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CONSISTENCY PROPERTIES OF NEAREST NEIGHBOR
DENSITY FUNCTION ESTIMATORS

By DAvID S. MOORE! AND JAMES W. YACKEL
Purdue University

Let Xi, Xz, - - - be Rr-valued random variables having unknown density
function f. If K is a density on the unit sphere in R?, {k(n)} a sequence of
positive integers such that k(1) — oo and k(n) = o(n), and R(k, z) is the di-
'stance from a point z to the k(n)th nearest of X, - .-, Xy, then fu(z)=
(nR(k, z)r)~! 33 K((z — Xi)/R(k, 2)) is a nearest neighbor estimator of f(z).
When K is the uniform kernel, f, is an estimator proposed by Loftsgaarden
and Quesenberry. The estimator f5 is analogous to the well-known class
of Parzen-Rosenblatt bandwidth estimators of f(z). It is shown that,
roughly stated, any consistency theorem true for the bandwidth estimator
using kernel K and also true for the uniform kernel bandwidth estimator
remains true for f,. In this manner results on weak and strong consistency,
pointwise and uniform, are obtained for nearest neighbor density function
estimators.

1. Introduction. Let X, X,, --. be independent and identically distributed
random variables taking values in R” and having bounded density function f with
respect to Lebesgue measure on R?. A class of estimators of f which has been
widely studied since the work of Rosenblatt (1956) and Parzen (1962) has the

form
1 z — X,
)= —yr K{——%
J+(2) nr(nyr =7 < r(n) )
where
(1.1) K(u) is a bounded density on R®

and {r(n)} is a sequence of positive numbers such that
(1.2) r(n) —» 0 and nr(n)» — co as n-— oo .

Call the estimators f, bandwidth estimators of f. Among the results for f, avail-
able in the literature under various conditions on K, {r(n)} and f are: pointwise
consistency and uniform consistency in probability (Cacoullos (1966)); pointwise
consistency and uniform consistency with probability 1 (Nadaraya (1965) for
p = 1 and Van Ryzin (1969) for p = 1); asymptotic normality of fa(z) for a
fixed finite set of z; (Cacoullos (1966)); weak convergence results for processes
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related to fn(z) (Bickel and Rosenblatt (1973)); and a study of a sequential ver-
sion of f,(z) (Davies and Wegman (1975)). A survey of related literature is
given by Wegman (1972).

When K is the uniform density on the unit sphere in R?, the bandwidth esti-
mator is simply empiric measure divided by Lebesgue measure for the sphere
$.(z) of radius r(n) centered at z. Call this estimator 9.(2). A conceptually
similar estimator of f(z) was studied by Loftsgaarden and Quesenberry (1965).
Their estimator g,(z) is empiric measure divided by Lebesgue measure for the
sphere S,(2) centered at z and having radius R(k, z) equal to the distance from

z to the k(n)th nearest of X,, - .., X,. Here {k(n)} is a sequence of positive inte-
gers such that
(1.3) k(n) — oo and k(n)/n -0 as n-—oo.

Call g, a nearest neighbor estimator of f. Loftsgaarden and Quesenberry showed
that g, is pointwise consistent in probability at continuity points of f. Wagner
(1973) established pointwise consistency w.p. 1 under an additional assumption
equivalent to k(n)/log n — co. In fact, by applying Theorem 6 of Kiefer (1972),
one can establish pointwise consistency w.p. 1 of g, under the weaker condition
k(n)/log log n — co, and show that this condition is the weakest possible.

Uniform consistency w.p. 1 of g, in the case p = 1 when f is uniformly con-
tinuous and has known support was proved by Moore and Henrichon (1969)
under the condition k(n)/log n — co. (They state only uniform consistency in
probability, but their proof establishes convergence w.p. 1: apply the Borel-
Cantelli lemma to the estimate P, < (n 4 1)a(e)~*™ appearing on page 1501.)
Since this proof uses a linear ordering of the X, which does not generalize to the
multivariate case p > 1, uniform consistency w.p. 1 of g, for multivariate den-
sities remains an open question. These nearest neighbor estimators have been
widely used (e.g., [3], [6]) and many practitioners prefer them to bandwidth
estimators.

