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ESTIMATION OF PARAMETERS IN
A LINEAR MODEL!

By C. RADHAKRISHNA Rao
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The first lecture in this series is devoted to a survey of contributions
during the last five years to estimation of parameters by linear functions
of observations in the Gauss-Markoff model. Some new results are also
given.

The classes of BLE (Bayes linear estimators) and ALE (admissible
linear estimators) are characterized when the loss function is quadratic.
It is shown that ALE’s are either BLE’s or limits of BLE’s. Biased esti-
mators like ridge and shrunken estimators are shown to be special cases of
BLE’s.

Minimum variance unbiased estimation of parameters in a linear
model is discussed with the help of a projection operator under very general
conditions.

1. Introduction. Ever since Gauss introduced the theory of least squares there
has been considerable interest in the estimation of parameters by linear functions
of observations. Most of the contributions are devoted to unbiased estimators
(Aitken, 1935; Zyskind and Martin, 1969; Rao, 1962, 1973a, to mention a few
principal contributers). But with the advent of decision theory by Wald, at-
tempts are being made to find estimators which may be biased but closer to the
true values in some sense. Thus arose what are called ridge estimators (Hoel and
Kennard, 1970a, b), shrunken estimators (Mayer and Wilke, 1973), a general
class of homogeneous linear estimators which includes ridge and shrunken esti-
mators (Rao, 1971), and other types of estimators (Marquardt, 1970). All these
biased estimators are special cases of the class of Bayes linear estimators (BLE)
which again are included in the class of admissible linear estimators (ALE)
characterized by Cohen (1966) and Shinozaki (1975). Recently notable contri-
butions have been made by Kuks and Olman (1972), Bunke (1975a, b, ¢) and
Lauter (1975) on minimax linear estimation.

Some results in matrix algebra play an important role in the derivation of
optimum linear estimators. These results are presented in a series of lemmas to
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make the paper self contained. The theorems of later sections on admissibility
and minimax estimation may be deduced from certain general propositions in
decision theory, but the object is to develop a separate theory for linear esti-
mators which may be studied independently.

The literature on linear estimation is very vast and only some of the salient
features in the development of the theory will be considered.

2. Some algebraic lemmas. The following notations and operations on a
matrix A are used throughout.

#(A) = Linear manifold generated by the columns of A.
A~ = Any g-inverse of A in the sense of Rao.(1962), i.e., such that
AA-A = A.
(A : B) = Matrix obtained by adjoining the columns of B to those of A.
Al = Matrix of maximum rank such that A’AL = 0.
A = B denotes A — B is n.n.d. (nonnegative definite) matrix.

Two matrices A and B are said to be disjoint if _Z(A) n _#(B) consists of the
null vector only. The following lemma of Rao (1974) is useful in later applica-
tions.

LEMMA 2.1. Let X be an n X m matrix, V be an n.n.d. matrix of order n and
Z = X!. Then:

(i) X and VZ are disjoint matrices.

(il) A(V:X) = _#Z(VZ: X).

Projection operator. Let A and B be disjoint matrices each with the same
number n of rows. Any vector Y € _#Z(A : B) has the unique decomposition.

(2.1 Y=Y +Y,, Y, e #Z(A), Y,e _#(B).

Then P, ; is said to be projection operator onto _#(A) parallel to _#(B) or along
A#Z(B) iff

(2.2) P,;Y =Y, forevery Ye_#(A:B) and the corresponding Y,.

LEMMA 2.2. A necessary and sufficient condition that P, g is a projection operator
in the sense of (2.2) is

(2.3) P.sA=A, P,,B=0.

For a proof see Rao (1974). Note that P, ; may not be unique or idempotent
as in the case when _#{A : B) coincides with the entire space.

