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COMPLETE CLASS THEOREMS FOR THE SIMPLEST
EMPIRICAL BAYES DECISION PROBLEMS

By ToM SNIJDERS
University of Groningen
For the problem of empirical Bayes classification into two known prob-
ability distributions on a finite outcome space, an essentially complete class

of procedures is determined. This class is proven to be minimal essentially
complete if there are only two possible outcomes.

1. Introduction. Consider a population of people who are Russian with un-
known probability ©®. The probability that a Russian from this population likes
caviar is known to be p;; for a non-Russian person from this population, this
probability is known to be p, = p,. For a sample of n people from this popula-
tion it has been observed only whether they like caviar. A statement must be
made whether the nth person is a Russian or not. This amounts to the empirical
Bayes classification into either of two completely known populations after observ-
ing the outcome of a Bernoulli random variable. For this decision problem, the
simplest possible empirical Bayes problem, a minimal essentially complete class
will be obtained (Corollary 5, characterized by (6)). More generally, if the
random variable has a finite distribution, an essentially complete class is obtained
(Theorem 3). The proof uses a monotone likelihood-ratio property, generalized
to a partially ordered outcome space.

The empirical Bayes approach was introduced by Robbins (1955); a good in-
troduction is also supplied by Robbins (1964). Ordinarily, it is treated asymp-
totically. This paper considers an empirical Bayes problem in the setting of
decision theory with fixed sample size. Then it becomes a prediction problem,
where the prior distribution has the role of an unknown parameter.

In the literature about empirical Bayes procedures and the closely related
compound decision problem (see Robbins (1951) or Samuel (1967) for a general
discussion about the latter), various remarks and results have appeared concern-
ing the (in) admissibility of proposed procedures in the finite sample case. Re-
search into this was done, e.g., by Maritz (see Maritz (1968) and references cited
there), Meeden (1972), van Houwelingen (1973), Copas (1974) and Inglis (1976).
Meeden and van Houwelingen improved on empirical Bayes procedures which
had appeared in the literature. Meeden constructed some admissible empirical
Bayes procedures. The decision problems treated by these authors are much
more complex than the problem dealt with in this paper.

2. Formulation and preliminaries. The random variable X has the outcome
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space {0, 1, .-+, k — 1} and either of the known probability distributions P,,
t € {0, 1}. These distributions satisfy P,{x} > O for all xand ¢, and have increasing
likelihood ratio; that is,

O<rn<<n< - <r,< oo where r, = P{x}/Py{x} .

The parameter ¢ is the outcome of a random variable 7" with prior distribution
QT =11 =0, Qg{T =0} =1 — 0 for a ©® ¢ [0, 1]. In the empirical Bayes
set-up this experiment is repeated independently with the same unknown ©.
Thus a sequence

(Xl’ Tl)’ (Xz’ Tz)’ ] (Xn’ Tn)

is realized, consisting of i.i.d. pairs of random variables with the described dis-

tribution. The marginal distribution of X;, - .., X, is that of a sequence of i.i.d.
variables with distribution P, where
(1) Po(X) = Po{X, = x} = OP{x} 4 (1 — O)P{x}.

Only X, through X, are observable. Either of the statements “s, = 0” or
“t, = 1”7 is to be made. If the statement made is untrue, a loss of 8 or a, respec-
tively is incurred. Both a and § are positive numbers. A true statement causes
a zero loss. Represent randomized actions by the probability a € [0, 1] of stating
“t, = 1.” The loss function is then L(0, @) = aa, L(1,a) = B(1 — a). The deci-
sion procedure d: {0, 1, ---, k — 1} — [0, 1] has the risk

R(®, 8) = EL(T,, 3(X,, - - -, X,)) .

It will be shown that as for the outcome of (X,, --., X,_;) one only needs to
be concerned about the number of times that the outcomes 0 through k — 1
occur in the sequence (x,, - - -, x,_;). Let

S = (), - ()

where
5;"(x,, +++, x,) = number of components of (x;, ---,x,) equalto ;.

Let S® = s®(X), ..., X,), and denote its outcome space by -». As the loss
is a function of the unobservable random variable T, statements about sufficiency
must be made with care. The distribution of (X}, - - ., X,) conditional on (S,
X,, T,) does not depend on T, or ©. From this may be deduced easily that the
rule 9, = Eg{o(X,, - -+, X,)| SV, X,, T,} does not involve T, or © and has the
same risk function as . Therefore the class D of procedures depending on
(xy, + -+, x,) through (s~V, x,) is essentially complete. Only the class D will be
considered. A complete subclass of D is an essentially complete class in the
original problem.

