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INVARIANT QUADRATIC UNBIASED ESTIMATION
FOR TWO VARIANCE COMPONENTS
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Oregon State University

For a normally distributed mixed model with two unknown variance
components ¢; and ¢z, a tractable characterization is given for the admissi-
ble estimators within the class _# of invariant quadratic unbiased esti-
mators for 0101 + 020.. Here the term admissible is used with reference
only to the class 5. This characterization is based on a result for general
linear models which characterizes the admissible estimators within the
class of linear unbiased estimators. The admissibility of MINQUE esti-
mators and the usual analysis of variance estimators is considered.

1. Introduction and summary. Unbiased quadratic estimation of variance
components has received considerable attention in the literature. For example,
see Searle [11] for a review of the literature prior to 1970 and more recently
see Rao [7, 8] where the MINQUE (MInimum Norm Quadratic Unbiased Esti-
mation) theory is developed. Although quadratic unbiased estimators can have
serious drawbacks such as negative estimates, they are still the most commonly
employed variance component estimators. In this paper a class of quadratic
unbiased estimators which are invariant under a natural translation group is
investigated. For this class of estimators the minimal complete class is charac-
terized for a mixed model having two unknown variance components. We give
a very tractable characterization of the minimal complete class; but we have
not attempted, except in one special case, to recommend any one particular
estimator. However, our results constitute the starting point for any further
such investigation. Additionally, our results provide a routine check which any
proposed invariant quadratic unbiased estimator should pass, i.e., it should be-
long to the minimal complete class. In this regard we have found that the
MINQUE estimators are in, but do not exhaust, the minimal complete class;
whereas in many circumstances the usual analysis of variance (Henderson III)
estimator for the random “block” effect variance component is not a member
of the minimal complete class.

Our underlying concern is to answer the question of which variance compo-
nent estimators are admissible when attention is restricted to the class of in-
variant quadratic unbiased estimators. Our basic theoretical results, however,
are not confined to this question and are stated in terms of linear unbiased
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estimators in a very general linear model framework. These results are given
in Section 3 (see Proposition 3.3 and Corollary 3.7) and are completely inde-
pendent of, although motivated by, the development in Sections 2, 4, 5 and 6,
which deal specifically with invariant quadratic estimation for two variance
components.

The completely random one-way classification model is a special case of the
model we consider. For this model the notion of an admissible quadratic un-
biased estimator has been explored by Harville [4]; but with the exception of
Section 2 our results are of a different flavor. We approach the problem along
the lines in [14] as this allows many standard results from linear model theory
to be utilized.

In Section 2 we introduce the mixed model with two variance components
and via sufficiency reduce the class of invariant quadratic unbiased estimators
to a complete class in Theorem 2.2. This theorem allows us to conveniently
consider the variance component problem within a standard linear model setup.
Using the results of Section 3, we reduce the complete class obtained in Section
2 to a minimal complete class in Section 4. In Section 5 we give a means of
calculating the estimators in the minimal complete class via normal equations.
And in Section 6 we consider how MINQUE and the usual analysis of variance
estimators relate to the minimal complete class.

Some notation we use throughout is R(4), N(A), r(4), 4’, and 4~ to denote
the range, null space, rank, transpose, and g-inverse respectively of a matrix A.
Other notation will be introduced as needed.

2. The two variance component model—an initial reduction. We consider a
random vector Y distributed according to an n-dimensional normal distribution
with mean vector X8 where X is a known n X p matrix of rank p and B is a
p X 1 vector of unknown parameters. The covariance matrix of Y is taken to
be Z, = 6,1 + 6,V where V is a known nonnegative definite (n.n.d.) matrix and
0 = (0,, 8,)' is a vector of unknown parameters called variance components.
More precisely, the parameter space of our model is R? x Q where e R?, § € Q
and Q = {0: 6, >0, 6, = 0}.

