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POWER BOUNDS FOR A SMIRNOV STATISTIC IN TESTING
THE HYPOTHESIS OF SYMMETRY

By HirA LAL KouL AND R. G. STAUDTE, JR.

Michigan State University and La Trobe University

Lower and upper bounds on the power of a Smirnov test for symmetry
Hy: F = Fversus Hy: F z F, sup, [F(x) — F(x)] = A > 0 are obtained ex-
actly or estimated for selected values of sample size ¥, level a, and asym-
metry A. Furthermore the asymptotic power of the test as NtAy — ¢ is
shown to be bounded by ®(c — k,) and 1 if ¢ = k, and by « and 2{(c — £a)
if ¢ < ka, where k, is the critical point. These bounds compare favorably
in some respects with those of the Wilcoxon and other monotone rank tests
studied in ‘‘Power bounds and asymptotic minimax results for one-sample
rank tests,”” Ann. Math. Statist. 42 12-35.

1. Introduction. Let Q be the class of continuous cdf’s and for each F in Q
let F(x) = 1 — F(—x). On the basis of random sample X;, . . ., X, from F in Q,
test the hypothesis of symmetry H,: F = F against alternatives H,: F(x) = F(x)
for all x, F # F. Since the Kolmogorov distance of F from the symmetric class
{F = F} is } sup, |F(x) — F(x)|, it is natural to measure the asymmetry of F in
H, by sup, [F(x) — F(x)] and just as natural to test H, versus H; with

(L.1) byt =1 if Ayt = Nsup,[Fy(x) — Fy(®)] 2 ko
=0 if Azt<k,,

where Fy, is the empirical distribution function. The test (1.1) was proposed in
1969 [2] by C. Butler, who observed that the null distribution of A4,* was that
of the maximum abscissae of an unrestricted symmetric random walk. A similar
test based on the statistic

(1.2) Nsup, [Fy(x) — Fy(x) + 1 — 2F4(0)]

(which has the same null distribution as (1.1)) was proposed by N. V. Smirnov
[9] in 1947.

In 1971 Doksum and Thompson [3] defined classes of alternatives Q(A) =
{F; FeQ, F > F,sup, [F(x) — F(x)] = A} and Q(A) = {F; Fe Q, sup, |F(x) —
F(x)| < A}. They then showed that for monotone rank tests ¢, inf {E,¢; Fe
QA)} = inf{E, ,$;0<a<1— A}and sup {E,¢; Fe Q(A)} = E,¢ where E, ,
and E, are expectations taken with respect to specific distributions F, , and G,
on [—1, 1], respectively. We refer the reader to [3] for further details.

In this work we study the power bounds of the test ¢,* for the above de-
scribed symmetry problem. In Section 2 we point out a simple criterion for
determining whether or not a rank test is monotone; the monotonicity of ¢,*
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follows trivially. Then we obtain an easily computable expression for the maxi-
mum power sUp..gu Ez$y". In Section 3 Monte Carlo estimates of the lower
bounds E, ,4,* are presented for selected values of N, A, a and a.

The asymptotic power bounds of ¢,* are studied in Section 4. We show that
for sequences {A,} with NtAy, —c, 0 < ¢ < oo, limy_ ., SUPsegay,) Erfn® =
min {2@(c — k,), 1} where @ is the standard normal distribution function and
®(—k,) = a/2. Moreover lim,_,, infy.q.,, Ex$y* is approximately ®(c — k,) if
¢ = k, and equal to « if ¢ < k,. These bounds are compared with those of the
linear rank tests studied in [3] (see Remark 4.7). Finally we observe (Corollary
4.8) that in the smaller problem where it is known that inf, g, E;® = E;, ¢ the
asymptotic minimum power of ¢,* is approximately ®(c — k,) for all sequences
NtA, —¢, 0 £ ¢ < co. This smaller problem contains both the location shift
of a symmetric unimodal distribution and Lehmann’s alternatives as special cases.

2. Theoretical results for finite samples. First we show that ¢,* is a mono-
tone rank test, and then we derive an explicit expression for its maximum power
against members of Q(A).

