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A CONDITION UNDER WHICH THE PITMAN
AND BAHADUR APPROACHES TO
EFFICIENCY COINCIDE

By HARRY S. WIEAND
University of Pittsburgh

The approximate Bahadur efficiency and the Pitman efficiency for hy-
pothesis testing problems are considered. A theorem is stated and proved
which gives a condition under which the existence of the limiting (as the
alternative approaches the hypothesis) approximate Bahadur efficiency im-
plies the existence of the limiting (as the significance level approaches 0)
Pitman efficiency and the equality of the two limits. Several examples are
then given to show how the theorem may be used in computing previously
unknown limiting Pitman efficiencies using the Bahadur approach.

1. Introduction. In [3], Bahadur defined an exact and approximate measure
of efficiency between two sequences of statistics used to test the same hypothesis.
He showed that when two statistics had normal limiting distributions and satis-
fied a few minor restrictions, the limit of the approximate Bahadur efficiency (as
the alternative approached the hypothesis) was equal to the Pitman efficiency.

It generally is not possible to achieve this strong a result for statistics which
don’t have normal limiting distributions since the Pitman efficiencies may fail
to exist or may depend on the significance level («) and the power (8). How-
ever, in Section 3, a theorem is stated and proved which assures us that if two
sequences of statistics satisfy Bahadur’s conditions for the existence of the
approximate Bahadur efficiency and one new condition (III*), the existence of
the limiting (as the alternative approaches the hypothesis) approximate Bahadur
efficiency implies the existence of the limiting (as @ — 0) Pitman efficiency and
the equality of the two limits.

A useful application of the theorem is that it allows the computation of a
limiting exact Pitman efficiency using the approximate Bahadur efficiency (which
is generally easier to compute). In Sections 4 and 5, this procedure is carried
out for some specific cases. The ¢, Kolmogorov-Smirnov, and Cramér-von
Mises statistics are shown to satisfy Condition IIT* in Section 4. In Section 5,
two tables are given which permit the immediate computation of the limiting
Pitman efficiencies of several well-known statistics, including those mentioned
above, for location and scale alternatives.

2. Definitions. Consider a set of probability measures {P,, § ¢ Q} defined on
a space (X, 8). Let H be the hypothesis that § ¢ Q, where Q, is some subset of
Qand let {T,} be a sequence of real-valued statistics (based on a random sample
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of size N) defined on (X, 8). Bahadur (1960) defined {7} to be a standard se-
quence if the following three conditions are satisfied:

I. There exists a continuous probability distribution function F such that,
for each 0 ¢ Q, and x ¢ &, lim,_,, Py(Ty < x) = F(x).
II. There exists a constant a, 0 < a < oo, such that log (1 — F(x)) =
—(ax?/2)(1 4+ o(1)) where 0(1) —» 0 as x — oo.
III. There exists a real-valued function 5(f) on Q — Q,, with 0 < b(f) < oo,
such that, for each 8 ¢ Q — Q,,

limy_ ., Py(|(Ty/N¥) — b(0)] > x) =0 for every x> 0.
(If 6 € Q,, b(¢) = 0 by Condition I.)

Conditions I and III indicate that if T, is a standard sequence for a given
hypothesis, tests with a rejection region of (Ty > K) are intuitively reasonable.
In order to compare two tests based on standard sequences, Bahadur normalizes
the tests so that they both have the same limiting distributions under H,. For
any standard sequence he lets K, = —2log (1 — F(T)), then shows that K is
asymptotically distributed as a y? (2) random variable and notes that for 6 € @ —
Q,, (Ky/N) — ab¥0) in probability. He defines the approximate slope of the
sequence {7} to be ¢(f) = ab*@) and the approximate efficiency of two standard
sequences {T,V} to {T*} to be E,(0) = c¢,(8)/cy(6).

REMARK. When two standard sequences are to be compared, they will be de-
noted by {T,"} and {T,*®}. For symbols such as a,, b,(9), c,(6), N,, F,, and o,(1),
the subscript i refers to {T,'"}. E,(¢) will denote the approximate Bahadur
efficiency of {7y} to {T,**} when @ is the true parameter. ey,(«a, ) will represent
the Pitman efficiency of {T,,"} to {T,»} when both tests are of size « and power
B in the limit.