The problem we consider is invariant quadratic unbiased estimation for linear
parametric functions 6’¢, 6 € R®. Specifically, we confine attention to the class,
say .7, of quadratic forms which are invariant under the group of transforma-
tions & = {g,: x € R(X)} where g,: y — y + x. The class .# is a natural sub-
set of the quadratic forms to consider for estimating 6’6 (e.g., see [7] and [13])
and most quadratic estimators which have been proposed in the literature are
in .#”. For estimating a given 4’0, we consider as candidates the subset .+, of
¥ consisting of those that are unbiased. We use the variance of an estimator as
a comparison criterion; and for this criterion it is well known that only in special
cases does a single uniformly best estimator exist. Our goal in this section and
in Section 4 is to reduce .#; to a minimal complete class.
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Let 4" denote the set of symmetric matrices B such that X’B = 0. Then
A = {Y'BY: Be .#"}. It is convenient to investigate .4 as quadratic forms
in Z = Q'Y where Q is an n X g (§ = n — p) matrix whose columns form an
orthonormal basis for N(X’). Because .4~ may be expressed as {QA4Q’: 4 '}
where &7 denotes the vector space of ¢ X ¢ symmetric matrices, it follows that
A is simply all quadratic forms in Z. (That this should be the case is suggested
by the fact that Z is a maximal invariant with respect to the group of transfor-
mations &, e.g., see [13].) Dealing with Z instead of Y simplifies the problem
by eliminating the nuisance parameter §.

The family of distributions induced by Z is &%, = {N,(0, A,): 6 € Q} where
Ay = 6,1+ 6,W, W= Q'VQ. An initial reduction in .4 may be made via
sufficiency. Let0 < 2, < --- < 4, denote the m distinct eigenvalues of W with
multiplicities #,, .. ., 7, respectively. And fork =1, ..., mlet T, = Z'E, Z]r,
where E, denotes the orthogonal projection operator on the subspace of eigen-
vectors corresponding to 1,. Some facts concerning the T',’s are

(@) 70, + 4,0)7' T ~ gty for k=1, ..., m.

(b) T, ---, T, are statistically independent.

(¢) T= (T, .-+, T,) is minimal sufficient for .

(d) T is complete and sufficient for & if and only if m < 2.

Facts (a)—(c) are straightforward to verify; they also may be obtained by minor
modification of the results of Graybill and Hultquist [3]; (d) may be obtained
by combining Example 8 in [14] with the main theorem in [13].

REMARK 2.1. The matrix Q is not uniquely determined and so Z and W are
not unique. However, it can be shown that 4, r,, and T, (i = 1, . . ., m) do not
depend upon the choice of Q.

In the space % of symmetric matrices define .7~ to be the subspace spanned
by E,, - .., E, and let G ={Z'AZ: Ae T ). Letx denote the orthogonal pro-
jection operator on .7~ with orthogonality defined by means of the trace inner
product (4, B) = tr (4B).

THEOREM 2.2. Foreach Z’AZ ¢ N~ which isnot in 7 there existsa Z'BZ ¢

with the same expectation and having smaller variance uniformly over the parameter
space Q. Moreover, one choice for Z'BZ is K'T where h = (tr (E, A), - - -, tr (E,, A))’.

PRrOOF. Suppose Z'AZ isasstated. Let B = w4, let F = (1 —m)4d =4 — B,
and let 0 ¢ Q be fixed. Because Fe .7+ and Aye .7, we have E(Z'FZ|0) =
(F, Ay)) = 0. Since 4 = B + F,

Var (Z/AZ|0) = Var (Z'BZ|0) + 2(F, A,FA,) + 4(F, A,BA,).
Because A,BA,e .7, we have (F, A,BA;) = 0. And because A, is positive
definite and F = 0, we have (F, A,FA,;) > 0. As@ e Q was selected arbitrarily,
it follows that Z’BZ has the same expectation as Z’4Z and has uniformly smaller

variance. To conclude the proof, use the fact that Be 7" and 4 — Be .7+ to
obtain the formula B = Y, r,"(4, E;)E;,. Hence Z’'BZ = K'T. []
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REMARK 2.3. The above theorem was originally given by Olsen [6]. When
applied to a completely random one-way model, it is essentially the culmination
of Theorems 1, 2, and 3 in [4] with attention restricted to #-invariant (Harville’s
terminology) quadratic unbiased estimators. A version of the theorem not re-
stricted to two variance components has recently been given by Kleffe and
Pincus (see Theorem 8 in [5]).

From Theorem 2.2 it is clear that we need only consider estimators of the
form A'T. This suggests viewing our problem in a linear model framework.