The statistics ($»~", X,) and (S§'™, X,) generate the same partition of the out-
come space {0, ---, k — I}*. The latter form of the sufficient statistic has the
technical disadvantage that its two components are stochastically dependent. It
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is however more pleasant conceptually, as $™ contains all available information
concerning ©, and X, all information concerning #,. Therefore, after this reduc-
tion by sufficiency the outcome space

Z ={(s5,x)e ™ x {0, -,k —1}|s, = 1}
is considered, and procedures 0: 77 — [0, 1].

The probability distribution of (S, X,,, T,) is given by
Po{S™ =5, X, = x} = h(s, x)pg* for (s,x)e%
PolT, = t|S™ =35, X, = x} = p,(x)/pe(x)
where
pe' = I15=1[pe(/)]
h(s, x) = number of outcomes (x,, - - -, x,) corresponding to outcome (s, x). The
risk of a procedure 6: Z — [0, 1] is
R(©,0) = E{L(T,, 6(S™, X,))
= a(l - 9) Z(s,x)e 74 5(5’ x)h(s, X)Po(x)[’es/[’e(x)
+ B0 Liamen (1 — 0(s, x))A(s, x)py(x)pe’/pe(x)

= B0 + (@ + B) Dme . (s, )h(s, X)pe*{ fo(x) — ¢}

where
fo(x) = (1 = O)p(x)/pe(x), ¢ = Bf(a + ).

The function pe*{ fo(x) — c} will be denoted also by lg(s, x). The procedure 4,
dominates 9, if R(0, ,) < R(©, d,) for all © € [0, 1], which can be expressed by
2) Diuez 10:(#) — 0,(u)}a(u)lg(u) < O forall ©¢[0,1].

When a complete subclass of D is to be obtained, it is handy to know that a
minimal complete subclass exists. Then, any subclass of D which is left over
after throwing out some inadmissible procedures is complete. From Theorem
2.22 of Wald (1950) can be concluded that a minimal complete subclass exists
in this decision problem. A complete class will be obtained with the aid of
properties resembling monotone likelihood ratio.

3. Ordering the outcome space. The outcome space 7/ is to be ordered in
such a way that a larger outcome suggests larger values of © and of ¢,. The
ordering (2) of procedures leads towards the following definition.

DEeFiNITION. For u, ve %/, u < v if and only if a constant # > 0 exist such
that

3) —plg(u) + lg(v) £ 0 forall ©¢]0, 1]
and u < v if and only if ¥ < v and not v < u.

For each pair u, veZ/ with u %= v, ply(u) 4 qls(v) = 0 implies p = g = 0.
Hence, u < v is equivalent to # < v and u # v. It can be verified easily that
=< is a partial ordering in 7.
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ProrositioN 1. If x < yand p(h) = X525 (s; — ;) <0 forh =1, ...,k — 1
then (s, x) < (1, y).

Proor. Take (s, x), (¢, y) € ZZ for which these conditions hold. A g > 0 is
to be found so that (3) holds, which means

4) —upe’{fo(x) — ¢} + pe'{fe(y) —c} =0 forall ©¢]0,1].

Divide by the positive function py*. Since

Pe' ™ = pe'lpe’ = po'~* [1521{(Or, + 1 — ©)/(Or,_; 4 1 — ©)}77™

is a product of positive nondecreasing functions, p,'~* is nondecreasing. The
functions fo(x) and f,(y) are decreasing in ©, and equal to ¢ in O(x) and O(y),
respectively, with 0 < ©(y) < O(x) < 1. A positive p exists with

Pein = ¢ = Poi
which now will be shown to satisfy (4). For ©(y) < © < O(x), both terms are

nonpositive so that the inequality holds. For 0 < © < O(y), from 0 < f4(y) —
¢ = fo(x) — cand pg'~—* < phs can be concluded

—1pe’{fo(x) — €} + po'{fo(y) — €} = po'(— 1 + po' ™) fo(x) — ¢}
= po'(— 1+ pep)fo(x) — ¢} = 0.
For O(x) < © < 1, the situation is symmetric. [J
As is clear from the proof, the condition “x < y and pe'~* is nondecreasing
in ©” is also sufficient for (s, x) < (t, y). For k = 3 this condition is strictly

weaker than the condition of Proposition 1. For k = 2 these conditions are
equivalent, which is seen from the following.

ProrosiTION 2. Consider the case k = 2, and represent outcome s = (n — s,, s,)
of ™ by s,€{0, ---,n}. Then (s, x) < (t,y) if and only if s, < t, and x < y.