Analogy with £, suggests defining a general nearest neighbor density estimator

by
1) = i T K (222
nR(k, z)? R(k, z)

which allows unequal weights to be given to the observations. Thus g, is the
uniform kernel case of f,, just as g, is the uniform kernel case of fn A class
of estimators superficially similar to f, was studied by Wagner (1975) for the case
p = 1. Wagner’s estimators replace R(k, z) by a random radius I, which is in-
dependent of z. They therefore lack the feature that only the observations
nearest to z control estimation of f{(z).

This paper is devoted to a study of consistency properties of f,, with results
for g, being obtained as a special case. The proofs require a restriction which
reflects the nearest neighbor spirit, namely that along any ray emanating from z,
nearer observations be given no less weight than more distant observations.
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That is,
(1.4) K(cu) = K(u) forany 0<c¢c<1 and u in R?.

Unlike the bandwidth estimators f,, the nearest neighbor estimators f, may fail
to be consistent unless some restriction is placed on the distance from z of X,
which are given positive weight. An example appears in Section 4. A natural
restriction is that only the k(n) observations nearest to z be used in estimating

f(2), i.e.,
(1.5) K@u) =0 forall »# in R with |y >1.

Somewhat greater generality is achieved in Section 4.

Rather than attempting to prove specific consistency results for f,, a consis-
tency-equivalence relationship between f, and a corresponding f" is obtained.
Heuristic considerations suggest that when k(n) ~ anr(n)® for some a > 0, the
nearest neighbor estimators {f,} for kernel K and {k(n)} should have the same
consistency properties as the bandwidth estimators { 7} for the same kernel K and
bandwidths {r(n)}. This observation is made rigorous for uniform kernels in
Section 3 and for general kernels in Section 4. Specifically, given a kernel X, a
number @ > 0, and an integer k(n), denote by f(n, a, z) the bandwidth estimator
with kernel K and bandwidth r(n, a) defined by k(n) = anr(n, @)?. Denote by
g(n, a, z) the uniform kernel estimator with bandwidth r(n, «). The following
theorem is a consequence of the results of Section 4.

THEOREM 1.1. Lete > 0, K statisfying (1.1), (1.4) and (1.5), and {k(n)} be given.
Then there exists 7 > 0 and a finite set of positive numbers ay, - - -, a,, such that
| fu(2) — f(2)| > ¢ implies that either | f(n, a;, 2) — f(2)| > por|§(n, a;, 2) — g(2)| > 7
for at least one i in {1, - .-, M}.

Since the choice of #, a,, - - -, @, is uniform in n, z and sample points o, it
follows that any consistency result (pointwise or uniform, in probability or with pro-
bability 1) valid for the bandwidth estimator fn with kernel K and bandwidths {r(n)},
and also valid for the uniform kernel bandwidth estimator with bandwidths {r(n)},
remains valid for the nearest neighbor estimator f, with kernel K and k(n) ~ nr(n)?.
The only qualification to this statement is that the conditions on {r(n)} must be
satisfied also by {cr(n)} for any ¢ > 0.

Theorem 1.1 allows a large literature on consistency results for f, to be
restated for f,. In particular, weak pointwise and uniform consistency follow
from Cacoullos (1966) and strong pointwise and uniform consistency from Van
Ryzin (1969). As an example, here is the nearest neighbor version of Van
Ryzin’s Theorem 2.