Thus, let
G,:[l 1...1}
'21 22"'2m

so that E(T|0) = G0 for all 6 € Q; and for a = 0 let

V(a) = diag {(1 + A,@)¥ry, - -+, (1 + A,a)’/r.}

so that Cov (T|0) = 20,*V(p) where p = 6,/6,. For estimating ¢'6, d € R(G'),
standard linear model results suggest investigating the class of estimators {38, :
a = 0} where d, in the Gauss—-Markov estimator with respect to the covariance
matrix V(a). Unfortunately, this class does not in general constitute a complete
class. To further reduce our estimation problem we need the results in the next
section.

3. Admissible estimators in linear models. Let U be a &k X 1 random vector
following the linear model E(U) = H¢ and Cov (U) = L where H is a known
k x Imatrix and (¢, Z) is an element of a known subset © in R* x &, & being
the set of k x k nonnegative definite matrices. Note that this linear model
formulation allows for a possible relationship between the parameters ¢ and X.
We are interested in functions on the parameter space © of the form g(¢, X) =
0'¢. To estimate such a linear parametric function we consider only linear un-
biased estimators »'U. Let us assume that the parameters ¢ in R* which appear
as components of elements of ® form a spanning set for R'; then b'U is unbiased
if and only if H’> = d. Throughout this section let  be a fixed vector in R(H’)
and let &% = {b: H'b = 9} be the set of coefficient vectors of the linear unbiased
estimators for #’¢p. Our concern here is to investigate admissibility within this
linear model context. )

Let 77" be the set of all 2 in &7 which appear as components of elements of
©. We will compare the estimators b'U, be &%, according to their possible
variances b'Xb, 2 ¢ 7. For b, he <8 we say b is as good as h if b'2b < W'2h
for all X e 77 b is better than h if b is as good as & and &'Eb < A'Zh for at least
one X € 77 b is admissible if no vector in <% is better than b.

Regard 77" as a subset of the vector space .>” of symmetric k X k matrices
endowed with the usual Euclidean topology. For any subset 77 of . let [%/]
denote the smallest closed convex cone in & containing 7. We say 7/ generates
[771if[Z] = [7"]. The definition of the relationship “as good as” remains
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the same if 77 is replaced by any set 77 which generates [ 277], in particular,
by [ 7] itself. This can be verified by noting that {A €.5”: ¥ Ab < W' AR} is a
closed convex cone. Similarly, the definitions of “better than” and “admissible”
remain the same. It is this observation that leads one to consider [ 7].

We will use the fact that every element of [27"] is an n.n.d. matrix. This
holds because 7 is a closed convex cone containing 7.

A subset & of 7 is called a complete class if for every vector be <% which
is not in & there exists a vector in & which is better than 5; a subset & is
called an essentially complete class if for every b € <& there exists a vector in &
which is as good as b. One can check (see Section 2.1 in [2]) that the following
three statements are equivalent: (1) the class <%, of admissible vectors in <&
is an essentially complete class; (2) <7, is a complete class; (3) <7, is a minimal
complete class. In Proposition 3.3 below we will prove statement (3) by verify-
ing statement (1). First we need two lemmas.

Let .5 be the intersection of N(H'’) with the intersection of all the null spaces
N(Z), Z€[77], and let _# be any subspace of N(H’) such that N(H’) is the
direct sum _#Z@® & . For any b, € <&, we have & = b, + NH) = by + # +
7. Now for each b e <& write b = a + fwhereae b, + _# and fe 5. Since
b'2Lb = a’'Za for all Z e [7"], we can conclude:

LeEMMA 3.1. For any b,e &5, the set b, + _# is an essentially complete class.

The advantage of b, 4 . over <7 is that it has the following compactness
property.

LEMMA 3.2. Let bye <& and let K be the set of all vectors b in b, + _# which
are as good as b,. Then K is compact.

Proor. For each X e[7] the set K(Z) = {be b, + 2 b'Sb < b/Zb,} is a
closed convex set because #'Xb is a continuous convex function of 5. Hence
K = 551 K(2) is closed and convex. To show K is compact it suffices to show
that K has no direction of recession (see Theorem 8.4 in[10]). That is, if # ¢ R*
issuch that b + 22 e K for all be K and 2 > 0, then we must show # — 0. For
such an # we have b, + ke K, so that ke _#. Moreover, b, + 2k € K(Z) for all
4 = 0 implies 2A4h'Zb, + 2*h'Zh < O for all 2 = 0, which implies 24 = 0. This
holds for all Ze[# Jand so he .Z n . F = {0}. []

PROPOSITION 3.3. In the set <& of coefficient vectors of the linear unbiased esti-
mators for 6'¢, the set 7, of admissible vectors is a minimal complete class.