A real-valued function f will be called monotone (with respect to a partial order-
ing < of its domain), if for all a, b the relation a < b implies f(a) < f(b). A test
function ¢ (any measurable map of the sample space 2°= E¥ into [0, 1]) is
called monotone if it is monotone with respect to the ordering on .27 defined by

x<yif x; <y, fori=1,...,N. ¢ is a one-sample rank test if ¢ may be
written as a composition ¢ o V; the map V: 27— 2% is defined by V(x) = v =
(v, - -+, Vy), where v, = 1 or 0 depending on whether the ith smallest in absolute

value observation is positive or negative. Monotone rank tests have the desir-
able property of. unbiasedness, (Corollary 2.1, [3]). The following proposition
provides a criterion for determining the monotonicity of a rank test ¢.

ProrosITION 2.1. Order 2% by v < w if and only if 3., v, < 3%, w, for
J=1,--+,N. Arank test $ = ¢ o V is monotone on 2 if and only if ¢ is mono-
tone on 2%,

Proor. Let r;* and s;* denote the absolute ranks, respectively, of x, within
x and y, within y. Then
2450 = Ll H{nt = jH{x, = 0}
= i st =z jH{ye = 0)
:Z?;jwi for ]:1,,N
Thus the monotonicity of ¢ implies that of ¢.
To prove the converse, let v < w. Define
X, = (=1, Vi = i(—1)"e, i=1,...,N.
Then v = V(x,.,), w = V(y,.,) where Xx,., is the order statistic of x. Moreover,

v < w implies

2.1) Zitd{xy, =2 ) S 2 Ky, =} j=1,---,N



926 HIRA LAL KOUL AND R. G. STAUDTE, JR.

which in turn implies that for each positive x,, X4 < yu. Also, v < w implies

(2.2) Lililixy, = =}z 2w = -} j=1--- N
which can be used to show x, < y,, for each negative y,. It follows that
x(.) < )., and the monotonicity of ¢ implies that of ¢.

RemMARK 2.2. In 1959 I. R. Savage [8] showed that if a parametric family
F(x; 0) has densities f{x; 6) statisfying certain regularity conditions then under
alternatives (¢ > 0) to the hypothesis of symmetry (§ = 0) the vectors v < w,
v # w, satisfy Py(V(X) = v) < P(V(X) = w).

COROLLARY 2.3. The rank test ¢+ defined by (1.1) is monotone.

Proor. Observe that ¢+ = ¢+ o V, where

gr=1 if max,g; [25 v, — )] = &,
=0 if max, g v [2X; v, — D] < k,.
and apply Proposition 2.1.

REMARK 2.4. The corresponding test based on (1.2) is nor monotone since
(1.2) may be written ¢ o V" where ¢(v) = max,_;_, [2i_, (2v; — 1)]. If N=5,
v=(11110)andw=(01111), thenv < w but ¢(v) > ¢(w).

We now determine the upper bound on E,¢* for F in Q(A) defined in [3].

PROPOSITION 2.5 Assume ¢* is defined by (1.1), where k, is of the form N —
2M — 1, M integral. Then
(i) a=2"%3" (¥)and
s N(ilk) SUPrea Ep ¢t = ks (NAH(1—8)" 25" 0, (74 + D, ()AH(1—
)(iii) If ko is of the form N — 2M, M integral, then (i) and (ii) remain true when
Foo (57) is replaced by T (Y7¥) + (Vi)
Proor. (i) Under the null hypothesis of symmetry P{A,*=x}=2-"[( .Y, )+

(ww+4%1,2) Where () is zero unless k is integral in [0, N], (page 2210, [2]). The
result follows immediately by simple computation.

(ii) According to Corollary 2.2 of [3] and Corollary 2.3 above
(2.3) SUPrea Epd™ = Liso (DAL — B)Y-*A(¢+, N, k)2+-¥

where A(¢*, N, k) = number of vectors v in 2% which have v, = 1, i = N,
N—1,...,N—k + 1 and which lead to rejection. If k > k,, A(¢*, N, k) =
2%~k since A,* > k.