CoroLLARY 1.1. Let K satisfy (1.1), (1.4), (1.5) and have absolutely integrable
characteristic function c(t) satisfying § |c(dt) — c(t)| dt < M|6 — 1| for  sufficiently
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near 1 and some M > 0. Let {k(n)} satisfy (1.3) and
k(n)[k(n + 1) — 1
k(n)’/n — oo

2= k(m)™ < oo
(k?;;iﬂ)) - (%:T)> <

sup; | fu(2) — f(2)] =0

with probability 1 if f is uniformly continuous.

ni-1/»

S i

Then

Uniform kernel bandwidth estimators appear in Theorem 1.1 as essential
auxiliaries, used in the proof to provide bounds on R(k, z) when f(z) is small.
Since the literature on strong uniform consistency for bandwidth estimators con-
tains little that applies to the uniform kernel case, Section 2 is devoted to remarks
on this subject. In particular, the uniform kernel does not satisfy the main con-
dition (absolutely integrable characteristic function) of Van Ryzin’s Theorem
2. In order to obtain Corollary 1.1, Van Ryzin’s result must be shown to hold
for the uniform kernel. This is done in Theorem 2.1. The argument which is
there applied to Van Ryzin’s Theorem 2 can also be applied to Corollary 1.1 to
establish strong uniform consistency of g, when {k(n)} satisfies the conditions
of Corollary 1.1. A strong uniform consistency result for the Loftsgaarden-
Quesenberry estimator therefore follows from Corollary 1.1.

The results of Section 4 are more general than those of Theorem 1.1 in several
respects, the most important of which is that the roles of bandwidth and nearest
neighbor estimators may be interchanged. For example, it now follows from
Moore and Henrichon (1969) that when p = 1 and f has known support, the
uniform kernel bandwidth estimator §, is uniformly consistent w.p. 1 if r(n) — 0
and nr(n)/log n — oo. This is strictly weaker than existing conditions on {r(n)}
for strong uniform consistency of bandwidth estimators; it is satisfied by r(n) ~
cn=® for 0 < d < 1, as opposed to 0 < 6 < } for the conditions of Nadaraya
(1965) and Van Ryzin (1969). The principles of this paper will also allow future
consistency results for either class of estimators to be restated for the other. They
do not, however, allow distribution results for fn to be carried over to f,. Proofs
of asymptotic normality for f, and of some other results appear in [13].

The proofs of Sections 3 and 4 are combinatorial in nature and do not require
that the Euclidean metric be used, that f be a density function with respect to
Lebesgue measure, or even that the X, take values in a Euclidean space. To
emphasize the generality of the proofs and facilitate possible applications, Sec-
tions 3 and 4 use a setting much more general than is required to establish the
results stated above.

2. Uniform consistency of bandwidth estimators. The uniform consistency
results of Cacoullos (1966) and Van Ryzin (1969) require that the kernel K have
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absolutely integrable characteristic function, and hence do not apply to the uni-
form kernel. Nadaraya (1965) treats only the univariate case. This section
generalizes the results of these authors to meet the needs of Theorem 1.1. First,
all of the consistency theorems of Cacoullos and Van Ryzin apply to the uniform
kernel K, on the unit sphere in R” because K, can be approximated by kernels
sufficiently smooth to possess absolutely integrable characteristic functions.
Only the result required in the proof of Corollary 1.1 will be explicitly stated.

THEOREM 2.1. Let K, be the uniform density on the unit sphere in R? and suppose
{r(n)} satisfies the conditions of Theorem 2 of [17]. Then

10 =y ()

converges uniformly to f(z) with probability 1 if f(z) is uniformly continuous.

Proor. From Lemma 4 on page 102 of Esseen (1945) it follows that for any
d > 0 there exist densities K; and K, on R, having absolutely integrable charac-
teristic functions and satisfying all other regularity conditions in [17], such that

ClKl(u) é KO(”) é C2K2(u)

for all » in R and for constants C, = (1 — d)* and C, < (1 + d)*. If ,' and
£} denote the bandwidth estimators based on r(n) and (respectively) K, K,, then
for all n, z and sample points o,

C.fM2) = fu(2) £ G20 .

Since Theorem 2 of [17] gives uniform strong consistency for f,! and £,? and
0 > 0 is arbitrary, fn is also uniformly strongly consistent.