Constrained g-inverse. Let A and B be disjoint matrices. G is said to be a
g-inverse of A constrained by B iff (see Rao, 1974 and Rao and Mitra, 1973):

(2.4) AGA=A and AGB =10

which can also be written as
(2.5) AGA = A and A(G'A ¢ #(BY).
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Such an inverse may be explicitly denoted by G, and the class of all such
inverses by {G,3}. One choice of G, is )
(2.6) G, = (C'A)C', C = B!,

and a general solution is obtained by adding to (2.6) a general solution of the
equations AXA = 0, AXB = 0. The following lemma shows the relationship
between P, ; and G, 5, which follows from the definitions.

LeMMmA 2.3.
(2.7 {Pis} = {AG, 5} -

Using (2.7), we may write the projection of Y on A as AG, ;Y which has a
unique value whatever may be the choice of the g-inverse G, 5.

LEMMA 2.4. Let D be a p X p diagonal matrix such that both D and 1 — D are
n.n.d. and @ € R*. Further let G be a diagonal and Q an orthogonal matrix of the
same order. Then

(2.8) TrG* + 'Q(I — G))Q'6 < TrD* 4 6'(1 — D)*6
for all @ € R* and strict inequality for at least one value of @ cannot hold.
For (2.8) to be true

(2.9) TrG* < TrD?,
and
(2.10) (I — D)y — QI — G)*Q" isn.n.d.

Now let e? = Q,(I — G)*Q,’ where Q, is the ith row of Q, and d,, g, be the ith
diagonal elements of D and G respectively. Then (2.10) implies

1l —diz2e,=2d*< 2 (1 —e).
YdP=n(l—ey=p+ e —23%e
(2.11) =p+ 20 —9)—-2%e
=29 +23x(1—g)—22e =39

e = QI — GyQ/ = (Q(I — 6)Q")

Since

then
e, = QI — G)Q/ or re=x(1—g).

The relationship (2.11) contradicts (2.9) and the lemma is established.

LEMMA 2.5. Let A be a fixed p X q and B be ar X q matrix such that BB = C
is fixed. Then

(2.12) maxy z_c Tr AB’ = Tr (ACA')?
and the maximum is attained at B, satisfying the equation

(2.13) AB,’ = (ACA')} .
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We use the inequality Tr G < Tr (GG’)t with equality iff G = (GG’)t. Choosing
G = AP/, the result (2.13) is established if we can show that there exists a B,
such that AB,” = (ACA’)t. We need only choose B,” = EDP where C = EDE’
is the spectral decomposition of C and P is an orthogonal matrix such that
KP = (KK')! with K = AED. P exists for instance choosing P = HF’ where
K = FMH'’ is the singular value decomposition of K.

3. Admissible linear estimator. In our study, we will be concerned with two
kinds of loss functions associated with a vector estimator t of a vector parame-
ter #. One is the quadratic loss function

3.1) L(t, 6) = E(t — 6)B(t — 0)
where B is an n.n.d. matrix. Another is the matrix loss‘ function
(3.2) M(t, ) = E(t — 8)(t — 6’ .
DEFINITION 3.1. An estimator t is said to be admissible for & under the loss
function (3.1), if there exists no other estimator t, such that
(3.3) L(t,, ) < L(t, 6)
with strict inequality for at least one value of 6.
DEFINITION 3.2. An estimator t is said to be admissible under (3.2), if there
exists no other estimator t, such that
(3.4) M(t, 6) — M(t,, )
is n.n.d. and is not zero for at least one value of 8.

If t is admissible for @ in the sense of (3.4) then p’t may not be admissible for
p’0 under the loss function

(3.5) E(p't — p'6)*

for any given vector p. Of course, if p't is admissible for p’@ in the sense of
(3.5) for every p, then t is admissible for @ in the sense of (3.4).

We shall write t ~ @ to denote that t is admissible for 8. The following
lemma due to Shinozaki (1975) plays an important role in discussing admissibility
of estimators.

LeEMMA 3.1. Let t ~ @ under (3.1) for some p.d. matrix B = B,, then t ~ 6
under (3.1) for any n.n.d. matrix B.