Proor. The if-statement follows from Proposition 1. If nots, <1, thens, > 1,
and according to the proof of Proposition 1, p,‘~* is strictly decreasing. From
—plg(s, x) + lo(t, y) < 0 for ® = 0, 1 follows p,~* < px < p,'~* which is impos-
sible. If not x < y, then x > y. A O(x) € (0, 1) exists with fg,,(x) = ¢ so that
fow(y) > c. Forany g > 0holds — g, (5, X) + log(t, ) = lown (1, y) > 0. This
completes the proof of the only if-statement. []

4. Complete class theorems.

DEFINITION. A procedure 6 € D is called monotone if

o(u)y >0, u<wv implies o(v)=1.
The class of monotone procedures in D is denoted by D,,.

THEOREM 3. D, is a complete subclass of D, and hence an essentially complete
class in the original problem.
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Proor. Ifde D ~ D,, there exist u, v € 27 withu < v, d(u) > 0and o(v) < 1.
A p > 0 exists with —pulg(u) + lo(v) < 0 with strict inequality for some ©.
Define g, for ¢ > 0 by

0.(u) = o(u) — eph(v)

0.(v) = 0(v) + ch(u)

o(w) =0(w) w=+£u,v.
For small enough ¢, 3, ¢ D. Equation (2) shows that such a g, strictly dominates
d, so that ¢ is inadmissible. Since a minimal complete subclass of D exists and
D ~ D,, contains only inadmissible procedures, D,, is complete. []

In the following, a totally ordered subset of a partially ordered set will be
called a chain.

THEOREM 4. If 7/ can be partitioned into two chains, D,, is the minimal complete
subclass of D, and is minimal essentially complete in the original problem.

Proof. According to Theorem 3, D,, is complete. Showing that D,, contains
only admissible elements suffices to prove its minimal completeness. Argue by
contradiction, and suppose d € D,, is inadmissible. As D,, is complete, a dominat-
ing ¢’ + 6 can be found in D,,. Defining §(u) = (6"(#) — d(u))h(x) and applying
equation (2) gives
®) Suen E@Ig(w) =0 forall ©¢[0,1].

Since 6 % ¢’ and [,(#) < 0 < I(u) for all u, this implies that #” and #"’ exist with
W) <0< EW"). Let 2/ = 2/, U Z,, where 7/, and 7/, are disjoint chains.
Since ¢ and ¢’ are monotone and 7/, is a chain, either £(u) < 0 holds for all
ue?/,, or £&(u) = 0; similarly for Z7,. It may be supposed that &(u) < 0 for
ue?/, and &u) =0 for uez/,. Let u, = min{ueZ/,|o(x) > 0} and u, =
max {u € 7/,| 6(u) < 1}. Then d(u,) > 0 and d6(u,) < 1. Since § is monotone
u, « u,. Also &) = 0 for ue %/, u < u, and for u e 7/, u > u,. Equation (5)
gives
0 g Zue 2 uEug {-‘(u)le(u) + Zue U 9 u=Ug E(”)le(u)
> Tue sy EOBI) + Taeyrumay @ (w)lo(15)

where the last step uses inequalities of the form (3) with p(x) > 0 for all u. Since

Zue U U Uy S(”)#(”) < O < Zue % 93 u=<ug 5(”)#_1(1'{) >

this implies that u, < u,; the contradiction is established. This argument shows
also that D,, does not contain two different procedures with the same risk function.
Therefore, it is minimal essentially complete in the original problem. []

(A suggestion made by a referee and by Dr. J. C. van Houwelingen made it
possible to shorten this proof.)

COROLLARY 5. For k = 2, where a Bernoulli experiment is performed, D, is a
minimal essentially complete class.
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ProoF. Proposition 2 shows that here, 7/ can be partitioned into the chains
{(s, x)|s = 0} and {(s, x) |s = 1}. [

In the case of a Bernoulli experiment, D,, can be characterized in the following
way. As in Proposition 2, represent outcome u = ((n — s, 5), X) € ZZ by (s, x)
with x =0, 1and 0 < 5 — x < n — 1. Proposition 2 shows that D,, consists of
all procedures ¢ of the form

s, x) =0 s<o,
(6) , =7, s=o,
=1 s5s>oa0,
for numbers 7,, 7, € [0, 1], 0, and ¢, with 0 < ¢, — x < n — 1, for which either
0y = 0, + loro, =0, 7, = 1 (which means d(s, 1) = 1) or 6, = n, 7, = 0 (which
means d(s, 0) = 0). For example, nonrandomized procedures which are mono-
tone functions only of s, or only of x, are admissible; but nontrivial procedures
that take only the number of successes in the first n — 1 trials, that is s — x,
into account are inadmissible.

