k. + 91.
As n — co, this does not converge even in measure on [0, 1]. But the weak
limit in L,(0) exists and is equal to g/5.

The preceding phenomenon does not occur in the dominated location param-
eter situation: if r,/ exists then there is a choice of the density such that p, exists
a.e.,and thenr, = p,/p,. Inmoredetail, assume ® = R, = 0, pis the Lebesgue
measure on 0, p,(x) = f(x + d) with an ffor all 6 €0, ¢ € P,. Assume that r,’
exists. Then

Ech = \ r/hf dp for every he Ly(P) .

Take i = ¥(_o.q), set F(a) = (., fdp. Since F(a 4 0) = E, h, F has a derivative,
say fo, and fy(a) = (%, r,/fdp for all a. We obtain that f = f; a.e., f; is absolutely
continuous and has a derivative a.e. (This also follows from V.6.1 in Stein
(1970); we are indebted to our colleague Clifford Weyl for the reference.)

2.6. REMARK. Bounds other than the Cramér-Rao bound can be and were
obtained from (2.1.1). This inequality does not have much use unless the right-
hand side has some independence of . For example we may require (as Blyth
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and Roberts (1972) do) that
) (9t — Epty) = (¢, 1, — Eyty) il ;€ Ly(Py),
E;t, = E,1, for every 0¢©.
Suppose P, < P, and r, € L,(P,) for every 6 € ®. Notice that g satisfies (1) if and
only if g belongs to the orthogonal complement M* of M = {r; z € L,(6), E,z = 0
forall 6}. If Nis the closed linear subspace spanned by {r,; é 0O} then M = Nt
and the set Q of all ¢ satisfying (1) is given by N*4, i.e.,
) _ Q=N.
2.7. REMARK. The absolute continuity assumption (2.3.i) is rather strong (it
is sometimes incorrectly omitted as in Kiefer (1952), relation (1), Rao (1965),
Assertion (5a.2.(v)) and Blyth (1974), Corollary to Theorem 1). It can be some-
what relaxed. For example if, in Theorem 2.3, the assertion is restricted to all
tin T = {h; h e Ly0), sup,.o E,h* < 4 co} then (2.3.i) can be weakened to
(1) (0 — 0)*P,{p, =0} -0 as 0 —0.
Indeed, if 2 ¢ T, then
1 2
(55 Bhtn-a) = (€
and, with ¢ = r,/,

1 = —
(5_——0)2P6(P0_0) 0

. 1 .
(g, h) = lim,_, P [Esh — Egh — E by, 0] = Eph .

Thus (2.1.2) holds with ¢ restricted to T and (2.3.1) follows from (2.1.1).

2.8. NotAaTION. In the next two theorems we shall consider the case of
© C R*. We shall then interpret £, as the vector of the first partial derivatives
of 0 — E tat . We shall also denote by O the intersection of @ with {0 + ee,;
¢ € R} where e; denotes the ith unit vector in R*. If we denote by r the restric-
tion of  ~ r, to ®, the weak derivative of r'* at 4, denoted by (r,¥)" has the
meaning of the weak partial derivative, at 6.

Transposition of matrices will be denoted by superscript T.

2.9. THEOREM. Suppose 6 € ® C R* for a positive integer k. Suppose
(i) P, L P, for every e Uk, 00,
(i) (rs'®)  exists for every i.

Then, with ® the matrix with the (i, j) element equal to E,((r,®)(ry,?), the
equation

1) ®a = E,¢
has at least one solution a and
2) Var,t > (Eo N’a

with the right-hand side independent of the choice of the solution a.
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Proof. Applying Lemma 2.2 to O we obtain that with ¢, = (r,")’

3) (9> t — Ept) = (Ept); -
Project t — E,t on the linear subspace spanned by {g,, ---, ¢,}. A projection
exists and is of the form a%{q,, ---, q,> with an a satisfying the equation (1) and

the squared norm of the projection is equal to the right-hand side in (2).

2.10. REMARK. The Cramér-Rao inequality for a vector estimate 1 = {#,,
ty «++, 1,y With 7, € Ly(0), is a direct consequence of the inequality for one-dimen-
sional estimates, although it is often treated as a separate problem. Assume that
the conditions of Theorem 2.9 are satisfied (they generalize conditions of Theorem
2.3); for simplicity assume that @ is nonsingular so that (2.9.2) can be written
with the right-hand side equal to (E,1)"®}(E,f). Let V be the covariance matrix
of {t,, - -, t,> under P,, and A the matrix with the ith column equal to E,z,.
Let u ¢ R” and form ¢ = u”r. Then Var, t = u”Vu, E,7 = Auand Theorem 2.9,
applied to 7, gives

u'Vu = u"ATO-Ay
for every u € R¥. This is the usual result, sometimes equivalently formulated
by stating that
V — ATO-A
is positive semidefinite.
3. Heredity.