Ift ~ @ for B = B,, then B!t ~ B,!@ for B = I, so that we may take B, = I
without loss of generality.

Now let t ~ @ for B = I and not for B = C where C is an n.n.d. matrix.
Further let t, ~ 8 for B = C. Choose

(3.6) t, =t F(t, —t)
where F = d~C (d is the largest eigenvalue of C) so that,
(3.7 I>F and E(t, — 6)'F(t, — 6) < E(t — 0)'F(t — ).
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Consider
(3.8)  E(t, —0)(t, — 0) = E[(t — 6)'(t — 6) + (t, — t)F*(t, — t)

+ (t — OYF(t, — t) + (t, — tyF(t — 6)].
Replacing F* by F

(3.8) < E(t — 8)(t — 6) + (t, — OYF(t, — 6) — (t — OYF(t — 6)
< E(t — 0)(t — 6),

which is a contradiction, unless equality holds. The lemma is proved.

We shall prove some general theorems on ALE’s (admissible linear estimators).
Theorem 3.1 is essentially due to Cohen (1966) as exténded by Shinozaki (1975).
The statements of the theorem are, however, more general and the proof is
mainly algebraic in character.

THEOREM 3.1. Let Y be a k-vector random variable such that E(Y) = 6 and
D(Y) = o’L.  Then under the quadratic loss function (3.1), with B = 1, the following
hold: - ‘

(a) LY ~ @ iff L is a symmetric matrix and has all its eigenvalues in the closed
interval [0, 1].

(b) SLY ~ S@ for any S if LY ~ 6.

(¢) If SLY ~ S8 and S is nonsingular then LY ~ 6.

To prove (a) we proceed as follows. Consider the singular value decomposi-
tion I — L = PGQ’ where G is diagonal. Then

(3.9) E(LY —6)Y(LY —0) =a*Tr (I — QGP')(I — PGQ') + 6'QG*Q’8
=0 3 (9*—2r9,+ 1) + 290"

where g, and r; are the ith diagonal elements of G and P'Q, and @, is the ith
component of Q'@. Since g, > 0, the expression (3.9) can be made smaller in
value by choosing r, = 1 or P = Q, and also choosing g, = 1 if it exceed 1.
Thus the necessity of (a) is proved.

With P = Q and 0 < g, < 1, the loss (3.9) can be written as

(3.10) d*Tr (1 — G)* + ¢'G’@ .

If MY is an alternative estimator with M = S(I — D)S’ where D is diagonal,
then the expected loss is

(3.11) o’ Tr (I — D) 4 ¢'RDR'¢
where R is an orthogonal matrix. By Lemma 2.4, (3.11) cannot be uniformly

(i.e., for all @) less than (3.10). Thus sufficiency is established.
The results (b) and (c) are direct consequences of Lemma 3.1.

CorOLLARY 3.1. Let E(Y) = @ and D(Y) = o*V where V is nonsingular, and
LY ~ 0 under (3.1) for any p.d. matrix B. Then it is necessary and sufficient that
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LV or V~'L is symmetric and the eigenvalues of L are in the closed interval [0, 1].

Further LY ~ @ under (3.1) for any n.n.d. matrix B.

In view of Lemma 3.1, the choice of B is immaterial. Consider Y = V?Z,
so that D(Z) = ¢’I, and let E(Z) = ¢

(3.12) LY ~ 6 = LV}Z ~ Vig
= VILVIZ ~ ¢

Then from (a) of Theorem (3.1), V-*LV? is symmetric with eigenvalues in [0, 1]
and hence the result of the corollary.

COROLLARY 3.2. If under conditions of Corollary 3.1‘, a4+ LY ~ 8, then the
additional n.s. condition is ae _#Z(L — I).

THEOREM 3.2. Let Y be a k-vector such that E(Y) = @ and D(Y) = o*V where
V may be singular. Then q'Y ~ p’'@ where q and p are k-vectors iff ¢'Vq < p'Vq.