Proor. It suffices to show <Z, is essentially complete. Let b, be any vector
in &. We must find an admissible vector which is as good as b,. If attention
is restricted to the compact set K defined in Lemma 3.2, then it is known that
the admissible elements of K form a complete class in K (see Theorem 2.22 in
Wald [15]). In particular, there exists some element b which is admissible in K.
For the convenience of the reader, a proof of this fact will be given in the next
paragraph.
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Define the ordering < on K by defining b, < b, if b, is as good as b,. For
each be K let K(b) = {hc K: h < b} and note that K(b) is closed. Consider a
chain C of elements in K. For any finite number of elements b, - - -, b,, in C
we have b; € (-, K(b,) where b; is minimal among them. By the finite inter-
section property of compact sets (see page 223 in [1]), ;. K(b) is nonempty.
Any element in this intersection is a lower bound for C. By Zorn’s lemma (see
page 32 in [1]), there exists a minimal element b in K. Then b is admissible in K.

It remains to show & is admissible in <Z. Suppose there is some b, € &% which
is better than . By Lemma 3.1 we can suppose b, € b, + . Since b is as good
as b,, so is b;; hence b, € K. But this contradicts the admissibility of b in K. []

Now we want to characterize the admissible vectors. For a n.n.d. matrix X
we say a vector b € &7 is Z-best if b'Zb < W'Zh for all he <5. In the language of
decision theory a Z-best vector would be called a Bayes rule. (Here, of course,
the term Bayes is to be interpreted with reference only to the class of linear
unbiased estimators.) Some known properties of Z-best vectors which we will
use are listed in the following lemma (see Theorem 3 in [16] and Corollary 1.2
in [14]).

LEMMA 3.4. For any given nonnegative definite matrix X

(i) There exists a Z-best vector in 5.
(ii) b is Z-best if and only if b e R(H).
(iii) There is only one Z-best vector in &% if and only if N(Z) n N(H') = {0}.
LEMMA 3.5. There is a compact convex set 77, not containing the zero matrix,
which generates [77"]. Every nonzero element of [ "] is a positive multiple of an ele-

ment of 7.

Proor. Let ||+|| be a norm on the Euclidean space & and let & be the
compact unit sphere {A € .57 ||A]| = 1}. Choose 27" to be the convex hull of
& n[77]; by Theorem 17.2 in [10], 97 is compact. Since 27 C [77], we
have [Z77] € [7"]. On the other hand, every nonzero element Ze[7] is a
positive multiple of the element ||Z||"*Z e 27, and so [7"] c [%Z"]. The zero
matrix cannot be in 77" because a convex combination of nonzero n.n.d. ma-
trices is nonzero. []

ProrosITION 3.6. If b is admissible in the set <& of coefficient vectors of the
linear unbiased estimators for 6'¢p, then b is Z-best for some nonzero L e [7].

PRrROOF. Suppose b is admissible. We will show b is Z-best for some X in the
set 27" in Lemma 3.5. Suppose not. Then Lemma 3.4 (ii) implies Zb ¢ R(H)
for all Z e 777, This is equivalent to F'X2b = 0 for all £ e 27", where F is a
k X s matrix such that R(F) = N(H#’). Define f:.&— R* by f(A) = F'Ab.
This is a linear mapping and hence preserves compactness and convexity. Thus
the set W = {F'2b: X e 777} is compact and convex in R°. Since 0¢ W, the
separating hyperplane theorem assures the existence of a vector a € R* such that
W C {x: a’x < 0}. Note that for each Z e 27" we have a’F’2b < 0, hence also
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a'F'2Fa > 0. For e 27 and y e R let
7(Z,7) = (b + rFayX(b + yFa) — b'Sb = 2ya’F'Sh 4 y*d F'SFa .