For the definition of Pitman efficiency we will use an extension to the concept
as defined in Fraser (1957). The extension will allow us to consider cases when
the Pitman efficiency as defined in Fraser fails to exist. Let {T,} and {T "}
be two sequences of statistics used to form tests of size « for testing H: 60 = 6,
versus A: 6 = 6; where 6, + 0,.

For 0 < 8 < 1 and sequences 0; — 6,, 8, —  and 8;® — B, we will define
N(i, j) to be the smallest integer with the property that for every N = N(i, j)

Py Ty > ') = B, i=1,2,j=1,2,.--,
where ¢, is determined by
P(,O(TN(“>2‘N(“)=0!, i=1,2,N=1,2,..-.

If there is randomization the definition is modified in the obvious manner.

In other words, N(i, j) is the first sample size to “guarantee” a power §3; for
all N = N(i, j), rather than just for N = N(i, j) which is the usual definition.
If the power increases with sample size, the two definitions are equivalent.
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We define the Pitman efficiency of the sequence 7, with respect to T,® by
en(a, f) = limj—wo N(Z, J)/N(l’ 7)

provided this limit exists and is independent of the choice of the sequences 0,
and B,. If this is not the case we let

en(a, ) = supy lim sup;_.. (N(2, ))/N(1, J))
en(a, B) = infiy liminf,_.. (N(2, j)/N(1, J)) -

Here sup,y, (inf),;;, represents the sup (inf) over all sequences {¢,}, {8;"}, {8;"*},
where 6; — 6 and B, — 8, i =1, 2.

and

3. Statement and proof of theorem. Throughout this section it will be assumed
that Q is an interval and Q, is a single point #, contained in Q, possibly as an
endpoint, i.e. we are testing H,: § = 6, and the alternative may be one- or two-
sided. In order to simplify the notation, we will let _#7(6,, 6*) refer to the inter-
val (6,, 6, + 6*) when dealing with one-sided alternatives and (6, — 0%, 6, + 0%*)
with @, deleted in the two-sided case.

We begin by defining

ConpitioN IIT*. Suppose for a standard sequence {7} there isa #* > 0, such
that for every ¢ > 0 and 6 € (0, 1), there is a C such that for all § € .#78,, 6%)
and N > (C/b*0)) we have

P|T[N* — b(6)] < <b(®)}) > 1 — o

Then T, is said to satisfy Condition III*. Note that in the above definition C
may depend on #* but is otherwise independent of 6.

On _77(8,, 6*), this condition is stronger than Bahadur’s Condition III since
it requires the convergence of T,/N* in probability to 5(¢) at a specified rate.
An immediate consequence is that if we verify Condition III* for a given func-
tion b(0) we will be verifying Bahadur’s Condition III simultaneously (locally).

THEOREM. [f {T "} and {T'®} are sequences of statistics such that

(1) {7y} and {T ¥} are standard sequences with F, and F, strictly increasing on
right tails,

(2) {TyV} and {T'®} satisfy Condition I11*,

(3) lim,_, b,(0) = 0 fori =1, 2, and

(4) lim,_, ([a,}b6,(0)]/[a,}b,(0)]) exists and is finite;

then for 8 bounded away from 0 or 1, we have (i) lim,_, E,(0) = lim,_,efy(a, f) =
lim,_, e (a, B) where the existence of the first limit implies that of the latter two,

and (i) lim,_, E(0) = lim,_, e,,(a, p) if e,(a, B) exists for all a in an interval of
the form (0, ).

REMARK. In the proof, it will only be necessary to consider one sequence
{Ty} initially, hence the subscript (superscript) i shall be dropped. We will de-
fine Fy(x) = Py (Ty < x) and let F,~' be any version of its inverse.
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Proor. For given numbers g ¢ (0, 1) and ¢ € (0, 1) and sequences §; — 6, and
8; — B, we will find bounds which will contain N; for large j, where N; is equi-
valent to the N(i, j) defined previously. The ratio of these bounds will converge
as a« — 0 and the result will follow.