(3.13) E(Q'Y — p'0) = o’q'Vq + [6'(q — D).
Let us compare q'Y with m'Y where m’ = p’ 4 ¢(q’ — p’) with 0 < ¢ < 1.
(3.14) Em'Y — p'8) = ¢*[(1 — ¢*)p'Vp + c*q'Vq + 2¢(1 — ¢)p'Vq]

+ 0@ —p)r.

If q’Y is admissible, we must have

(3.15) qVq < (1 — Ap'Vp + *q'Vq + 2¢(1 — c)p'Vq
or |
(3.16) 1+ )q'Vg < (1 —c)p'Vp + 2cp'Vq.

Taking limits as ¢ — 1, q'Vq < p’Vq which proves necessity.

To prove sufficiency, we have only to show that if ¢'Vq < p’Vq, then (3.15)
holds for all 0 < ¢ < 1. This can be easily verified.

We shall now prove a theorem which is more general than Theorems 3.1 and
3.2.

THEOREM 3.3. Let Y be a k-vector random variable such that E(Y) = 0 and
D(Y) = o1, and S be a r X k matrix. Then for LY ~ S@ it is n.s. that

(i) LS’ is symmetric, and
(ii) LI’ < LS.

Let LY ~ S6. Consider
(3.17) E(LY — SO)(LY — S6) = ¢’LL’ + 6'(S — L)8 .

By Lemma 2.5 there exists an L,, such that (S—L,)'(S—L,) = (S—L)'(S—L)
and Tr L,'L, < Tr L'L with equality iff LS’ is symmetrical. Thus the necessity
of (i) is established.
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By the corollary to Lemma 3.1, p’LY ~ p’S@ for any vector p and therefore
using the result of Theorem 3.2.

(3.18) p'LSp = pLL'p, Vp=LS =LL'

" which establishes the necessity of (ii).

To prove sufficiency we show that under (i) and (ii), L can be written as SM
where M is symmetrical and has eigenvalues in the range [0, 1]. This would
prove that MY ~ @ and hence by Theorem 3.1, SMY = LY ~ Sé.

Let r < k and L = PGQ’ be the singular value decomposition of L where P
is r X r orthogonal, G is r X r diagonal and Q' is r X k semiorthogonal ma-
trices. Then

3.19 LL’' = PGP’ < PGQ'S’ — G* < GQ'SP = GT' (say).
) y)

Let
G = (Gl 0> , Tl — (Tll Tl2> .
0 0 T, T,
Then from (3.19) and the fact that GT’ is symmetrical it follows that T,

nonsingular and T,, = 0. Now let A be such that G, = T},A. Then A is sym-
metrical since G, T, is symmetrical and T,, is nonsingular. Further

(3.20) G =T( 8§ = P'SQ(
(3.21) L = PGQ' = SQ(} )Q = SM,
where M is symmetrical as is required to be shown. Now
(3.22) LI’ = SMM'S’ < SMS’,

where M is as defined in (3.21). Then (3.22) implies that the eigenvalues of M
chosen as in (3.21) are in the interval [0, 1].

If r > k, the argument is similar by choosing P to be semiorthogonal. The
theorem is proved.

Note that no restriction has been placed on the order or rank of the matrix S
in Theorem 3.3, and it is thus more general than Theorems 3.1 and 3.2.

CoRrROLLARY 3.3. Ifin Theorem 3.3, D(Y) = ¢*V where V is nonsingular then
n.s. conditions are

(i) LVS'is symmetricai, and
(ii) LVL' < LVS'.
THEOREM 3.4. Let Y be a k-vector such that E(Y) = 0 and D(Y) = o*V where

V is nonsingular. Then the two statements are equivalent:

(i) LV is symmetric and p'LY ~ P’ for every p under a quadratic loss function.
(i) LY is admissible for @ under a quadratic loss function (3.1) with a p.d. ma-
trix B.