If0 < k < k,, A(p*, N, k) = number of vectors in the critical region of a ¢+
test based on N — k observations and having critical point k, — k; to see this

observe that conditionalon v, = 1,i=N—k -+ 1, ...N,
Ayt = max {k, k + max,g;cy-r i (2, — 1)}
= max {k, k + 4}_,},

where Aj_, is based on the remaining N — k observations. Thus when it is
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known that v, =1, i=N—-k + 1, ..., N, A,* =k, if and only if 4}_, =

k, — k. We conclude by part (i) that A(¢*, N, k) = 2 312, (¥;*) and the proof

of (ii) is complete upon substitution of these values for A(¢*, N, k) into (2.3).
(iii) The proof of (iii) follows the pattern of (i) and (ii) and will be omitted.

3. Computational results. In this section we first present numerical bounds
on the power of ¢,* which can be compared with the bounds for the Wilcoxon
and other tests studied in [3]. Then we examine the power of ¢,* against the
least favorable (see page 16, [3]) distributions F, ,,0<a <1 — A, for se-
quences {A,} suggested by the asymptotic results in Section 4 below.

The expressson for the maximum power E;, ¢,* obtained analytically in the
previous section (Proposition 2.5) is easily computed for given values of N, a and
A; see Tables 3.1 and 3.2 for examples. The minimum power inf, g, Ep¢y" =
inf_,.,_, E, .5 (by Theorem 2.1 of [3] and Corollary 2.3 above) where E, ,
denotes integration with respect to F, ,,0 < a < 1 — A. The integrals E, ,¢,*
were analytically intractable, so we obtained Monte Carlo estimates of them
using the techniques described at the end of this section. The choices a = 0 and
a = 1 — A are suggested by the asymptotic results. A comparison of the bounds
in Tables 3.1 and 3.2 with the corresponding bounds on the Wilcoxon and other
tests considered in Tables 2.2-2.6, [3], reveals that while ¢,* may have smaller
maximum power it also has greater minimum power than the latter, markedly
so for larger values of A (see also Remark 4.7). In Table 3.1 and 3.2, ¢,* =
1, r, or 0 depending on whether 4, is greater than, equal to, or less than k,.

TABLE 3.1
Performance of ¢n* for N = 10
A
0 1 2 3 4 5 75

a=.01
ke=38 supreda) Ergnt 0223 0453 .0866 .1555 .2623 .7022
7=.824 Esqpnt for a=0 .009 018 .038 .062 .134 222 .58

= .010 .011 016 .019 .039 .042

=3 .010 .006 .011 .013 .027 .043

=1-A 007 .011 .013 .007 .016 .043(.047)*
a = .05
ko =16 suprea) Ergnt 0961 .1711 .2828 4312 .6027 9431
7=.649 Erapnt for a=0 .051 .081 .130 .193 311 431 .780

= 052 .063 .091 .127 .197 .300

=3 051 .053 .063 .010 .175 .300

=1—-A 047 .045 .067 .075 .135 .300(.305)
a=.10
ka=5 supreaa) Ergnt 1830 3069 .4679 .6432 .8002 .9881
7 =.787 Eppnt for a=0 .098 .116 .184 261 .392 .526 .875

=A 098 125 162 .254 373 582

=3% 100,109 .124 215 353 .559

=1-—A .09 .098 .110 .179 .323 .559(.571)

* Values in parentheses are exact values (to three places) for g = A=.5,
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TABLE 3.2
Performance of ¢n* for N = 20
A
0 1 2 3 4 5 75

a=.01
ko =11 supreia) Ergnt .0323 .0883 .2063 .4070 .622 9919
7=.607 Eaq.¢n* for a=0 012 .019 .062 .118 .237 .429 .897

=A 011 022 .037 .081 .166 .349

=4 010 .016 .017 .049 .143 .349

=1-A 012 .013 .009 .018 .107 .349(.349)
a = .05
ko =38 suprefia) EFgn* .1280 .2789 .5078 .7515 .9177 .9998
r=.233 a=0 057 .080 .147 293 471 .659 976

=A 057  .077 147 261 470 .781

=% .057 .057 .098 220 455 .781

=1-A 049 049 .061 .160 439 .771(.776)
a =.
ka=1 supregia) Ergnt 2177 4413 6925 .8836 .9723 .9999
7 = .586 a=20 099 136 253 418 616 .787 .99

=A 099 132 221 413 647 911

=13 101 112 182 377 655 915

=1—-A .09 .104 .153 .343 .685 .915(.911)

Table 3.3 below contains Monte Carlo estimates of the power §,(a) = E, o
of the level .05 test ¢,* for 0 <a < 1 — A, and A, = (1.96)N~#- These esti-
mates are to be compared with §(a) = lim,s,, ., 8y(a) obtained in Proposition
4.3, where ¢ equals the asymptotic critical point 1.96.