If k = 3and n > 3, Z/ contains at least three pairwise incomparable outcomes
and hence cannot be split up into two chains. When the minimal number of
chains into which 7/ can be split up is / = 3, “relations” in 7/ are to be con-
sidered involving / elements, because D,, will in general contain inadmissible
elements. As an example of an inadmissible procedure in D,,, consider the case
k = n = 3. By the same reasoning as in Proposition 2 can be proved that the
outcomes u = ((1, 0, 2), 1), v = ((1, 1, 1), 2) and w = ((2, 0, 1), 3) are pairwise
incomparable. When ¢ = { and r, — 2r, + r, < 0 some calculations show that
—lo(u) + 2lg(v) — lg(w) < 0 for all ® €[0, 1]. Hence any § with d(u) > 0,
d(v) < 1, 6(w) > 0 is inadmissible; and D,, does contain such elements 4.

5. Remarks.

5.1. Minimax procedures. In the case without empirical Bayes information
about O, we might say n = 1, an equalizer minimax rule § exists. If we consider
this rule as a procedure in the empirical Bayes case where n = 2, depending on
(s, x) only through x, it still is a minimax procedure. However, § is admissible
if and only if it is nonrandomized. If ¢ is randomized, say d(x,) € (0, 1), an ad-
missible minimax procedure d, € D,, exists for which §,(s, x,) is “monotone in
s If {(s, X)) € Z} is a chain, in particular if kK = 2, the admissible minimax
procedure is unique.

5.2. The classical empirical Bayes procedure. Consider the case k = 2 and now
call P{1} = p, P{1} = g with p < ¢, S = (n — S,, S,). In the classical em-
pirical Bayes approach, ® will be estimated by (a truncated version of) @, =
(S./n — p)/(¢ — p) and the Bayes procedure with respect to the outcome of O,
will be used. This gives the rule 6 which as a function of (S,, X,) is given by

o(s,x) =0 s < nr,
=1 s>ne,
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where

() 7o = {aq(1 — p) + Bp(1 — PYfa(l — p) + (1 — 9)}

o= (@ + B)pg/(ap + Bq) -
Since 7, > 7,, this is a monotone and therefore an admissible procedure. How-
ever, sometimes © is estimated by ©,_, instead of O, in order to avoid stochastic
dependence between O and X,.

In that case the critical points in terms of S, become (n — 1)z,and (n — 1)z, + 1.
If an integer s’ exists with (n — 1)7, < s’ < (n — 1)r, 4+ 1 (at most one such s’
exists), the classical empirical Bayes procedure ¢ has d(s,0) = 1 for s > s,
o(s, 1) = 1 for s > s’ and d(s, x) = O elsewhere. This d is inadmissible. A referee
suggested exhibiting a dominating procedure. In order to find this, note that
(s’, 0) < (s', 1) so that equation (3) holds for this pair of outcomes with a certain
¢. The proof of Proposition 1 shows that one must take # = 1. The proof of
Theorem 3 gives a dominating procedure o,. Using A(s’, 0)/A(s’, 1) = (n — s5')/s’
it is found that taking ¢ as large as possible gives

O(s,x) =0 for s<s, O(s,x)y=1 for s>
if =n2: 0(s0)=1—(n—ys)s
o8, 1) =1
if &<n2: 0,0 =0
o', 1) = s'[(n — §') .

This d, dominates ¢, and it is admissible because it is monotone. If an integer
s’ exists with (n — 1)r, £ s’ < (n — 1)r; + 1 a similar remark can be made,
taking account of the possibility of a randomized 4. If no such s’ exists, estimat-
ing © by 0, yields an admissible procedure.

5.3. Asymptotic optimality. As was noted in the introduction, empirical Bayes
problems are commonly treated as asymptotic problems. A sequence {j,} of
procedures is called asymptotically optimal with respect to the prior distribution
Q, if its Bayes risk with respect to Q approaches the minimum Bayes risk for
Q, as n — co. In the case treated in this paper with k = 2, a sequence of pro-
cedures of the form (6) with critical points ¢,(n) and o,(n) is asymptotically
optimal with respect to all priors Q,, © € [0, 1] if and only if ¢,(n)/n — 7, and
oy(n)/n — 7,. Here t,and r, are defined by (7). This is shown by straightforward
computations with the risk function. The procedures g, are admissible if and
only if ¢y(n) = o,(n) + 1. Hence, many sequences consisting of admissible pro-
cedures are not asymptotically optimal. On the other hand, if a sequence of
procedures of the form (6) is asymptotically optimal, as 7, > z, its elements are
admissible for sufficiently large n.

It is now easy to construct asymptotically optimal sequences consisting of
admissible procedures. The classical empirical Bayes approach (see Remark 5.2)
yields such a sequence, if Q is estimated by (:)(n) If © is estimated by @(n — 1)
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this approach yields an asymptotically optimal sequence of which the elements
are admissible for sufficiently large n.
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