That (ii) = (i) follows from the corollary to Lemma 3.1. To prove that
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(i) = (ii) we observe that p'LY ~ p’@ iff

(3.23) p’LVL’p < p'LVp,

using the result of Theorem 3.2. Since (3.23) is true for all p and LV is sym-
metrical

(3.24) LV’ < LV=SS<S

where S = V-!LV! is symmetric by hypothesis. If S = PDP’ where D is diago-
nal and P is orthogonal then §'S < S = (D* — D) < 0, i.e., each diagonal ele-
ment of D is in the closed interval [0, 1], which is a n.s. condition for LY ~ 6.

Note that (i) of Theorem 3.4 indicates the possibility of obtaining an estimator
LY inadmissible for @ under (3.1) and yet p’LY is admissible for p’@ for every
p. For this we need only choose a matrix L such that

(3.25) 2LVL < LV + VLI
and LV is not symmetrical.

4. Bayes linear estimator. Let Y be a .k-vector such that E(Y) = @ and
D(Y|60) = ¢’V where V is nonsingular. We shall say that LY is a Bayes homo-
geneous linear estimator (BHLE) if

(4.1) E,Ey(L,Y — 6Y(L,Y — 6) < E,E(LY — 8)(LY — 6)

for any L, where the first expectation is taken with respect to a prior distribu-
tion for 8. Now

(4.2)  E,E4(LY — 0Y(LY — 6) = Tr ¢®’LVL’ + Tro*L — HW(L — Iy
where ¢*°W = E(66’). The expression (4.2) attains a minimum when L is °
(4.3) L, = W(V + W)~!

which involves only the function E(66’) = ¢*W of the distribution of 8. We
shall call

(4.4) W(V + W)Y

the BHLE of & with respect to W (see Rao, 1971).
Let D be a diagonal matrix with the roots of the equation |W — dV| =0 as
diagonal elements. Then (4.4) can be written in the form

(4.5) QD(I + D)-'\Q'Y
where Q is such that W = QDQ’ and V = QQ’, or in the form
(4.6) ViRGR'V-tY

where R is an orthogonal matrix and G = D(I 4+ D)~?, with diagonal elements
in the semiopen interval [0, 1). The expression (4.6) can then be written as

4.7 VIMV-iY ,

where M is a symmetric matrix with eigenvalues in the semiopen interval [0, 1).
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Given such an M we can find W to satisfy the equation
(4.8) W(V + W)t = VIMV-#

so that the complete class of BHLE’s is characterized by the expression (4.7).
This is precisely the class obtained by the author in the paper (Rao, 1971).

It may be seen that an expression of the form V:AV-#Y where A is a symmetric
matrix with eigenvalues in the closed interval [0, 1] is a limit point of the set
(4.7) for varying M, but may not belong to the set (4.7), since if any of the
eigenvalues of A is unity there does not exist any finite W satisfying the equation

(4.9) W(V + W) = VIAV-t,

Thus the limit points correspond to the situation where some linear functions of
the parameter @ have infinite variance. We shall call the extended set

(4.10) {VIMV-tY},

where M is a symmetric matrix with eigenvalues in the closed interval [0, 1],
the complete class of generalized BHLE’s.

Similarly we can define Bayes linear estimators (BLE’s) and generalized BLE’s
by considering the class of estimators of the form A = LY + a where a is a
vector of constants. In such a case the BLE is of the form

@.11)  V(V 4 W)73 4 W(V + W)Y = 8 + W(V + W)Y — 3)

where 8 = E(0) and ¢°W = D(6). As in the case of BHLE, the set of BLE’s is
defined by

(4.12) {8 + VIMV-4Y — 3)}

for any vector 8 and a symmetric matrix M with eigenvalues in [0, 1). The
generalized BLE’s constitute the set

(4.13) {8 + VIMV-(Y — 3)}

where @ is as in (4.12) and M is a symmetric matrix with eigenvalues in the
interval [0, 1].