In Tables 3.4 and 3.5 the level is still .05 but the alternatives {A,} approach
0 through “small” and “large” sequences, respectively. In the first case N*A, =
1.46; in the second N*A, = 2.46. Again, the limiting power §(a) is displayed
for comparison. Note that in all three tables for N > 20 most values of 8,(a)
exceed the asymptotic value and appear to converge down to it. This suggests
that the asymptotic power B(a), 0 < a < 1, is a conservative lower bound on
the power of ¢,* for all F in Q(A,), N = 20.

TABLE 3.3
Bn(a) for « = .05, NtAy = 1.96

a

0 05 .1 a5 2 25 3 35 4 45 5 55 6 65 .1 .75

N

10 597 .586 .593 .595 .603 .589 .605 .586

20 .538 .557 .562 .569 .562 .578 .576 .585 .577 .580 .594 .585

30 530 .539 .546 .529 .562 .557 .556 .555 .571 .563 .571 .571 .574

40 .547 .528 .523 .535 .540 .539 .527 .539 .548 .556 .559 .551 .539 .553

100 529 533 532 .561
co* .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .501 .501 .502 .503 .504

* The asymptotic power 8(a) is computed by the method described in Remark 4.5 below.
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TABLE 3.4
Bn(a) for a = .05, NtAy = 1.46

a
N
0 05 .1 .15 2 25 3 .35 4 45 5 55 6 .65 .7 .75
10 376 .360 .352 .334 .324 .321 .309 .285 .273 .260 .248
20 .325 .333 .343 .333 .336 .319 .319 .308 .311 .299 .281 .255 .243 .224
30 326 .332 .321 .312 .322 .324 .317 .309 .273 .291 .262 .261 .242 .232 .212
40 332 .312 .320 .314 .313 .313 .299 .289 .294 .295 .270 .259 .236 .214 .212 .177
100 329 299 273 .188
0 309 .304 .298 .295 .289 .283 .281 .270 .262 .257 .246 .236 .229 .217 .198 .179
TABLE 3.5
Bn(a) for a = .05, NtAn = 2.46
a
N
0O 05 .1 .15 2 25 3 .35 4 45 5 55 6 .65 .7 .15
10 .827 .845 .865 .889 .894
20 760 777 .789 .792 .824 .827 .838 .358 .852
30 .734 756 .762 .763 .783 .785 .800 .810 .817 .833 .855 .885
40 743 739 .754 .759 .765 .764 .790 .799 .804 .812 .828 .848 .877
100 718 .746 .813 .898
) 692 .696 .701 .706 .712 .718 .725 .732 .741 .750 .760 .772 .785 .801 .819 .841

In order to obtain the Monte Carlo estimates presented above, we used the
antithetic method suggested by Hammersley and Hanscomb [4]. The details of
our application follow.

IfU = (U, ---, U,) is a vector of i.i.d. uniform (0, 1) variables and X =
(X, -+ +» Xy), where X, = F;3(U,), we may write ¢(U) = ¢(X). LetU,U,, ---,
U, be independent vectors, each distributed as U. Then an unbiased estimator
ofp=Ey, $1is

7 [¢(UJ) + ¢(1 - U])] Where 1= (1, cee, 1) .