Since € (0, 1), we can choose 6 > 0 and an integer j, such that for every
JZjo 0B, =1 -0, b(0;) <1 and ;e 770, 6*) with 6* as in Condition
IIT*. Take any fixed ¢ € (0, 1) and let C be as in Condition III*. Take x, >
2(C + 1)t such that F is strictly increasing on (x,, co) and that

1) zax’(l —e) < —log (1 — F(x)) < tax*(1 + ¢) for x = x,.

Define a* > 0 by 2a* = 1 — F(x,) and take any fixed a € (0, a*). Because of
Condition I and the strict monotonicity of F around F~'(1 — «a), there exists an
integer N’ > 1/e such that 1 — Fy(2(C + 1)}) > a* > a and

F7'(1 —a 1 FY(l —«a

(2) lh(—}-e—)éFN (l_a)év——l(_ie)

forall N > N’. Choose an integer j, = j, such that C/6%#,) = N’ for all j > j,.
It follows that for j > j, and N e (C/b*0;), C/b*(0;) + 1], the rejection region
(randomization included) of the level « test based on T, is contained in the
interval (2(C 4 1)}, co) which is a subset of (2b(6;)N?, co) because 26(0,)N* <
2(C + b%(0;)) = 2(C + 1)}, As0 < e < 1and B; = 6, Condition III* ensures
that the power of this test is strictly smaller than §; and hence that N; > N>
C/b%0;) = N' for all j = j,. This implies that for N = N, and 6 = 4, both the
estimate of Condition IIT* and (2) are applicable, provided j = j,. Hence the
requirements of level a and power §; imply that, for j > j,,

Fiia(l — @) 2 (1 — &)(N; — 1)6(0,) Z (1 — e)(N; — N, )b(6,)
= (1 — ¢)IN;ib(0;)
and
FR(l —a) = (1 4+ ¢)N2b(0;) < (1 + €)IN;2b(0;) ,
” (1 — &)IN(0,) < F(1 — a) < (1 + o)IN0(0,) ,
and, in view of (1),
(1= Vb0 5 (TEBLN < (1 4 pN 00,

or
—2loga

—2loga <N < _ —2loga
=S (U = eyare;)

(I + eyab¥(@;) =
Thus for every ¢ e (0, 1) there exists a* > 0 such that for every e (0, 1) and
every a € (0, a*)

L=V o(l) _ (e Y i, )
<1 — 6) lim,_, o) =< e(a, B) = ef(a, B) < (1—_—€> lim,_, ()

and the result follows.

IA
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4. Verification of Condition IIT*. In this section, three examples are given
to indicate how to verify that a particular statistic satisfies Condition III*.
Each of the examples will deal with the H,: X}, - .., X, i.i.d. with continuous
distribution functions H(x) versus 4: X,, --., X, i.i.d. with continuous distri-
bution functions Gy(x), ¢ > 6,, where § > 6, implies sup, (H(x) — G,(x)) > 0
and lim,_, + sup, (H(x) — Gy(x)) = 0.

The following lemma will be useful when considering the examples.

LEMMA. Suppose there is a family of sequences of statistics U,y , which satisfy
limy_, P{Uy 4 < 2z} = Q(2) for every real number z where Q is a continuous distri-
bution function and where the rate of convergence is independent of 0 in some neigh-
borhood, 4 (0, 8"), of 0,. Then given any ¢, > 0 and 6, € (0, 1), there isa C' such
that if 6 € 4(0,, 0"), b(0) <1 and N> C'[b*(0), then P,{|Uy 4[N} <&, b(0)} >1—0;,

ProOF. We select an M such that Q(e, M*) > 1 — 9,/4. We then choose a
C’ = M such that N > C' implies [P{U, 4, < ¢, M*} — Q(e, M?)| < 6,/4 for all
0 e 470, 0'). Then for @ satisfying b(0) <1, N > C'[b¥(0) = P,{U y 4 < e, M*} >
1 — 61/2=’P0{U(N,r7) < 51C,%} >1-—9,/2 ﬁP(){U(I\f,ﬁ)/]\'”} < elb(ﬁ)} >1-—4,/2.
Similar reasoning shows that M and C’ can be chosen such that N > C’ implies
Py{Uy, 9y > —eM?} > 1 — 6,/2 for 6 € 47(6,, §") which leads to P,{U,, ,/N* >
—¢&,6(0)} > 1 — 0,/2 and the result follows.

