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SOME EMPIRICAL BAYES RESULTS IN THE CASE OF
COMPONENT PROBLEMS WITH VARYING SAMPLE
SIZES FOR DISCRETE EXPONENTIAL FAMILIES!

By THoMAs E. O’BRYAN
University of Wisconsin-Milwaukee

Consider a modified version of the empirical Bayes decision problem
where the component problems in the sequence are not identical in that
the sample size may vary. In this case there is not a single Bayes envelope
R(+), but rather a sequence of envelopes Rm(®)(+) where m(n) is the sample
size in the nth problem. Let @ = (61, 62, +-+) be a sequence of i.id. G
random variables and let the conditional distribution of the observations
Xn = (Xn,1, +**» Xn,mm) given @ be (Pg, )™, n=1,2,.... Fora decision
concerning 0,41, where ¢ indexes a certain discrete exponential family,
procedures #, are investigated which will utilize all the data Xi, X, -+,
X,;1 and which, under certain conditions, are asymptotically optimal in
the sense that E|ty, — Ony1|2 — Rm(v+1(G) — 0 as n - oo for all G.

1. Introduction. Empirical Bayes decision theory, as introduced by Robbins
(1956), deals with a sequence of independent repetitions of a given Bayesian
statistical decision problem, called the component problem, where each problem
in the sequence has the same unknown prior distribution G. The history of the
empirical Bayes problem is such that the only case that seems to have been
considered thus far is where the sequence of problems consists of identical
repetitions of a given component problem. One could ask whether it is possible
to apply empirical Bayes procedures to sequences of independent but not identi-
cal decision problems all having the same unknown G. To answer this question
in part, this paper considers the case where the sequence of problems are identi-
cal except for sample size and concern squared error loss estimation involving
certain discrete exponential families. This component problem has been dis-
cussed by Robbins (1964), Johns (1957), Macky (1966), and Hannan and Macky
(1971).

In the situation considered here, there is a sequence of independent random
vectors {(0;, X,)}, i = 1,2, ---, where X; = (X, - -+, Xjmw) is the sample of
size m(i) from the ith problem. The random variables 6; are unobservable and
i.i.d. with distribution G. Conditionalon, =0, X, ,, - -+, X, ., arei.i.d. with
probability function

(1.1) fulx) = 0°2(0)(x) » xex={01,--}
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where g(x) > 0, and e® Ccr ={0 = 0: }}7,6°(x) < o}. The function z
defined by

(1.2) 26) = (X0 0°9() , 620,
is continuous on [0, co0). The random variable Y;, where
(1.3) Y, =m0 X, ;,

is sufficient for 6, and, with m(i) and 6, abbreviated by m and ¢, has probability
function

(1.4) fom(y) = 0°2"(0)9u(y) » yex
where )
(1.5) In(y) = Zianw 1T 9(x;) >0, YEX

with AM(.y) ={(x -5 xn)t 2 X, = yh
Consider a decision rule 7, for use in the (n 4 1)st problem which depends on
X,, - -+, X,. The risk of ¢, conditional on X, - --, X, is

(1.6) R™»40(1,, G) = E(t,(X,q1) — 0)°.
With the overall expected loss for the decision concerning 4,,, denoted by
1.7 R,(t,, G) = ER™"(¢,, G),

it follows that R,(t,, G) = R™"*Y(G), the Bayes envelope in the (n 4 1)st pro-
blem, which motivates the following definition paralleling Robbins (1964).

DErFINITION. A sequence of decision rules {z,} is said to be asymptotically
optimal (a.o0.) relative to G if

(1.8) lim, .. {R,(f,, G) — R™*(G)} = 0.

2. An a.o. sequence {¢,}. Lettingm = m(n 4 1), a nonrandomized rule which
is Bayes with respect to G in the (n 4 1)st problem is given by

(2.1 t"(y) = 9u(y + D/qu(p)
where
(2.2) ’ u(y) = o OV27(0)G(d0)

and ratios 0/0 are to be interpreted as 0 throughout the paper. The following
lemma, motivated by the approach of Robbins (1964), is a consequence of the
fact that the difference in (1.8) can be expressed as E(#,(Y,,,) — "(Y,41)) P,
denotes probability conditional on Y, ,, = y.

LEMMA. Suppose
(A1) m(i) <M< oo, i=12,...
and

(A2) O c[0,8] forsome B < oo.
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With t," defined for each m to be a y-measurable decision rule truncated to [0, f] in
the sample size m problem depending on X,, - - ., X,, then
(2.3) L"(y) — 6"(y) —p, 0  forall yey, 1<m<M

implies that the sequence {t,} with t, = t,™"*V is a.o. relative to all G.

This lemma shows that in order to find a.o. sequences under (Al) and (A2)
it suffices to approximate #,™ as n — co for each m. With G unknown, ¢, (and
hence ;) is unknown. Under (A2) since z is continuous, for each m and every
¢ > 0, there exists a polynomial 3 7,6* such that

(2.4) |zm=0) — X r,0% < e  forall @¢]o,f].
Defining ‘

(2.5) In(¥) = L1y + k), yex,
it follows that

(2.6) 19m(¥) — 94, )] = €q:(y) vey.

With g,(u) = 1ifu = 0and 0if & % 0, and with g,,(u) = 0if m > 1 and u < 0,
an unbiased estimate of ¢,, (y) is given by

(2.7) G, () = 17" 201 (2 14 Imir—Ys — ¥ — £)/ G (Y3))
since, for Y ~ ¢,,4,,
Elgn Y — 0)[9n(Y)] = L350 In-s(y — 4)4m()
= Yo 2(0)0"(L5=0 m—sy — w)z"~(0)0"~") dG(0)
= q(u) .
Under (Al), the summand in (2.7) is bounded in absolute value for each i by
(2.8) p(e, Y) = SUPigman {2 [ril/9(y + K)}
which is independent of G. From (2.6) and (2.8),
(2:9) E(Gny) = gn(y)’ = 170, ) + €'4,°() -

With ¢ — 0 there exist n = n(e, y), a function of ¢ and y, such that n=1p%(e, y) —
0. By inverting the function for each fixed y, a choice ¢ = ¢(y, n) — 0 is ob-
tained such that n="p%e, y) — 0. For such choices

(2.10) G, (¥) = £, 4n()) » yepl=m<M.
Hence an application of the lemma yields the following theorem.

THEOREM. Let (Al) and (A2) obtain. With t, = t,™"+V) where t,™ is given by
(2.11) ,"(y) = min {g} (y + 1)/3} (), B}

where a* = max {a, 0} with a choice ¢ = &(y, n) such that (2.10) obtains, the
sequence {f,} is a.0. relative to every G.
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3. Remarks. In case z is a polynomial in ¢, (A2) must hold and a choice
corresponding to ¢ = 0 exists. In case (A1) does not hold, i.e., the sample sizes
are unbounded, and

(A2%) 0 c [0, 5] where fer

holds, sequences of a.o. rules do exist (see O’Bryan (1972)) but such procedures
are difficult to calculate and consequently would lack practical significance.

A similar technique of estimating z"~%(¢) and #z™~*(9) by polynomials in e~?
has been employed by O’Bryan and Susarla (1975) to handle a more general
situation involving continuous exponential families with density

3.1) Sfo(x) = e~ ?"z(0)g(x)
which requires a modification of the estimate in (2.7).
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