1
P= 5, L=

This estimator has variance

Varp=PL 1 T=P  where r= E[$(U,)1 — U],
2n 2n
so that if r < p? the estimator p (which requires » samples and 2n computations)
has smaller variance than the crude Monte Carlo estimate (1/2n) 2%, ¢(U;)
based on 2n samples and 2n computations. Since it is necessary that r =
max {2p — 1, 0}, the optimal estimate obtains when r = max {2p — 1, 0}. It is
easily checked that under this condition, Varp < 1/16n, 0 < p < 1. In our
application of this technique we generated n = 1000 samples so that optimally
o3 < .008. In fact the sample standard deviation &; was less than .01 for all
estimates obtained above. The uniform (0, 1) observations were generated (on
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the Michigan State University CDC 6500) by a linear congruential generator:
U, ., =cU, mod (2*) where ¢ = 553645 and U, = 1,274,321,477,413,155 (base 8).

4. Asymptotic power bounds for ¢*. Throughout this section ¢,* will denote
the test of asymptotic level a which rejects H, when N# sup, [F(x) — Fy(x)] =
k.. Also, E, , and E, will denote expectations with respect to F, , and G, defined
on page 16, [3]. We determine the asymptotic power of ¢,* against appropriate
sequences {F, .} and {G,,} in terms of standard Brownian motion W on [0, 1]
and then in terms of the standard normal distribution function ®. Then we find
the asymptotic minimum power limy_, inf, g, Ex@n*-

Assume {A,} satisfies

4.1) 0< N, —>c, forsome 0<c< .
Define k = k, = —®7'(a/2),
(4.2) (@) = Esyofn* 0<a<1-A,,
B(a) = P{sup, [W(x) + cly_o)(¥)] 2 k}, 0=a<l,
and extend 8 by continuity:
A(l) = lim, , f(a) = 1 ¢ >k
_a+1 =k
2
= a c<k.

Unless otherwise specified, all supremum are taken over 0 < x < 1 and all
limits are taken as N — oo.

PRrOPOSITION 4.1. Let {Ay} satisfy (4.1). Then
(i) the limiting upper bound on the power is
lim E, ¢+ = P{sup W(x) = k — c};

(ii) if {ay} is any sequence satisfying 0 < ay < 1 — Ay and ay — a, then for
0 < a < 1 and for a = 1 when ¢ + k, the limiting power against the least favorable
{Fuyay} s

lim By(ay) = p(a) -

ProoF. Let F represent F,, , or G, and define ¢, = Ni[F — F]and Z, =
Ni(Fy — Fy) — pyon[0, 1]. It can be shown, using e.g., Lemma 2.3 of [6] and
the simple structure of {Z,}, that Z,(+) = W(1 — ) where W is a standard
Brownian motion on [0, 1] with continuous sample paths.

To prove (ii), note that By(ay) = P{sup [Zy(x) + px(x)] = k}, Where

ux(x) = N¥ Ay — |x —ay]), |x —ay <Ay
=0 |x —ay| > Ay.

For any » > 0 and N sufficiently large

(4.3) (€ = Diap(*) = pv(%) = (€ + Dltampaien(¥) -
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The right-hand inequality of (4.3) implies that eventually

By(ay) < P{sup [Zy(x) + (¢ + Diaeyasn(*)] = K} .
But this bound converges to

(4.4) Plsup [W(1 — X) + (¢ + Da—p,arn(¥)] Z K}
since the map Z(+) — sup [Z(x) + (¢ + 7)I(x)] is continuous in the sup metric
and Z, — W (see Chapter 13, [1]). Similarly the lower bound on z,, from (4.3)
implies that 8,(ay) is bounded below by a sequence converging to
(4.5) P{sup [W(1 — %) + (¢ — (9] Z k) .
The continuity of W implies that the limiting bounds (4.4) and (4.5) are arbi-
trarily close for » arbitrarily small (except when both @ = 1 and ¢ = k), and
(ii) follows.

The proof of (i) proceeds in the same way, where now F = G, and

up(x) = NtA,, 0=Zx<1 — Ay,
=1—-x, 1—-A,<x<1.
REMARK 4.2. While the above proof of (ii) fails for the case ¢ = k,a =1,

one can still obtain a useful lower bound on the limiting minimum power when
¢ = k; see Proposition 4.6 (iii).

ProrosITION 4.3.

(i) P{sup, W(x) = k — ¢} = min 2®(c — k), 1}.

(ii) For0Za< 1,

| pla) = 1O+ R(1L = a)) — O(c — )1 — @) )]
Otk — o)1 —a)7h)]
X § [2@ (";M) _ 1] 4O (x)

a

where t = (k — c)(1 — a)~%.