Nadaraya gives a strong consistency result for p = 1 under conditions on {r(n)}
which are similar to those of Van Ryzin, but he requires that the kernel K be
of bounded variation. Theorem 2.2 below generalizes this result to p > 1 and
restates the condition on {r(n)} in a more usable form. Functions of bounded
variation in R? will be defined as follows (see Section 254 of Hobson (1927)).
For any rectangle / in R, denote by A, the usual rectangle difference operator.
(That is, if a random variable X has df F on R®, then P[X in I] = A/(F).) A
function K is of bounded variation on R, if the supremum of A, (K) + --- +
A, (K) over all partitions of R into finitely many rectangles I(1), - - -, I(m) is
finite. For p > 1 this definition is quite restrictive: the uniform density on the
unit cube in R? is of bounded variation, but the uniform density on the unit
sphere is not. Thus our methods do not prove Theorem 2.2 for nearest neighbor
estimators, since the corresponding result for uniform kernel bandwidth esti-
mators is not covered by Theorem 2.2. Those methods do, however, prove the
analog of Theorem 2.2 for nearest neighbor estimators with kernels supported
on the unit cube in R (i.e., supported on the unit sphere in the “maximum com-
ponent” metric).
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THEOREM 2.2 Let K(u) satisfy (1.1) and be of bounded variation on R?; let {r(n)}
satisfy r(n) — 0 and nr(n)**/logn — oo as n — co. Then

sup, | f.(2) — f(2)] = 0
with probability 1 if f is uniformly continuous.

Proor. Nadaraya establishes this result for p = 1 under the condition that
Diwope ™™ < oo for all s > 0. His proof generalizes to p > 1 under the con-
dition that

(2.1 Yo e T oo forall s>0,

provided that the bound on n? sup |F, — F| (F, the empiric df and F the df of
X,) given in Theorem 1 of Kiefer and Wolfowitz (1958) is used to replace the
bound due to Smirnov for p = 1 and used by Nadaraya. Integration by parts
in R* (see Section 351 of Hobson (1927)) is used, and the Kiefer-Wolfowitz
bound must be applied in each dimension less than or equal to p. It follows
from Section II.6 of Hardy and Riesz (1952) that (2.1) is equivalent to
log n/nr(n)*» — 0 as n — co.

3. Equivalence results for uniform kernels. Let X, X,, ... be independent
and identically distributed random variables taking values in a normed linear
space .27 and having bounded density function f with respect to a positive
measure # on the Borel o-field of -2. We assume that g has the property that
the measure of the sphere of radius  centered at z is a continuous function of
for any z. (Not necessarily the same for all z.) In R? this assumption is satisfied
by all ¢ absolutely continuous with respect to Lebesgue measure and by most
nonatomic singular measures.

Suppose {A(n)} is a sequence of real numbers such that #(n) — 0 and nk(n) — oco.
(In the Euclidean space setting of Section 1, #(n) = r(n)*.) Toavoid trivial com-
plications in the proofs, assume that k(n) = nh(n) is an integer for each n. If
[|-]] is a norm in 22" and a > 0, let

S(n, a,z) = {xin 2" ||z — x|| £ r(n, a, z)}

where r(n, a, z) is chosen so that x{S(n, a, z)} = ah(n). If K(n, a, z) is the (ran-
dom) number of X,, - - -, X, contained in §(n, a, ), a uniform kernel bandwidth
estimator of f(z) is (since p{S(n, a, z)} = ah(n))

3.1y (n, a, z) = %

We denote by [c] the greatest integer in ¢. For 8 > 0, let R(k, §, z) be the (ran-
dom) distance from z to the [8k(n)]th nearest among X, - - - X, and let
S(k, B,2) = {xin.¢": ||z — x|| £ R(k, 8, 2)} .

S(k, B, z) contains exactly [Bk(n)] of X,, ---, X, so a uniform kernel nearest

n
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neighbor estimator of f(z) is

k(m)]
(3.2) g(n, B, 1) = _ LPKM1
np{S(k, 8, 2)}
When 27 is R?, ||-|| is the Euclidean norm, @ = § = 1, and p is A/c, where 2 is

Lebesgue measure on R” and c is the constant such that A{x in R?: |x| < r} = cr?,
then § and g are the special cases of the estimators fn and f, of Section 1 for X,
the uniform density on the unit sphere.