Then for arbitrary, but fixed, Z e 77" the quadratic polynomial #(Z, 7) in r
achieves its minimum value of —(a’F'Zb)*/(a’F'2Fa) < 0 when y = g(Z) =
—(a'F'2b)/(a'F'EFa) > 0. Since g, considered as a mapping from %7 to R', is
continuous and strictly positive on the compact set 77, there exists ¢ > 0 such
that g(Z) = ¢ for all Z e 27", We see that ¢7'n(Z, ¢) < ¢(Z)'n(Z, g(Z)) < 0 for
all Ze %7 so that (b + eFa)'Z(b + ¢Fa) < b'Zb for all Ze 27", This contra-
dicts the admissibility of & since b + eFae ZZ. []

COROLLARY 3.7. Suppose N(Z) n N(H') = {0} for all nonzero L e [7"]. Then
for be %

(i) b is admissible if and only if b is Z-best for some nonzero L e[7].
(ii) If b is inadmissible, then there is a vector b, e <& which is uniformly better
than b in the sense that b/Xb, < b'Zb for all nonzero Z e [7].

Proor. Half of (i) follows from Proposition 3.6. Conversely, suppose b is
Z-best and N(Z) n N(H’) = {0}. Then Lemma 3.4 (iii) says 6'Zb < h'Zh for all
other 4 € &%, and so b must be admissible. To prove (ii), suppose & is inadmis-
sible. By (i) 4 is not Z-best for any nonzero X e [”"]. Let %7 be as in Lemma
3.5. Then the proof of Proposition 3.6 shows the existence of a vector b,(= b +
e¢Fa) such that b,/2b, < b'Eb for all £ e 7. And since any nonzero element of
[77] is a positive multiple of an element of 27, the result follows. []

REMARK 3.8. (1) Note that Corollary 3.7 holds true if [ 7"] is replaced by any
set 277 such as in Lemma 3.5. (2) Under the conditions of Corollary 3.7, the
class of admissible vectors is exactly the class of X-best vectors for nonzero
X e[77]. It can be shown that this is also the class of Bayes rules in the wide
sense with respect to the parameter space O, provided that 27" does not contain
0 in its closure.

4. The minimal complete class. In Section 2 the problem of invariant quad-
ratic unbiased estimation was reduced to considering linear combinations of
T, ..., T,. Recall for § ¢ Q that E(T|8) = G¢ and that Cov (T'|0) = 20,2V (p)
where o = 6,/0,. Let & e R? be fixed, let 7, = {b: G'b = 4}, and let .7, =
{6'T: be 77,} be the set of linear unbiased estimators for §’d. Our terminology
here is generally consistent with that introduced in Section 3, except we often
use .7, in place of .77,. To avoid trivial technicalities we suppose m > 2. From
Proposition 3.3 we conclude that .7, can be reduced to a minimal complete
class, say =,. We investigate &, by first showing Corollary 3.7 in applicable
and then by examining the relationship between &, and [2”"] where ¥ =
{Cov (T|0): 6 €Q}.

First note that D e " may be written as a nonnegative linear combination
of diagonal matrices D,, D,, D; having diagonal elements r,”*, 27,7, %,
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(=1, ..., m) respectively. Since the cone 97  generated by the convex hull
of D,, D,, D, is closed (see Corollary 9.6.1 in [10]), it follows that [7"] ¢ 57
Let S denote the simplex of vectors w = (w,, w,, w;) having nonnegative com-
ponents which sum to one and for we S let D, = 33_, w,D, so that 9% =
{rD,:r=0,wesS}.

LemMA 4.1. If we S, then N(D,) n N(G") = {0}. Moreover, if D, is singular
(i.e., wy = 2, = 0), then D, + J is positive definite (p.d.) where J is an m X m
matrix of ones.

Proor. We suppose w, = 4, = O since D, is p.d. otherwise. Now R(D,, + J)=
R(D,) + R(J) because D, and J are n.n.d. matrices. Thus, D, + J is p.d.
because R(D,) N R(J) = {0}and r(D,) = m — 1. To conclude note that R(J)
R(G) so that [R(D,) + R(G)]* = (R™)*. []

Because [ 7] ¢ 27, Lemma 4.1 and Corollary 3.7 imply &, consists of the
D-best estimators for 9’0 where D = 0 and De[27]. To further investigate
&, let

w(a) = (1 4+ a)7*(1, 2a, a?), az0.