Proor oF (ii). For any real k,

1 — B(a) = P{supyg,<; [W(x) + ¢lo)(¥)] < &}
=PUZLk, X<k —c, VLK),

where )

U = supycocio W(x), X=W(l -a), and V = sup,_ec.c1 W(X) .
The Markov property of the process implies that
(4.6) 1—ﬁ(a)=P{Uék’Xé;f{;;}i{':f}k’Xé"—C}.
In problem (2), page 181, [5], one derives the joint density of U and X to be

I - (x|

exp[—(2u — x)*/2(1 — a)] x=2uz0.
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Fork = ¢
PUS Kk XSk —c) = (5 {2 fy o ) dudx + §h_, §528 fy (0, x) du dx
which upon substitution of r = (2u — x)*/(1 — a) yields

(4.8) P{ng,ng_c}=q><(l"j':)a>_¢<(li:_§)_a>.

The case k < ¢ is simpler and also leads to (4.8). The joint density of V" and X
is derived from (4.7) using the spatial homogeneity of the process; it is

4.9) fr.x(v,x) = —(a(l——{a))*; exp —[((v — x)¥2a + x3/2(1 —a)], x=wv.
Thus
4.10) PV <k X<k—c}= |hzo-ot [2@ (’i:_’ig—_“)f> - l]dd)(x) .

Combining (4.6), (4.8), and (4.10) we obtain the exact expression for 8(a). The
proof of (i) is on page 276, [5].

REMARK 4.4. We have the useful bounds (obtained by taking obvious lower
and upper bounds on the integrand in (4.10)).

(4.11) [cp (UC:—:)J + @((:12527’:)]

<0 =1 [20(5) ~1][o(LEE) —o(£=L)]

for 0<a<1.

A quick estimate of §(a) is implied by these bounds, namely ®((c — k)/(1 — a)?) +
D((—c — k)/(1 — a)?) or even simply O((c — k)/(1 — a)?).

REMARK 4.5. The exact value of 8(a), 0 < a < 1, can be obtained with the
aid of a table of the bivariate normal distribution (8.5, page 184 [7], say). For
we may write the integral

k — x(1 — a)t
at

gzt @ ) d()

in the form

k—
(1 —a)t
where Z,, Z,, Z, each have marginal distribution @, Z,, Z, are independent; and
Cov (Z,, Z;) = (1 — a)t.
In many applications the point “a” is not given (see Corollary 4.8 for an ex-
ception) so that we need to consider the global behavior of f(a), 0 < a < 1.
Insofar as p(a) is approximately @((c — k)/(1 — a)}) (see Remark 4.4), we may

p{042+(1_a)42< }:P{Zagk,zzg k_c}

(1 —a))’
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say that S(a) is monotone increasing, constant, or decreasing depending on
whether ¢ (and hence NtA,) is large, equal or small relative to the critical
point k.

The asymptotic minimum power is found in the next proposition.

Let 8, f, and 8* denote respectively the liminf, limsup and limit of inf {E, ¢, * :
FeQ(A,)).

PROPOSITION 4.6. Let {Ay} satisfy (4.1). Then for c + k, f* = inf,_,,3(a), and
Sfurthermore

() ifc<k, p* = a;
(ii) if ¢ >k, Dc — k) < p* < B(c — k) + D(—c — k);
(i) ife=k b <p<p=h+ D(—2k).

Proor. By Theorem 2.1, [3], and Corollary 2.3 above, it suffices to consider
the limiting behavior of inf,.,_,_,, y(a). This quantity equals inf,_,_, B(a) in
the limit if

(4.12) SUPo<as1-ay |Bx(a) — B(a)] — 0.

But if (4.12) fails, the continuity of 8, — finae[0, 1 — A,] implies there exists
7 > 0 and a convergent subsequence a,, — a, 0 < a < 1, such that |By(ay) —
B(ay)| = 7 for all M. But in view of Proposition 4.1 (ii) and the continuity of
B this is not possible. Thus for ¢ + k, * = inf,_,_, f(a).