3.1. DerinITION. Call the family {P,; 6 € ©} regular at 6 if it satisfies the con-
ditions of Theorem 2.3.

3.2. NotatioN. We shall consider n families {P, ;0€0} (i=1,2, ..., n)
instead of one. The corresponding symbols will be used with a subscript, e.g.,
X,, s Py etc. In addition we shall consider the family {P;; 6 € ©} where P, is
the product measure P, , X .-+ X P, ,.

3.3. THEOREM. If® C R, 6 €O and if each (P, 0 €O} is regular at 0 then
also {P;; d € O} is regular at 0, in addition
(1 rg'(Xy, Xy -0 05 X,) = 20 rp (X)) -

Proor. Condition (2.3.i) is easy to verify, and Condition (2.3.iii) will follow
from (2.3.ii) and (1). To prove (1) we can assume that n = 2 and then complete
the argument by induction.

If g is a function on X;, denote by § the function {(x,, x,) — g(x,) and use the
same convention for functions on X,. Write ¢, = r;, and

(2) rs. = 1 + (5 — 0)‘1,5,1;
so that

3) wlim,_,q,, = ¢, in LyP,).
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Let e Ly(P,). Then
(4) (G50 1) = § (95,00 B(+ 5 X3))1 APy o(X,)

by the Fubini theorem. For almost all x,, A(+, x,) € Ly(P,,) and the integrand
in (4) converges to (qy, h(s, X;));. But the integrands are bounded by
[|A(+ x5)||, sup; [|95.]], which is P, , integrable since weak convergence implies
boundedness of the norms. By the dominated convergence theorem, (4) con-
verges to § (q;, h(+, x,)) dP, ,(X,) = (;, k). Thus, extending the result to i = 2
by symmetry,

(5) wlim, , g, . = §; in Ly(Py).

We have r, = F; ,F; , and, from (2),

(6) (5 - 0)"1[1‘6 - 1] =qon + qa,z + (5 - 0)76,1%,2 .

The last term has the norm converging to 0. This and (5) imply (1).

4. The attainment of the lower bound.

4.1. NOTATION AND REMARKS. The set ® will be a nondegenerate interval
in R, the Lebesgue integral over © will be denoted by §.

When all P, are mutually absolutely continuous, then a set 4 is P, null for
some 6 if and only if for all # and we shall say that 4 is null. Similarly we shall
use the term a.e., and we shall have Var,t > 0 for some if and only if for all .

By Et we shall mean the function § — E,t; similarly for Var, P. In Section 2
we worked with the weak derivative at 6 of p,/p,; denote it by ¢(f) here and
denote by ¢ the corresponding function 6 — ¢(f). Also write Var g for § —
Var, q(6). Again, properly speaking, ¢(6) is an equivalence class and if we write
h = q(0) for a function %, we mean that 4 is in the class.

We shall say that an estimator « attains the CR bound at ¢ if  is in © and
(2.3.1) holds with an equality sign; we shall say that u attains the CR bound if
it does so at every ¢ in O.

4.2. THEOREM. Suppose © is a nondegenerate interval in R, 6 € O, t a random
variable with Var, t > 0 and Var,t < + oo for every 6 in ©. Then
(i) {Py; 0 € ©} is regular at every 6 in © and t attains the Cramér—Rao bound, i.e.,

) Var ¢ = (Ery/Var g,

if and only if there is a ¢ such that
(i) ¢ is a strictly monotone differentiable function on © and for every 0,

(2) C(0)e?

is a density of P, with respect to P, for a suitable number C(6).
In addition: If (ii) holds for a ¢ then

(3) gb(ﬁ):gga forall 6 in O, gb:a, q = a(t — Et)

with a = E’t/Var t and, if u is an estimator, then the following three conditions are
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equivalent: () u attains the CR bound at a 6 in ©, (b) u attains the CR bound, (c)
there are numbers c,, ¢, such that u = c,t + ¢, a.e.

4.3. REMARK. The condition Var, < + oo for all § is implied by Condition
(4.2.i). The inequality Var, r < +co follows from Condition (4.2.ii) for every
interior point 6 of ©. Thus, e.g., the condition can be omitted from the theorem
if © is open. The constant C(f) in (4.2.2) is, of course, the reciprocal of E,e?".