Note that w(a) € S and that ¥V(a) = (1 + @)*D,,,. Thus, the set of D, ,,’s con-
stitute a generating set for [?7"]; and hence so does 27 = {D, : w € S} where
S¢ is defined as the closure of the convex hull of {w(a): a = 0}. Because the
mapping w — D,,, w € S;, may be viewed as a linear map restricted to the com-
pact convex set S;, the set 27 is compact and convex. Hence, because 0 ¢ 27,
Corollary 9.6.1 in [10] implies

(4.2) [71={rD.:7=Z0,weS}.
Using this fact and Remark 3.8 we have proved the following:

THEOREM 4.3. Within the class of invariant unbiased quadratic estimators for
0’0, the subset

Z, = {c,'T: weS,)

is the minimal complete class where c,, is the unique vector in 7, satisfying D, ¢, €
R(G), i.e., ¢, is D, -best.

In Theorem 4.3 the set g is characterized via the weights in S,. In some
cases the entire set S, is not needed to characterlze % For example, if m = 2
then T is complete so that fg’; consists of exactly one estimator, i.e., c, = C,
for all u, we S;. (The case for m = 1 is the same, except here only multiples
of ¢, 4 2,0, are estimable.) In the succeeding two propositions we examine the
relationship between we S, and the D,-best vector ¢, for m > 3. The reader
may find it helpful to think of S as an equilateral triangle and to visualize S,
as that portion of S whose boundary consists of the curve {w(a): a = 0} and

the base of the triangle, i.e., the line segment joining w = (1, 0, 0) and w =
©,0,1).
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ProrosiTION 4.4, If m = 3, the minimal complete class in 7, may be written as
& ={cyeT:a =0} U {c;'T}
where w = (0, 0, 1).

ProoF. Let # and f +#+ 0 be such that G’4 = ¢ and G’f = 0; and define y(w) =
fD,h/f'D, f for each weS,. Note that f spans N(G') and that f'D, (2 —
r(w)f) = 0; hence ¢, = h — y(w)f. Since y is a continuous function on S, which
is a compact connected set, the range of y must be a closed finite interval, say
[M,, M,]. And similarly the range of 7 restricted to the compact connected
subset S, = {w(a): a = 0} U {w} of S, will also be a closed finite interval, say
[m,, m,]. The validity of the proposition will follow if we can establish that
m; = M, for i = 1, 2. Since 7 is the ratio of two linear functions on S, with
the denominator always positive, it can be shown that y is both quasi-concave
and quasi-convex on S, i.e., if a €[0, 1] and u, w e S;, then

min {y(#), y(w)} = r(au + (1 — a)w) = max {y(4), y(w)} .

From this it follows that the range of y restricted to the boundary of S,, say
S5, is precisely [M,, M,]. Now applying the quasi-concavity and quasi-convexity
of 7 to the line segment S, joining w* = (1, 0, 0) and #, and noting that w*,
we S, and S, = S, U S,, it follows that m, = M, for i = 1, 2. []

ProrosiTION 4.5. Suppose m = 4 and 6 == 0. If u, we S, are such that u + w,
then c, =+ c,,.

Proor. We may suppose u + (0,0, 1) so thatc, ¢ R(D,~'G). Let D = D, + J
where J is a matrix of ones. Then D is p.d.; see Lemma 4.1 for the only ques-
tionable case. Since R(J) ¢ R(G), it follows that Dc, € R(G) so thatc, € R(D'G).
Thus, it is sufficient to show R(D,™'G) n R(D~'G) = {0}; or equivalently, that
r(D,”'G, D7'G) = 4. Now multiply by D,D = D,D, + D,J to obtain the
equivalent condition r(D,G + B, D,G) =4 where B= D, JD,'G. But as
R(B) c R(D,G) we get the equivalent condition r(D,G, D,G) = 4. We can

write (D,G, D,G) = RLM, where R = diag (r,”*, ---, r,”), L isan m X 4 ma-
trix with ith row (1, 2,, 4,2, 2,;%), and
w, 0 u O
M=|"% W W i
Wy W, Uy U
0 w, 0 u

When m = 4 we have r(RL) = 4 so that r(RLM) = 4 if and only if r(M) = 4.
The determinant of M is
A = wyd? + wyd,dy + w,dy? = uyd® + u,d,dy + u,dy?

where d; = u, — w, for i = 1, 3. This determinant can be regarded as a positive
definite quadratic form if either u or w satisfies w,w; — 4='w,> > 0. Then A = 0
would imply d, = d; = 0, which is impossible if # = w. It can be shown that
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the only remaining case is when # and w both satisfy w,w, — 4-'w,? = 0, i.e.,
u, = 2(u,u)* and w, = 2(w,w,)t. These equations together with A = 0 lead to
the contradictory conclusion d;, = d, = 0. Therefore, A + 0 and so r(M)=4.[]