To see (i), note that for ¢ < k, §(1) = a. Moreover, it follows from Corollary
2.1 of [3] and Corollary 2.3 above that ¢,* is unbiased, so * = a.

When ¢ > k (case (ii)), f(a) is bounded below (see (4.11)) by the monotone
increasing function @((c — k)/(1 — a)t)of a,0 < a < 1, so that g* > D(c — k).
Since p* = infy.,, f(a) < B(0) = O(c — k) + ®(—c — k), the result follows.

In case (iii), ¢ = k, § = lim sup infoc,ciay By(a) < lim sup B,(0) = B(0) by
Proposition 4.1 (ii). On the other hand, for any sequence 0 < a, < 1 — A ¥

By(ay) = P{sup[Zy(x) + eI\, ,(x)] = ¢}
Z P{Zy(ay) 2 0} — %

since Z (ay)/(Var Zy(ay))t is a normalized sum of i.i.d. random variables which
satisfies the Lindeberg-Feller condition. Hence

@ = lim infoéaNél_AN Bu(ay) = 1.

REMARK 4.7. From Proposition 4.6 we conclude that for sufficiently large N,
inf{E.¢,*; FeQ(Ay)} behaves like « when NtA, < k, = —z,,,and has a lower
bound ®(N:A, + z,,), when NtA, > —z,,.

By way of comparison, Lemma 4.1 and Theorem 4.1 of [3] show that for
sufficiently large N the asymptotic minimax test ¢(A) defined by (4.8) of [3] has
inf{E,$(8); FeQ(Ay)} = ®(3N)*A,* + z,). For NtA, < —z,, and N large,
both tests have power near a; for N*Ay > —z,, and N large, the lower bound
of the minimum power of ¢,* is greater than the minimum power of ¢(A) when
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NA, + z,,, = (3N)}A,* + z,. Solving this quadratic in Ay, we find ¢, * superior
to ¢(Ay) on the interval (2-3%)~' [1 + {1 — 4(3/N)¥(z, — z,,)}}] which ap-
proaches the interval [0, (3)] as N — oo.

If we compare these same two tests in terms of Pitman’s efficiency, we find
because of the differences in rates that as Ay — 0, ¢, is infinitely more efficient
than ¢(4A,).

In the previous discussion it has been assumed that the point “a” is unknown,
but there are important statistical problems for which it is known that 2 = 0 and
then the following corollary may be useful.

COROLLARY 4.8. Let Qy(A) denote the subclass of Q(A) for which
(4.13) sup, [F(x) — F(x)] = F(0) — F(0), Fe Q(A).
Then for any sequence {Ay} satisfying (4.1) we have

(4.14) lim,_,., ianeQO(AN) Epdy*
=®c —k)+ O(—c — k), k=—0Ya/2).

Proor. If X has distribution F, satisfying (4.13) then Y = F,(X) — Fy(—X)
has distribution function F, also satisfying (4.13). Thus by Lemma 2.2 and the
proof of Theorem 2.1 ([3]), for any monotone rank test ¢, infeeq ) Ep® = Ey 9.
In particular (4.14) follows from Proposition 4.1 above.

This corollary provides a lower bound on the asymptotic minimum power

of ¢,* in any problem for which the alternatives to symmetry form a subclass
of Qy(A), A > 0.

ExAMPLE 4.9. Let Q, = {F,e Q: F)(x) = F(x — ) where § = Oand F has a
symmeric unimodal density}. The testing problem H;: § = 0 versus H,;: 6 > 0
falls within the symmetry problem described in Section 1. Ona may easily check
that A = sup, [Fy(x) — Fy(x)] = Fy(0) — F,(0) = 2F(0) — 1 so Q,(A) c Qy(A);
by Corollary 4.8, infy.q, ., 5+ is bounded below by ®(c — k,) for N*A, ap-
proaching c.

ExAMPLE 4.10. Let Q, = {F, e Q: F)(x) = F’(x) where § > 1 and F is sym-
metric}. Then for testing H,: # = 1 versus H;: 6 > 1 we find Q,(A) c Q(d),
A = sup [Fy(x) — F)(x)] = 1 — 2F°(0) and so again ®(c — k,) provides an
asymptotic lower bound on the power. -
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