ExaMpLE 1. The first statistic to be considered will be the z-statistic, 7, =
N¥X — p)/Sy where Sy = [X (X, — X)*/(N — 1)]t. For this statistic it will be
assumed that G,(x) = H(x — 0), § xdH(x) = ¢ (known), { x*dH(x) — p* = o?
(possibly unknown), and 6, = 6. It is fairly clear that 5(f) = /s, but we want
to show that T, satisfies Condition III*.

To begin we choose a ¢’ such that #’/s < 1 and pick an ¢ >0 and a
0€(0,1). Letting Uy, = NH{X — (¢ + 6)]/Sy, O(z) = ®(z) where O(z) =
{2 (27)~t exp{—x*/2} dx, ¢, = ¢/2, and 6, = 6/4, we can apply the lemma to see
that there is a C’ such that ¢ < 6" and N > C’/b*(0) implies P,{|X — p — 6)/Sy| <
¢b(0)/2} > 1 — 6/4. Furthermore, since S, converges in probability to ¢ and is
independent of ¢, we know there is a C” such that N > C” implies P,{|Sy —
o|/(Syo) < ¢/(20)} > 1 — /4 for all §. Letting C* = max (C’, C")and * = ¢’,
we have 6 < 6* and N > C*/b*0)

— P{(X — 1 — 0)/Sy + 0o < eb(8)]2 + OJo} > 1 — 5[4

= PfX — 11)[Sy — 0(0 — Sy)/(06Sy) < eb(8)/2 + b(B)} > 1 — 3[4

= P{Ty[N* — (0]0)(¢[2) < eb(6)/2 + b(0)} > 1 — 32

= Py{Ty/N* — b(0) < ¢b(0)} > 1 — 5/2.
By similar reasoning, we have P,{|T,/N* — b(0)| < ¢b(#)} > 1 — 4, so Condition
III* is satisfied.

It should be noted that ““non-Studentized”’ -statistics also satisfy Condition III*
when ¢ is known. In this case S, is replaced by ¢ which simplifies the proof.
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ExAaMPLE 2. Let G (x) be the empirical distribution function, i.e., G »(x) is the
proportion of observations X, - --, X v Which are less than or equal to x. It is
known (Doob, 1949) that lim,,_, P,{N* sup, |G,(x) — Gy(x)| < z} = K(z) where

K(z) =1 =2 3»_ (— 1) exp{—2m*z%)

and that the rate of convergence is independent of ¢ (Darling, 1957). For the
Kolmogorov-Smirnov statistic (Ty = N* sup, (H(x) — G (x)), b(0) = sup, (H(x) —
G,(x)) (Bahadur, 1960). Lettinge, = ¢, §, = §/2, U, ,, = N* sup, |Gy(x) — Gy(x)|
and Q(z) = K(z), our lemma assures us that there is a C’ such that b(0) < 1 and
N > C'[b*(0) implies Py{sup, |G (x) — Gy(x)| < eb(0)} > 1 — §/2. If we choose
a 0* such that § e 470, 6*) implies 5(f) < 1 and let C = C’, then for 6 ¢
A(0,, 6*) and N > C/b*#) we have

Py{sup, (G,(x) — Gy(x)) + sup, (H(x) — G,(x)) < eb(f) + b(@B)} > 1 — 52
= Py{sup, (H(x) — Gy(x)) — b(f) < eb(0)} > 1 — §/2.

Similarly, we can show P,{sup, (H(x) — G(x)) — 5(6) > —eb(0)} > 1 — §/2 so
P{|Ty/N* — b(0)| < eb(6)} > 1 — § and Condition IIT* is satisfied.