But (4.10) and (4.13) are precisely the classes of admissible linear estimators
considered in Section 3. Thus we have the following theorem:

THEOREM 4.1. The class of ALE’s is precisely the class of generalized BLE’s.

5. Minimax estimation. LetY be a k-vector such that E(Y) = 6 and D(Y) =
o’V with the parameter 8 subject to the restriction 8 ¢ % = {6: 0'HO < 4%}
where H is a p.d. matrix.

DEFINITION 5.1. A linear function q,Y is said to be a minimax linear esti-
mator of the parametric function p’@ iff

(5.1) E(q,’Y — p'0)’ = min, max,., E(q'Y — p'6)’.
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DEFINITION 5.2. A vector function LY is said to be a minimax estimator of
o iff
(5.2) E(LY — 6YB(LY — 0) = min, max,,, E(LY — 6YB(LY — 6),
where B is an n.n.d. matrix.

THEOREM 5.1. The minimax estimator of p'0 is p'6'™ where

(5.3) 6™ = H-YV + HY)Y = (V™' 4+ H)'Y
i.e., @™ is the BHLE of @ with W = H~'. The minimax loss is
(5-4) pKp, K=oV 4 H)".
Consider ‘
(5.5) E@Y — p0) = o’q'Va + [(@ — p)0T -

It is easy to see that

(5.6)  max,., [¢°¢'Vq + [(@ — P)OTF] = o’[¢'Vq + (@' — P)H(q —P)].
The minimum of (5.6) is attained at | .

(5.7) (V4 HYq, = Hp, ie, q,=(V+H) Hp

so that the minimax estimator of p’@ is p’6@™ where @™ is as defined in (5.3).
The result of Theorem 5.1 can also be expressed in the following form due
to Kuks and Olman (1972): @™ as defined in (5.3) is the minimax estimator of 8
in the sense of definition on 5.2 for the choice B = pp’ or any n.n.d. matrix B with
rank unity.
Suppose that MY is an estimator of 6. Then

(5.8) E(MY — p'8)} = ¢'p'MVM'p + [p'(M — D8]
SUPye ,, (5.8) = ! [PMVM'p + p'(M — HH(M — Iy'p]
(5.9) — P [MVM + (M — DH(M — Iy]p

> o’p’K(MY, 8)p
where K(MY, 6) = E(MY — 6)(MY — 6)’. Since (5.9) is true for all p,
(5.10) MVM + (M — DHY(M — I) = K(MY, 6)
so that the left-hand side of (5.10) is the supremum of K(MY, @) over 8 ¢ Z/

and may be written as sup K(MY, #). From the minimax property of 8™, it is
seen that

(5.11) sup (8, 6) < sup K(MY, 6) .

Thus the estimator 8™ which is minimax under the loss function (5.2) for the
special choice of B with rank unity has the optimum property (5.11), which is
pointed out by Bunke (1975).

The problem of obtaining the minimax estimator in the sense of Definition 5.2



ESTIMATION OF PARAMETERS 1033

for any choice of B has been recently solved by Liuter (1975). The solution is
somewhat complicated.

6. The Gauss-Markoff model. We shall now consider the estimation of pa-
rameters in the general Gauss-Markoff model (Y, X8, ¢°Z), where Y is an n-
vector of random variables such that E(Y) = X8, D(Y) = ¢*Z, and B, o® are
unknown parameters.

6.1. Some comments on the model. The Gauss—Markoff model is well known
and has been studied extensively. However, some of the inherent restrictions
in the model when V is singular are not so well known. We shall consider them
before discussing the estimation of parameters.

(a) Ye AZ(2: X) = #(ZZ: X) with probability 1.