ProoF. Suppose (i) holds. Relation (1) and Var, r > 0 imply that ¢(8) equals
its projection on t+ — E,¢ and thus

(4) q=a(t —Ef)  with a=Et/Vart.

We shall prove that (ii) holds with ¢(8) = {! a.
If 6, — 6 in © then the existence of ¢(#) implies the vague convergence of the
probability distribution Pj to P,* and

lim inf Var, ¢ = liminf} {§ (x — y)? d[P; X Pj |(x,y) = Var,t.

We have shown that Var ¢ is lower semicontinuous.

The intermediate value property of derivatives (cf. e.g., Theorem V.5 in
Graves, 1946) applied to Et yields that it is always positive or always negative,
since by (1) it does not attain the value 0. Thus E is strictly isotone and hence
Et is integrable over finite subintervals of ©; because of the lower semicontinuity
and positiveness of Var 7, we obtain that « inherits the integrability property of
Et.

If B is in ../ then the properties of ¢, the Schwarz inequality and (4) imply

(5) PB = Eyyq,  |PB| < |a|[P(B) Var 1]} .

If 8 is in ©, 6, @ denotes the closed interval with indicated endpoints, and if B
is nonnull, then the continuity of PB and (5) imply that 16g PB is integrable
over g, 6 and

(6) P,B/P,B = exp {/log PB .
Set
(7) f=expilq.

Since a and «aEt are integrable over 4, 0, the integral in (7) exists and f is of
form (2).

Suppose that on B, |t — ¢| < d/2 for two numbers ¢, d. We obtain from (5)
and (4) that on B

o Eysq
| —
|q log PB| lq ] < d|a|.
Using (6) and (7), we have

P,B .
Esypf = Wl’ﬂBr E,xzexp {4 (9 — log PB) .
s
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If ¢ denotes d {! |a|, we obtain
8) eP,BX E;y,f < ePyB.

If (8) holds for a sequence of disjoint sets B,, it holds also for their union.
Relation (8) holds also for null sets, and therefore for all sets, and for alle > 0.
This shows that fis a density of P, with respect to P;.

The strict monotonicity of ¢ follows since |@| > 0 everywhere on ©. To com-
plete the proof of (ii) it is enough to show that ¢ = a.

For s'e ¢[0], e is one of the densities in (2), multiplied by a constant. Since
Var ¢ is finite,

%) E,t%" < + o0 for every s in ¢[0O].

Since |(07/ds")e”!| < |t|'[e** 4 en'] for every s €[5y, 5,]and every i = 1, 2, if s,, 5,
are in ¢[0], it follows from the dominated convergence theorem that the func-
tion g, defined as s € ¢[O] — E,e*, has the first two derivatives § and g given by

dg(s) = E,te*, g(s) = E, %" .
Hence y = log g satisfies
(10) 7o¢ = Et, Yo¢ = Vart.

Since ¢ is continuous and strictly monotone we obtain, indicating a difference

in an obvious way, that
Brigle = woEge SN kg Var, 1 = a(d).
Fe gt

We have shown that (i) implies (ii) with ¢ as in (3).

Suppose (ii) holds for a ¢». Notice that (10) holds since its proof used only
the fact that the densities in (2) have finite variances. Since ¢ exists by assump-
tion, (10) implies the existence of Er and, again, ¢ = a.

Notice that the density p, in (2) has log p, equal to ¢(f)t — r(¢(0)). Thus,
with ¢, = a(t — Et) and as w — 6, we obtain at every point in X that

(1) (@ —0) Lo P 5 16g p, = G(O)t — (7 o $)(O)] = 44(0) -

We shall prove that the above convergence holds for the norms in L,(#) which
will imply the strong convergence.
The L,(f) square norm of the left-hand side in (11) is (0 — 0)’[E,(p./ps)* — 1],

(12 B (D) = explrg(0) + 2) — 290) + 8) + 160)

with A = ¢]3. Subtract 1 from (12) and multiply by (o — #)~%, then take the
limit to obtain

POFF(P(0)) = ll4olls" -

We have completed the proof of (i), but we have also proved (3) except possibly
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the first relation in (3). However we had proved that if (i) holds then « is in-
tegrable over 4, 6 and thus even the first relation in (3) holds.

To complete the proof consider an estimator ». If (a) holds for a ¢ then, for
anumber ¢, u — E,u = ca(f)(t — E;t)a.e. andu = ¢, + c,a.e. with ¢, = ca(F),
¢, = Eju — ca(0)E,t. The implications (c) = (b) = (a) are obvious.

This completes the proof.
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