ExaMPLE 3. The one sample Cramér-von Mises statistic is N | [G(x) —
H(x)]"dH(x) and to apply the Bahadur theory, we let Ty = [N { [G(x) —
H(x)]dH(x)]*. T, satisfies Condition IIT* with b(6) = [§ [G,(x) — H(x)] dH(x)]}.
To show this we again use the fact that if we choose a #* such that 6 € 4 (05, 6%)
implies 5(f) < 1 and an ¢ and ¢ such that 0 < ¢ < 1 and 0 < 6 < 1, there is a
Csuch that 6 € .77(6,, 6*) and N> C[b*(0) = P, {sup, |G, (x)— G ,(x)| < eb(0)/4} >
1 —4.

Since T',*/N=§ [G/(x)— Gy x)]* dH(x) +2 § [Gy(x)— G (x)][G ,(x)— H(x)|dH(x) -+
{ [Go(x) — H(x)PdH(x), we have T\}N — b(6) = § [G(x) — G,(x)] dH(x) +
2§ [Gy(x)— Go()N[G(x)— H(x)JAH(x) 50| TN —BY8)| < § [G y(x)— G (x)'dH(x) +
2§ |G (x) — Gy(x)] [Gy(x) — H(x)| dH(x) < sup, |Gy(x) — G,(x)] + 2 sup, |G y(x) —
Gy()|[§ [Go(x) — H(x)J dH(x)]* < sup, G y(x)—G,(x) '+ 2 5up, |G(x)— G,(x) - b(D).
But Py{sup, |G y(x) — G ,(x)|*+ 25up |G y(x) — G(x)| - b(0) < £2b%(6)/16 + 2:6%(0)/4} >
1 — ¢ which implies P,{|T*/[Nb*#)] — 1| < ¢} > 1 — 6 which shows that T,
satisfies Condition ITI*,

5. Computation of efficiencies. In this section, the theorem will be applied
to several statistics and the values required for the computation of the limiting
Pitman efficiency will be obtained. Location and scale alternatives will be con-
sidered. All the statistics discussed satisfy Condition III* for the appropriate
alternatives, although this will not be verified here since the techniques required
are similar to those of the previous section. More details appear in Wieand
(1975).

Table 1 lists values for “a” and 5%#) for each statistic which is to be discussed
in this section. The entries for the t-statistic and the Kolmogorov-Smirnov
statistic can be found in Bahadur (1960). The entries for the scale statistic
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TABLE 1
Slopes
Statistic a b2(6)

t 1 |6]2/0?
scale 1/72* |62 — 1|20
Kolmogorov-Smirnov (KS) 4 supy |Go(x) — H(x)|?
Kuiper 4 [supz (Go(x) — H(x)) — infy (Go(x) — H(x))]?
Cramér-von Mises (CVM)  z?2 S (Go(x) — H(x))2 dH(x)
Watson 4z? (§ (Go(x) — H(x)? dH(x) — [§ (Go(x) — H(x)) dH(x)]?)
Rényi d/(1 — d) supy@)>q (|Go(x) — H(x)|/H(x))?

* o2 = { x1dH(x) — o*

(Ty = NN, (XN — ¢%]) are implicit in his work. Abrahamson (1965,
1967) found the slopes of the Kuiper (7', = N* [sup, (G ,(x)— H(x))—inf, (G y(x)—
H(x))]), Watson (Ty* = N { [Gy(x) — H(x) — | (Gy(y) — H(y)) dH(y)]* dH(x)),
and Cramér-von Mises statistics. The slope of the Rényi statistic (T, =
N supy,sq [(H(X) — Gy(x))/H(x)]) has not been computed previously, but the
procedure is straightforward. To compute “a,” we note that the limiting distri-
bution of T, under H,is F(x) = 2®(kx) — 1 where k = (d/[1 — d])* (Johnson
and Kotz, 1970). Hence, lim,_[log (1 — F(x))/x*] = k*lim,__, [log (1 —
D(kx))/(k*x*)] = k*. The last equality follows from the fact that a = 1 for the
normal distribution (Bahadur, 1960). The expression for b(f) is an immediate
consequence of the definition.

We want to find lim,_, [c,(0)/c,(0)] where ¢,(d) and c,(0) are the slopes of
two different statistics. As it is more convenient to work with one statistic at
a time, we will first consider lim,_, [c(0)/6"] for location alternatives and
lim,_, [¢(6)/(1 — 6)*] for scale alternatives.