With respect to Theorem 4.3 and Propositions 4.4 and 4.5 several comments
seem appropriate: (1) The conclusion of Theorem 4.3 can be somewhat strength-
ened by Corollary 3.7(ii) in that if Z'4Z is unbiased for ¢’¢ and is not in &,
then there is an estimator in &, which has smaller variance uniformly over the
parameter space Q. (2) The Gauss-Markov estimators ¢’d, mentioned at the end
of Section 2 are in fact D,,,-best estimators. (3) The estimator corresponding
to the weight w = (0, 0, 1) is rather interesting in that it may be viewed as a
limiting Gauss-Markov estimator, i.e., ¢, — ¢; asa — co. (4) The restriction
to three distinct eigenvalues considered in Proposition 4.4 is not an uninteresting
case. For example, a set of data arising from a balanced incomplete block ar-
rangement with treatments fixed, blocks random, and more blocks than treat-
ments falls within this situation (see [12]). (5) When m > 4, the conclusion of
Proposition 4.4 is not true as seen from Proposition 4.5. (6) Proposition 4.5
says that the mapping w —¢,, we S;, is one to one when m > 4. (7) When
m = 3 the mapping w — c,, even when restricted to S,, is not necessarily one
to one (see [6]).

5. Computations via normal equatlons In the previous section the estimators
in the minimal complete class &, were described via the D,-best vectors ¢,
ue S, To compute the estimators one would probably resort to normal equa-
tions. Here we briefly summarize the pertinent equations and present some
alternative expressions for the components of the equations.

As in Section 4 suppose m = 2. Let u € S, and for the present suppose D, is
p.d., i.e., either 2, is positive or u = (0, 0, 1). Define () to be the random
vector satisfying the normal equations G'D,~'GA(x) = G’D,~'T. Then we have

¢,/T = &0(u). To construct these normal equations from G and D, one must
first obtain the eigenvalues and multiplicities of W. To avoid computing the 1,’s
and r’slet A, = u,1 4 u,W + u,W* and note that the diagonal elements of D, are
formed from the distinct eigenvalues of A, divided by their multiplicities. Given
this fact, it is straightforward to rewrite the previous normal equations as

I P A il B

These equations may also be written in terms of the original quantities of the
problem Y, X and V to avoid the necessity of obtaining Q. To see this let
2, =ul 4+ uV 4+ u,VNV where N=1 — X(X'X)7'X’. Note that Q'Q =1,
QQ' = N, and A, = Q'Z,0. Because A, is p.d., Theorem 4.11.8 in [9] implies
QA,'Q" = N(NZ,N)-N. And when Z_ is p-d., we have (see Problem 33, page
71, in [8])

QA,'Q' = 2,71 — ZX(X'E, X)) X'T,



888 ANTHONY OLSEN, JUSTUS SEELY AND DAVID BIRKES

These observations allow one to easily rewrite equation (5.1). For example,
te (A, ") = tr (QA,7'Q’) and Z'WA,~'Z may be written as YYNV(QA,~'Q")Y. It
is interesting to note that Z’A,~'Z = min, ||Y — Xp||,* where ||5||,2 = b'Z,~b.

Now let us consider the case when D, is singular and # € .S,. Then it must
be that 2, = Oand # = (0, 0, 1), so that D, = D,. Let d = (5., d,)’ be in R? and
let f(x) be such that 3'0(u) is the D,-best estimator for 6'6. Using the conditions
D,c, € R(G) and G’c, = 0 it is straightforward to verify that

(5.2) 5’(9(14) = 0,T, + 0,[(ZWHZ — tr (WHT))/r(W)]
where W+ denotes the Moore-Penrose inverse of W. This expression can also

be written in terms of Y, X and V' by using (iii) and (iv) of problem 5, page 67,
in [9] to show that

QW*+Q' = NB[(B'NB)*'B'N = (NVN)*,

where B may be any matrix satisfying /' = BB’. Additionally, with respect to
(5.2) see (6.1) in the following section.

