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UNBIASED ESTIMATION IN FIXED COST
SEQUENTIAL SAMPLING SCHEMES

By P. K. PATHAK
The University of New Mexico

Fixed cost sequential sampling schemes are introduced in this article.
In these schemes units are observed sequentially according to a given sam-
pling method until the total cost reaches a preassigned value; it is assumed
that the cost ot examining each unit is unknown in advance. It is shown
how the notion of sufficiency in sampling can be used to construct un-
biased estimators of population parameters under these schemes.

1. Statement of the problem. Most problems of sampling from finite popu-
lations involve the determination of the optimum sample size. In problems
where estimators with prescribed precision are required, the sample size is
usually determined so as to obtain estimators with maximum precision at a fixed
cost. In many of these problems the determination of the sample size is often
based on the assumption that the cost of observing a unit in the population is
nearly the same for all population units; and sampling is planned so as to reach
some expected cost for the survey. In populations where the cost of observing
units varies greatly from unit to unit, sampling procedures of the above kind
lead to highly variable random costs of sample selection, a feature which is per-
haps not very desirable in fixed cost surveys at least. For fixed cost surveys it
would, therefore, be desirable to have sequential sampling procedures which
eliminate the randomness of the total cost of sample selection. To this end we
introduce fixed cost sampling schemes in this paper. In these sampling schemes
units are observed.sequentially according to a given sampling method and sam-
pling stopped when the accumulated cost reaches the preassigned total cost; it
is assumed that the cost of examining each unit is unknown in advance. The
primary object of this article is to show how the notion of sufficiency can be
used to construct efficient unbiased estimators of population parameters under
these schemes. It turns out that customary estimators of population parameters
under nonsequential sampling schemes continue to remain efficient estimators
under the corresponding fixed cost sequential sampling schemes. For reasons of
simplicity we shall illustrate the technique of construction of unbiased estima-
tors in the case of fixed cost simple random sampling only.

2. Fixed cost simple random sampling. Consider a population of N elements.
Suppose that the jth population unit is U; = (j, Y,), where j is its unit-index
and Y; = (C;, Z;) where Z; is a real-valued variate of interest and C; is the cost
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(possibly unknown) of ascertaining the value of Z; (1 < j < N). (It is perhaps
worthwhile mentioning here that it takes a certain amount of time and effort to
examine the U; completely and thus ascertain the value of Z;; this fact is tacitly
incorporated in the cost of selection C;. Before sampling one does not normally
know C; but once the U; has been examined completely, one knows the true
value of C;.) We consider here the problem of estimating the population mean

(2.1) Z=N"yY¥.Z

i
and the population variance
(2.2) $=(N— 1)L (Z — 2.

It is assumed that the total cost, say L, to be spent on sample selection is fixed in
advance. Wealso assume C; 4+ C, < Lforalljand k withj = k,C, + C, + . ..

+ Cy> L, min(C, ---,Cy) > 0, and the C; are otherwise unknown. (The
case in which costs C,, ..., C, are known can be handled by a nonsequential
scheme.)

The following sampling procedure is to be adopted. Population units are
drawn one by one with equal probabilities without replacement until the ac-
cumulated cost reaches L. More precisely, the sample is (X, -- -, X,) where
each X; is one of the U; and the stopping variable M is defined as follows:
M = r if and only if 3{" C(X;) < L and };7 C(X,) = L, C(X,) being the cost
of observing the ith unit completely. (Note that the X, are distinct because
sampling is without replacement.)

Now from the viewpoint of applications it is desirable to treat X,, differently
from X, - .., X,,_, since because of cost overrun it may be decided not to ex-
amine X, (i.e., ascertain its z-value) completely. Also a second reason, as we
shall see later, is that treating X, differently leads to substantial mathematical
simplicity in the construction of unbiased estimators. Consequently we define

(2.3) Ty =M, {X, ---, X;;_1}, X)) .

Also we denote the observed sample by

(2.4) Sy = (X5, -+, Xpy)

and the statistic of distinct units by

(2.5) Ty ={X, <+, X))} .