If H can be expanded in the form H(x — ) = H(x) — 6h(x) + o(0) for all x
where A(x) is a bounded density function, then the values of lim,_, (¢(6)/6%) for
location alternatives (G,(x) = H(x — 0)) are as shown in Table 2. The normal
distribution function ®(x) and the logistic distribution function L(x) = [1 +
exp(—x)]~* can be expanded in this way and are included in the table.

If we have scale alternatives, i.e. G,(x) = H(x/f), and H can be expanded in
the form H(x/0) = H(x) + x[(1 — 6)/0]h(x) + o(1 — 0) where xh(x) is bounded,
then the values of lim,_, [c(6)/(1 — 6)’] ate as shown in Table 3. Again ®(x) and
L(x) have this expansion and are included in the table.

The values listed in Tables 2 and 3 under general H(x) follow immediately
from the expansion of H. The calculations for values under H(x) = ®(x) and
H(x) = L(x) are more lengthy, particularly for the Rényi statistic, however they
are straightforward and have been omitted. More of the calculations required
appear in Wieand (1975).

The ratio of any two values in a column of one of the tables represents a
limiting (as 6 — 6,) approximate Bahadur efficiency, and by the theorem this is
also the limiting (as « — 0) Pitman efficiency. For example, to find the limiting
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TABLE 2

. c(f . .
limg—o % for location alternatives

limpoo 20)
Statistic 0
General H(x) H(x) = O(x) H(x) = £(x)
1 3
t ; 1 71.—2
KS 4 supy (h¥%(x)) % 1
Kuiper 4 supy (h%(x)) —:— 1
2
CVM 72§ B¥(x) dx 2—”3; 73L0
Watson 4x2[§ W(x) dx — (§ h¥x) dx)?] Lﬁ—ﬁ j{g
. 2 2, -1, d *
Rényi %1 SUPH (z)>d % q%(ll)__'%;_;) d(l1 —d)
* g(x) = D'(x)
TABLE 3
limg—., ?1%@0? for scale alternatives
o limg-1 (e(8)/(1 — 6)?)
Statistic
General H(x) H(x) = ®(x) H(x) = Z(x)
scale g'4/z2 2 1.25
KS 4 supg | x2h%(x)| 2/(ne) .200
Kuiper 4(sups [xA(x)] — inf; [xA(x)])? 8/ze .802
CVM 72 § x2h3(x) dx 347/18 .26*
Watson 4n%(§ x2h¥(x) — [§ xh3(x) dx]?) 2-3%x/9 1.04
Rényi [d/(1 — d)] sups z)>a [xh(x)/H(x)]? .087d/(1 — d) .0775d/(1 — d)
(.38 < d < .719) (.39 < d < .78)
(P [D-Xd)])?

A= d) d(1 — d)In? (d/[1 — d])
(d< .38o0rd>.79 (d<.390rd>.78)

* A computer program, run at the Computer Center of the University of Pittsburgh, was
used in obtaining this value.

Pitman efficiency of the Kolmogorov-Smirnov statistic relative to the Cramér—
von Mises statistic for general scale alternatives, we divide 4 sup, |x*4*(x)| by
=* § x*h%(x) dx. To find the same efficiency for normal scale alternatives (G,(x) =
@(x/6)) we divide 2/me by 3ir/18 and obtain 36/(3%x%) or .77.

6. Comments. Although the tables were constructed using the one-sided,
one-sample problem, the efficiencies are the same in the two-sample and/or
two-sided case with the appropriate form of the statistic (Wieand, 1974).

It should be noted that Capon (1965) found bounds for the Pitman efficiency
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of the one-sample Kolmogorov-Smirnov statistic relative to the r-statistic which
are close (as a@ — 0) to the values we obtain from the tables. Yu (1971) found
bounds in the two-sample version of the same efficiency, but his bounds do not
close, hence cannot be “sharp.” None of the other pairs of statistics has known
bounds for the Pitman efficiency, hence the theorem is required to get even the
limiting Pitman efficiency.
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