6. MINQUE’s and Henderson III. For the model we are considering, the
MINQUE estimators given by Rao [7] are included in the minimal complete
class. This may be seen by comparing equations (4.7) in [7] with equations
(5.1) using the weights w = w(a) for a = 0. In comparing these two sets of
equations, G, V', V,, and H in Rao’s notation correspond to Q, 7, W, and [ + aW
respectively. Also, note for @ = 0 that A, ,, = (1 + a)™*(/ + aW)*. Among
the MINQUE estimators Rao suggests using a = 1 or, if available, using a as
an a priori ratio of the two unknown variance components.

A common procedure, when it can be used, for estimating ¢’¢ is Henderson’s
Method III, e.g., see Searle [11]. The Henderson III estimators are invariant
under the group defined in Section 2, and a natural question to consider is their
relationship with the corresponding minimal complete classes. To answer this
question consider the model as arising from the mixed linear model ¥ = X8 +
Bb + e where b and e are random having independent N,(0, §,7) and N,(0, 6,1)
distributions respectively with Ba known n X smatrix. Thus ¥ = BB'. In this
notation we have

(a) The matrices B'QQ'B = B'(I—X(X'X)"'X")B and W = Q'BB'Q
have the same positive eigenvalues and multiplicities.
(b) (W) = r(X, B) — r(X).
(6.1)  (c) W s singular (i.e., 2, = 0) if and only if n —r(X,B) is
positive.
(d) If W issingular, then r, =n —r(X, B) and
rnT,=min,,||Y — X8 — Ba|]?,

where denotes the usual norm on R*.

Statement (a) is a general matrix fact and is often useful computationally,
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especially when s is small relative to n. Lemma 1 in [17] implies (b) which in
turn implies (¢). And assuming W is singular, (d) may be established by show-
ing that QF, Q' is the orthogonal projection on R(X B)*t.

The Henderson III estimators for ¢, and 6,, say 6‘ and 02, depend upon two
sums of squares. Thinking of b as a vector of fixed effects in the representation
Y = XB + Bb + e, the two sums of squares are the residual sum of squares and
the sum of squares for the b-effects adjusted for the g-effects. Thus, from (6.1.d)
the Henderson III procedure is applicable only when W is singular, in which
case the two sums of squares are

nT, and rT,=2'Z — rT,.

To obtain the Henderson III estimators, these two sums of squares are equated
to their expectations and the resulting equations are solved to obtain 6, and 4,.
Using the condition D,c € R(G), it can be verified that '8 is precisely the D,-best
estimator for ¢’6. The relationship between the Henderson III estimators and
the admissible estimators is considered in

PROPOSITION 6.2. Suppose W is singular and assume m = 3. Then

(@) 6, = 6,(w) forw= (0,0, 1) eS,.
(b) If m = 3, then 6, = 0,(w(a)) where

a= [(rl +r+ ra)/rlzzzg]i .
(c) For m = 4, there does not exist w e S, such that 0, = (52(w).

ProoF. Since §, = T, part (a) follows from (5.2). Let

o _(Zz 2 z 171[——(21 2 z) 1Y) "”rm]'

Then ¢'T = 6,. Part (b) follows by showing that D, ,,c e R(G). For m = 4, it
can be shown that the matrix (D,c, D,c, G) has rank 4. Suppose there isa w ¢ S,
such that D, c e R(G). But this implies w, = w, = 0 since r(D,c, D,c, G) = 4
and this contradicts w € S,;; hence part (c) follows. []

From the remarks in this section, we mention two points with regard to using
invariant quadratic unbiased estimators. First, the MINQUE’s, while admissi-
ble in /f, do not in general constitute a complete class; and without further
justification seem too restrictive. For example, when W is singular the usual
estimator for 6, is T;; and when m > 3 this estimator cannot be obtained from
the MINQUE equations (4.7) in Rao [7]. Moreover, some limited numerical
comparisons in Olsen [6] suggest that T, will perform in a more satisfactory
manner over the entire parameter space than will any of the MINQUE estimators.
And second, the usual or Henderson III estimator for 4,, except for special cases,
can be improved upon uniformly over the parameter space. For example, in a
completely random one-way classification model with four groups and observa-
tions within groups of 2, 2, 3, 3, respectively, the estimator f,(w(a)) with a =
.495 can be shown to have uniformly smaller variance over Q than §,. The
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gain in efficiency of the admissible estimator over the Henderson III estimator
in this example is, however, extremely small.
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