(b) Let K = X4, i.e., a matrix of maximum rank such that K'Y = 0. Then

(i) K'Y = d with probability 1
(i) K'Xg=d
where d is a constant vector.
(c) Let N =Kd* and S = (X'N)*. Then
(i) N'Y = 0 with probability 1
(i) N'’X8 =0
(iii) Y e #(Z: XS) with probability 1.
Note that singularity of £ imposes some restrictions on the random variable Y
as well as on the unknown parameter 5.

(d) A necessary and sufficient condition for a given linear function m’Y to

be unbiased for a linear parametric function p’g is

(6.1) X'm — pe Z(X'N).

Note that the condition quoted in the literature on linear estimation, X'm = p,
is only sufficient and not necessary.

(e) If m’Y is unbiased for p’B in the sense of (6.1) then there exists a vector
k such that

(6.2) (i) m'Y = Kk’Y with probability 1
(i) kKX =p.
(f) We shall say that a parametric function p’8 is identifiable if it can be
estimated unbiasedly by a linear function of Y, or p e .Z(X’).

6.2. Unbiased estimation. In view of (6.2), to find the minimum variance
unbiased linear estimator (MVULE) of p’B it is only necessary to find an m,
such that

(6.3) m/Ym, < m'Vm, VmsXm=p.

Two approaches to the problem of computing m,, in the general case have been
developed by the author. One is called the IPM (Inverse Partitioned Matrix)
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method (Rao, 1971, 1972) and another, the unified theory of the least squares
(Rao, 1971, 1973a). We shall exhibit these results in terms of the projection
operator described in Section 1 of this paper. [MVULE’s which satisfy (6.1)
and not (6.2) have been obtained in Rao (1973 b)].

THEOREM 6.1. Let m be any given vector such that X'm = p, i.e., let m'Y be
any unbiased estimator of p'B. Then m,'Y is the MVULE of p’'B, where

(6'4) m* = wazm = (I - sz)m = (I - PQle)m .

In (6.4) Py,y; is the projection operator onto _#Z(X) parallel to _Z(VZ) as in
(2.2) and P,y is the projection operator into _#(Z) based on the seminorm
[|X]| = (x'Vx)}, as defined in Rao and Mitra (1971) and. further examined in
Mitra and Rao (1973). The results in (6.4) follow from the definitions of the
operators Py, and P,,. (See Kolmogorov, 1946, 1947 for the case |V| = 0.)

THEOREM 6.2. The MVULE of an identifiable parametric function p’B is pp
where

(6.5) BY = Gy, Y

where Gy,yz is a g-inverse of X constrained by VZ as defined in (2.4).
Note that Gy,y, is any matrix satisfying the conditions

(6.6) XGyv: X =X, XGyyzVZ =0

as defined in (2.4).

THEOREM 6.3. The MVULE of an identifiable parametric function p’'B is p’'B
where B is any solution of the equation

(6.7) Xg = lesz .
The results (6.5) and (6.7) follow from the definitions of Gy, and Py y,. The

following theorem is easy to prove.

THEOREM 6.4. Let KB (where K is of order r X m) be a set of r identifiable
parametric functions and LY be any unbiased estimator of KB. Then

(6.8) M(LY, KB) = M(KB", KB)
where M denotes the matrix loss in the estimation of KB, and BV is as defined in
(6.5) or (6.7).

6.3. Admissible estimation. We shall first prove that 8% (the least squares
estimator) as defined in (6.5) or (6.7) is sufficient for admissible estimation of
linear functions of B under a quadratic loss function as observed by Shinozaki
(1975). The result may be stated explicitly in a more general form as follows.

THEOREM 6.5. Let LY be any estimator of KB. Then
(6.9) M(LY, B) = M(LXB", B)

where M denotes the matrix loss function as defined in (3.2).
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The result (6.9) is established by observing that
(6.10) E(LY — KB)(LY — KB)Y = E(LY — LXB")(LY — LXB®VY
+ ELXBY — B)(LXB" — B .
Theorem 6.5 shows that in order to consider admissible estimators of Kj
under a quadratic loss function of the type

(6.11) E(LY — BYG(LY — B)
where G is an n.n.d. matrix, we need consider only linear functions of X3,
We shall now discuss the problem of admissible estimation of s independent

identifiable parametric functions K8. Without such a restriction of identifiability -
there is a possibility of any set of linear functions being admissible for KB.