(Notice that S, is a sequence of M units while T, is the set whose elements are
Xiy ooy Xopr)

We briefly turn now to the notion of sufficiency in sampling which will be the
basis of our study in the sequel. The statistic of distinct units T, plays a central
role in the study of suﬂiciency in sampling. It is rather easy to see, using con-
ditional probability distributions, that T, is a sufficient statistic. In a number

of special cases the sufficiency of T, was first noted by Basu [1] and Hajek [4].
In a general setting that includes sampling under arbitrary (generally sequential)
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sampling schemes as a special case, Basu and Ghosh [2] and Basu [3] have now
established the following results concerning sufficiency in sampling:

1. The notions of sufficient statistic, sufficient partitions and sufficient sub-
fields are all equivalent in the general framework of sample surveys.

2. Under the added assumption that for each j, 1 < j < N, Y; can take on
at least two different values for each set of possible values of the other Y’s, the
statistic T, is minimal sufficient, and a statistic T is sufficient if and only if for all
samples s,, 5, the equality T'(s,) = T(s,) implies T(s;) = T(s,)-

In 1965 partial results along these lines were first obtained by the writer and
submitted to the Annals of Mathematical Statistics. Specifically it was shown that
in nonsequential sampling schemes a partition of the sample space into blocks
(atoms) is sufficient if and only if the statistic T, remains constant over every
block of the partition, i.e., if samples s, and s, belong to the same block then
T(s,) = Ty(s,). As aconsequence of this characterization of sufficient partitions,
it was noted that under a very mild condition on the parameter space, the statis-
tic T, of distinct units together with their Y-values induces the minimal sufficient
partition. Publication of these results was delayed, and the results have now
been superseded by the more general and elegant results of [2] and [3].

We turn now to applications of the above-mentioned characterization of suf-
ficiency to unbiased estimation in fixed cost simple random sampling. We note
that since the minimal sufficient statistic T, given by (2.5) is a function of the
statistic 7,, given by (2.3), it follows from the preceding discussion that 7', is
also sufficient. In Theorem 2.1 below we derive an unbiased estimator of Z =
N-' ¥ Z, by starting from the unbiased estimator Z(X;) based on the first sample
unit X, and taking its conditional expectation given T',, (Rao-Blackwellization).
An estimator for the variance of the estimator for Z is obtained in a similar way.

THEOREM 2.1. In fixed cost simple random sampling, an unbiased estimator of
the population mean Z is given by
(2.6) Ziyoy = (M — 1)7 R0 Z(X)
where Z(X,) denotes the Z-characteristic of the ith sample unit. Further the variance
of Zy_y, is given by

1
NN — 1) B B = A

x[E[Ml_ 1’)(1: U, X, = Uj,]—i],

N
and an unbiased estimator of V(Z,,_,)) is given by

1 1>
M—1) (M 2)

(2.7) V(Z 1) =

@8)  oZuwa) = [ (Z(X) = Zua)']-
Proor. Clearly Z(X)) is an unbiased estimator of Z. We proceed to compute
its conditional expectation given T,,. Letk > 1, let U, - U, be (k +1)

lk’
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distinct population units and suppose that
TM = (k -+ 1, {Uil’ ey Uik}’ Ug)

is given. Then the conditional distribution of X; is easily seen to be concentrated
ontheset {U;, ---, U; }. By the symmetry of the cost function in {Up -5 U}
it follows that
1
PIX, = Uyl Tyl = oo = PIX = U, | Tl =
So

E[Z(X)| Ty = (k + 1, {Uy, -+, Uy}, U]

= - DHZ(U,) = (M — 1) £ Z(x)

is an unbiased estimator of Z.
We now derive (2.8). We note that if ¢(Z?) is an unbiased estimator of Z? then

(2.9) U Zyory) = Ziyoay — e(27)

is an unbiased estimator or ¥V(Z,_,,). Since

L =N Y2+ NN (Zein Z:Z;0)
t, = N7'Z(X,) + (N — 1)N7'Z(X))Z(X,)
is an unbiased estimator of Z2 based on the first two units. It therefore follows
that E[t,|T,] would be a reasonable unbiased estimator of Z2. It is easily seen
that
E[NT'Z(X)) + N7(N — )Z(X))Z(X,) | T]
1