We now state a theorem which, since it holds for each x, n and sample point
o, allows any (pointwise or uniform, weak or strong) consistency result for § to
be transferred to g, and vice versa. For any 0 > 0, define

(3.3) L(j,0)={x:(j — 1) < f(x) < jo}
forj=1,2,...,J(0) where 6J(0) = sup f(x).

THEOREM 3.1. Let ¢ and 6 be given, with 0 < 6 < ¢, and let k(n) = nh(n).

(@) For any B> 0, |g(n, B, x) — f(x)| > ¢ implies that |G(n, a, x) — f(x)| =
¢ — 0 for at least one of a finite set of values of a depending only on B, ¢, 6 and J(5).

(b) If nis so large that k(n)™ < (¢ — 0)/2, then for any a > 0, |g(n, a, x) —
S(X)| > e implies that |g(n, B, x) — f(x)] = (¢ — 8)/2 for at least one of a finite set
of values of (3 depending only on a, ¢, 6 and J(9).

Proor. (a) Without loss of generality, take 8 = 1. Suppose that |g(n, 1, x) —
f(x)| > e for some n, x and sample point w. Take x to be in L(j, 6) and since x,
n and o are fixed throughout the argument, write g, for g(n, 1, x) and S, for
S(k, 1, x), so that g, = k(n)/np{S,}.

Case 1. g, > f(x) + ¢ = (j — 1)d + . Then

k(n) h(n)
Y — = — .
(Vs T Ry
Choose a = ((j — 1)d + ¢)~%. Since p(S(n, a, x)} = ah(n) > p{S,}, it follows
that S(n, a, x) 2 S, and that K(n, a, x) = k(n). Therefore

g(n,a,x):%,‘(%;i)ga‘l:(j—1)5—|—e.

Since x is in L(j, 9), §(n, a, x) — f(x) > ¢ — d.
Case 2. g, < f(x) — e < jo —e. Then

k(n) h(n)

S —_— = A7,

MM > e 9 T o=

Choose a = (jd — ). Since p{S(n, a, x)} = ah(n) < p{S,}, we have K(n, a, x) <
k(n). Therefore

g\(n, a, x) e M’i} é a,—] :]5 ..
nah(n)
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Since x is in L(j, d), g(n, a, x) — f(x) £ —(¢ — 9). This completes the proof
of (a). Note that no more than 2J(d) — 1 values of « are needed to handle
Z = U L(j, d).

(b) Take a = 1 and suppose that for some n, » and some x in L(j, 0),
I§(n, 1, x) — f(x)| > e. Write S, for S(n, 1, x), K(n) for K(n, 1, x) and §, =
K(n)/np{S,} = K(n)/nh(n) for §(n, 1, x).

Casel. §,> f(x) +e=(j — 1)d + ¢. Then
K(n) > ((j — 1) + e)nh(n) .
Choose 8 = (j — 1)d + ¢, so that S(k, 8, x) < S, and
o B ) = 5> St H= ko
2o+ (e — 0)2.
Therefore g(n, 8, x) — f(x) > (¢ — 9)/2.

Case 2. §, < f(x) — e < jo —e. Then K(n) < (jé — ¢)nh(n), so that for g =
jo — &, S(k, 8, x) 2 8, and p{S(k, B, x)} = h(n). So

[Bk(n)]  _ [Bk(m)] -
B = sth o) = ey =TT
and g(n, B, x) — f(x) £ —(¢ — 0). Once again we have used at most 2J(5) — 1
values of j.