THEOREM 6.6. Let (Y, XB, 0°V) be a Gauss-Markoff model with V nonsingular.

Then LY ~ Kp (identifiable) iff
(iy VL' c #Z(X),
(iiy LXT-K' is symmetric, and

(iii) LXT-X'L’ < LXT-K’,
where T = X'V~'X and T~ is any g-inverse of T.

Consider 8% = T-X'V-'Y which is a solution of (6.7) with

(6.12) EBY) =T TH, D(BY) = ¢*T-TT.
If LY ~ KB, then using (6.9) it is easily shown that VL’ ¢ _#(X) for otherwise
LY can be improved, which establishes the necessity of (i). Then L = BX'V~!
for some matrix B, and BX'V-'Y = BTB", KB = KT-TB. Then applying
Theorem 3.3 the necessity of (ii) and (111) follows observing that TT-T = T and
X' (T-)K = XTK'".

To prove sufficiency, note that (i) implies L = BX'V~* and then (ii) and (iii)
imply by Theorem 3.3 that LY ~ Kp.

If we write K = C’X (which is the condition for 1dent1ﬁab111ty of KB), then
the n.s. conditions of Theorem 6.6 can be written as ’

(i) VL' ¢ #Z(X),
(iiy LVC is symmetric, and

(iii) LYL’ < LVC.

COROLLARY 6.1. Let X in Theorem 6.6 be of full rank in which case BV is
uniquely defined with E(BV) = B and D(BV) = o°T-*. Then ABY ~ KB iff

(i) AT-'K’ is symmetric and

(i) AT'A’ < AT-K'.

To sum up, the different classes of estimators considered with reference to
the model (Y, X8, ¢°V) and their relationships are as given below when both X
and V have full rank. Similar expressions can be written down when V and/or
X are not of full rank. They are somewhat complicated.
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(i) least squares estimator
BY = (X'VIX)IX'VY
(ii) Bayes homogeneous linear estimator (W is n.n.d.)
Bw'" = WX'(V 4+ XWX')'Y
= W[(X'VX)~! 4 W]18®
= (W™ + X'VIX)"X'V-Y if |[W|#0.
(iii) general ridge estimator (G is n.n.d.)
Bc” = (G + X'VX)IX'V7IY = (G + X'V IX)7X'V-IXB®
= G(X'VX)! 4 G171 8w if |G|+0,
= B¢, if |G| #0. '
Note that a general ridge estimator (see Rao, 1975c¢) is not necessarily a Bayes
estimator, but can be exhibited as a limit of Bayes estimators.
(iv) minimax estimator (with B HB < o*, H is p.d.)
B™ = HX'(V + XHX)'Y = B,
= (X'V-X + H)"X'V7Y = B,
— H—l[(X’V—lx)—l _l__ H—l]—l‘B(l)
— B aas H—O0.
(v) admissible estimator (T = X'V~'X)
B“ = BX'V'Y (B sym.and BTB < B)
= CBY (CT™! sym.and CT-'C' < CT?).

It may be noted that the estimators (i)—(iv) are subclasses of (v). However,
the Bayes class (ii) plays a special role since 8%, 8 and 8™ are either members
of this class or its limit points, and the extended Bayes class including the limit
points is precisely the class of admissible estimators. It appears that for a study
of biased but admissible estimators one should start with the class C8* and
examine the behaviour of subclasses defined by special choices of C such that
CT-* is symmetric and CT-'C' < CT-.

It may be noted that we have considered only linear estimators. If we admit
nonlinear estimators and have some knowledge of the distribution of the obser-
vation vector Y, then the linear estimators may become inadmissible as shown
by James and Stein (1961).
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