(2° 10) = m DS Z(Xi)z
N =1 -1
VT - D=3 S 200
— 72 _ 1 __L 1 (M—1) N 7 2
= Zh = | oy~ ) i B 20 = Zac)

Substituting this expression for e(Z?) into (2.9) yields (2.8).
We now use (2.8) to deduce (2.7) as follows:

V(Z(M—l)) = E[v(Z(M—l))]

1 1
2.11 =FE|E|({—— —
-1 [ |:((M— 1) N>
1 WL (Z(X) — Z(X )T
X ST =Ty =3y D () — 20T ]
Since X, - - -, X,,_,, are interchangeable for a given M, (2.11) becomes
-y g g (2.11)
- 1 1
V(Zy-) = E‘:E I:((M _ l) - ‘N‘) %(Z(Xl) — Z(X,)? TM]]

- E[((M—I_T) — ) HE) -z
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Thus
> 1 1
Q1D VZua) = E[} Bl & = 20 (G705 — )
where a;;, = 1if X; = U; and X, = U;,, and = 0 otherwise. It is easily seen that
1
(2.13) Ela;;] = P[X, = U;, X, = U; ] = NN 1)
and

]

X, = U, X, = Uj,].

(2.14) E[(Ml_ l)a,.j,] - E[E[(Ml_ 5

1 E[ 1
N(N — 1) M —1)
Substituting (2.13) and (2.14) in (2.12), we obtain (2.7). []

REMARKS. (i) In a similar fashion it can be shown that

) 1

Sia-1n = (M —2) DEI(Z(X) — Zogoy)?

is an unbiased esitimator of the population variance $* give by (2.2).

(ii) The estimator Z, _,, considered here is inadmissible since it ignores the
last sample unit X,. Nonetheless the loss in efficiency should be small if M is
large. An estimator better than Z, _, would be E[Z(X))|{X,, ---, X,;}]. This
latter estimator does not have a simple expression, and is, consequently, of little
use in practice. It is, however, possible to construct a simple estimator better
than Z,_,, by conditioning Z(X,) with respect to the following statistic:

T* =T, if CX)+ ---+CX,)>L,
={X, - Xy} if CX)+ -+ + C(X,) = L.
Since T,, and {X], ..., X,,} are both sufficient, it follows from Theorem 5 ([5],
page 323) that T* is a sufficient statistic. It can be shown that
E[Z(X)|T*] = (M — )7 I 2(Xy)  if C(X) + - 4+ C(Xy) > L,
= M- 3, Z(X,) if C(X)+ - +CX,)=L.
Since T* is a function of T,
E[Z(X,)|T*] = E[E[Z(X) | T\ ]I T*] = E[Ziy-y) | T*] -

So E[Z(X,)| T*] is a better estimator than Z, _,,.

(ili) In a similar manner one can consider fixed cost sampling schemes in
situations where population units are selected by other sampling methods such
as sampling with unequal probabilities (with replacement), and multi-stage
sampling schemes, etc. The estimators of population parameters under their
fixed cost analogues will be similar to their corresponding estimators in fixed
sample size procedures. It is also possible to introduce fixed cost sampling when
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sampling is carried out from arbitrary probability distributions. We omit the
details for reasons of brevity.

(iv) It is remarked that the notion of cost of selection of units introduced in
this paper is quite general and does not necessarily have anything to do with
the actual cost of selection. For instance cost can be replaced by the amount
of time taken to select units or any other nonnegative index associated with the
units. Techniques analogous to those considered in this section can be used to
construct unbiased estimators of population parameter in these situations. For
illustration it is shown below that similar techniques apply to inverse sampling
with unequal probabilities.

Under inverse sampling with unequal probabilities, units are drawn sequen-
tially one-by-one with unequal probabilities (with replacement). The stopping
variable M is such that the sampling is stopped at M = (k + 1) if X,,, is the
first (n 4 1)st distinct unit, where n is a given positive integer. In this scheme
an unbiased estimator of the population total Z = 1., Z; is given by

_ 1
-1 = 7

(M —1)

I Z(X)[P(X)

where P(X;) is the probability of selection of X;. The derivation of this estimator
is analogous to that of the corresponding estimator Z,_,, of fixed cost simple
random sampling. For further details on inverse sampling the reader may refer
to the papers [6] and [7].
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