4. Equivalence results for general kernels. Let K(x) be a density on .2~ and
S(n, a, x) be the sphere centered at z having specified measure ak(n) and radius
r(n, a, z) as in Section 3. Thena general bandwidth estimator of f{(z) has the form

~ — X,
4.1 y &y Z i= ( z . > *
1) fn, @ 2) = na h() 2 r(n, a, z)
If S(k, B, 2) is the sphere centered at z and having radius R(k, §, z) equal to the
distance from z to the [Sk(n)]th nearest X,, a general nearest neighbor estimator
of f(z) has the form

1 z — X,
(4.2) 1B = sy T K ()
Throughout this section we assume that f, and f, use the same kernel K(u),
which satisfies (1.4) for  in 2. We also continue to assume that k(n) = nh(n).
We continue to reserve g and g for the special cases defined by (3.1) and (3.2),
in which the kernel is the uniform density on the unit spere {x: ||x]] <1}

The estimators f, need not share the consistency properties of fn for general
K. For example, suppose that the support of / is a compact set C in R? of dia-
meter 4 and that z lies a distance A > 0 from C. Then R = R(k, 8,z) = Aand
u{S(k, B, 2)} < p{S} for all n, B, where S is the sphere with center z and radius
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A + d. By (1.4),
k(P z k(P 2= i a ok (21F),
R A A

so if K is any density such that » > 0,

for all n and $, while f(z) = 0. It is clear that lack of uniform convergence of
R(k, B, z) to zero will similarly prevent uniform consistency of f, on the support
of f, if f can be arbitrarily small on its support.

Theorem 4.1 below concerns equivalence of convergence properties for f, and
f. on sets where f is bounded away from 0. It follows from Theorem 4.1 that
for K such that f,, is consistent, f, is consistent on the support of f; if K is such
that £, is uniformly consistent, f, is uniformly consistent on {x: f(x) > »} for
any > 0. Consistency only for f with known support is undesirable in a non-
parametric density estimator. Corollary 4.1 shows that when K satisfies (1.5),
f. fully shares the consistency properties of f.. Finally, we describe a method
of truncating the estimators f, for more general kernels so as to preserve equiva-
lence of convergence with f,.

An auxiliary lemma is required, of which part (a) is immediate from the defi-
nition of g and part (b) follows directly from the proof of Theorem 3.1(b).

Lemma 4.1. (@) If |g(n, 1, x) — f(x)| < ¢ for x in L(j, 6) and ¢ > 6 > 0, then

h(n) h(n)
](3_—|—-Z = ﬂ{S(k’ 1, x)} = (]—_1)5 .

(b) If [§(n, 1, X) — f(x)| < ¢ for x in L(j, 3) and ¢ > 6 > 0, then
1Sk, B, 1)) = pfS(n, 1, %)) S p(S(k, £, %))
where ' = (j — 1)0 + ¢ and §" = jo — .
THEOREM 4.1. Let ¢ > 0 be given and choose 0 < 6 < ¢/12.

(@) Forany 8> 0and x in {z: f(z) = 20}, |f(n, B, X) — f(x)| > ¢ implies that
[f(n, a, x) — f(x)| = 8/2 or |g(n, a, x) — f(x)| = §/2 for at least one of a finite set
of values of a not depending on n, x, or the sample point .

(b) If nis so large that k(n) > 07, then for any « > 0 and x in {z: f(z) = 4},
|f(n, @, %) — f(x)] > & implies that |f(n, a, x) — f(x)| = 3/2 or |g(n, B, x) — f(x)] =
d/4 for at least one of a finite set of values of B not depending on n, x or the sample
point .

Proor. We give only the proof of (a). Without loss of generality take 8 = 1
and write f, for f(n, 1, x), R, for R(k, 1, x), and S, for S(k, 1, x). There are
two cases: either |g(n, 1, x) — f(x)| > 39/2, so that by Theorem 3.1 (a) |[§(n, @, x) —
f(x)] > 3d/2 — 6 = 9/2 for at least one of a finite set of values of a; or [g(n, 1, x) —
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f(x)| < 36/2, so that by Lemma 4.1 (a).

h(n) h(n)
4.3 e = S = ———
@ G =M EG
for x in L(j, ). We need only show that (4.3) implies that |f(n, @, x) — f(x)| =
d/2 foreithera = ((j + $)d)~'ora = ((j — §)d)~* when x is in L(j, 6) and j = 3.
Case 1. f, > f(x) + ¢ = (j — 1)d + ¢. Then by (4.2) and (4.3),
) — X, ((j — 1)0 + e)nh(n)
4.4 K(Z .
Choosing a = ((j — §)0)~* gives by (4.3) that p{S(n, a, x)} = p{S,}, therefore
that r(n, a, x) = R,, and hence that

fn, a, x) = R 5 K(i‘;f‘i)

nach(n) r(n, a, x)
1 x — X,
~ nah(n) K( R, > by (1.4
(=10 + e)(j — %) by (4.4
TR a9
= (j+4)

forj=3and 0 < 6 < ¢/12. Thus f(n, a, x) — f(x) > /2 since x is in L(}, 3).

Case 2. f, < f(x) — e < jo — e. Thiscan only hold if jd > ¢, s0 j > 12 here.
By (4.3),
— X\ _ (jo — )nh(n)
4.5 k(X J .
(*9) e A
Choosing & = ((j + $)d)~* gives by (4.3) that r(n, a, x) < R, and

P 1 x — X
» @y X) = K({—=— by (1.4
S ) = oy & ( R, ) by
(JO — &)(J + 3)9
O I Ty by (4.5)
(/ —8)

< —3)9
for & as above. So f(n, a, x) — f(x) < —4/2. This concludes the proof of part
(a). Part (b) is proved by similar reasoning using Theorem 3.1(b) and Lemma

4.1(b). Note that the set of values of a used in the proof does not depend on
the kernel K.

COROLLARY 4.1. Suppose that K(u) = O for all u in 27 with ||u|| > 1. If we
choose 6 < ¢[4K(0), then Theorem 4.1(a) holds for all x in Z°. If we choose & <
(3K(0) + 1)7%¢, then Theorem 4.1(b) holds for all x in .Z°.

ProoF. We give only the proof of the extension of Theorem 4.1(a) to x in
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L(1, 6) U L(2, 9). The only case not covered by the proof of Theorem 4.1 (a) is
that for which |g(n, 1, x) — f(x)| < 35/2 and f, > f(x) + . We will show that
for a = K(0)/((j — 1)8 + ¢), f(n, a, x) — f(x) > ¢ — 26 for x in {z: f(z) < 26}
Thus adding this @ to the finite set of Theorem 4.1 (a) is sufficient.

Since |[u|| > 1 implies K(x) = 0, K(u) < K(0) for all #, and ||(x — X)IR | = 1
for exactly k(n) of the X,, we have

(4.6) KmK(©O) = T k(Y2 %)

k
> n{S(J — 1) + ¢) .
Therefore u(S,} < ak(n)/n = p{S(n, a, x)}, so that r(n, a, x) = R, and

fins @) = nailz(n) (rzcn,— a,X;)>
2 SRR A
>m%%&$?uf by (4.6)
= % by (4.3)
> for j=1,2

if 6 < ¢/4K(0). Since f(x) < 24, f(n, a, x) — f(x) > ¢ — 26 as claimed.

In Corollary 4.1 the radius of S, was controlled by restricting the support of
K. An alternative is to truncate f, when S, is too large. As in the proof of
Corollary 4.1 it is only necessary to handle the case x in L(1, §) U L(2, §) and
l9(n, 1, x) — f(x)| < 30/2, in which case by (4.3) p(S,} = 2k(n)/76. Define

f(n, g, x) = f(n, 1, x) if  p{S(k, 1, x)} < 2h(n)[75
=0 otherwise.

Then Theorem 4.1(a) holds with f replaced by fat all x in 2", If f and § con-
verge to f (pointwise or uniformly), one can use this result to show that
f*(n, x) = f(n, d,, x) converges in the same sense when §, — 0 and h(n)/0,, — 0.
In practice, use of f(n, d, x) guarantees that convergence properties of f are shared
where f(x) = 26 and that the error does hot exceed 26 where f(x) < 24.
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