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BOREL CROSS-SECTIONS AND MAXIMAL INVARIANTS

By JAMEs V. BONDAR
University of Alberta

A measurable cross-section for orbits of a sample space under a free
(exact) transformation group is shown to exist under topological regularity
conditions. This is used to represent the sample space as essentially the
product of a maximal invariant and an equivariant part, which implies
Stein’s representation for the density of the maximal invariant.

0. Introduction. An increasingly common device in the study of invariant
tests and equivariant estimators (e.g., [3], [6], [9], [13], [14], [19], [20], [22], [23]
and [25]) is to represent the sample space -Z”as a cartesian product of a single
orbit Gx and the space -2°/G of values of the maximal invariant. In the present
paper we prove two general representation theorems of this type (Theorems 2
and 3) assuming only topological conditions on the orbits. When such repre-
sentation is valid, many interesting integrals over -2~ may be obtained by a
double integral, first along orbits, and then over the set of orbits. General re-
sults of this form, known as disintegration theorems, have been extensively stu-
died in the context of integration theory (Bourbaki (1962) Section 3, no. 3); the
ones in this paper are more suited to statistical problems invariant under trans-
formation groups. These results are closely related to those of Wijsman ([21],
[22], [23]) and of Koehn ([14]).

As an application we prove the validity of Stein’s method for finding the mar-
ginal density of the maximal invariant by integrating the density of x over the
group (Corollary 2 of Theorem 3). The key to this and all other proofs known
to the author ([13], [22]) is to find a cross-section for the orbits and use it to get
a homeomorphism, locally at least, between 2”7 and (Gx) x (27/G). Stein is
reported as remarking that since the cross-section does not occur in the statement
of the theorem, it is unaesthetic and possibly restrictive to use it in the proof.
However, Theorem 2 of this paper shows that if G acts without fixed points, all
we need is a measurable cross-section, and a result of Baker, Effros and Glimm
(Theorem 1) tells us that such a cross-section automatically exists under weak
regularity conditions. Thus, use of a cross-section in the proof does not require
strong additional hypotheses to ensure its existence.

1. Results and examples. In the following, G is a group of transformations
acting on a topological space -2°. G issaid to act freely if g + e implies gx + x for
all x in 227 equivalently, if the stability subgroup of x, namely G, = {g|gx = x},
is {e} (the identity of G) for all x in -2°. Subgroups H and J of G are conjugate
if H = gJg=* for some g in G; for any x and g, G, and G, are conjugate.
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“Measurable” means “Borel-measurable” and the class <% of Borel sets is the
smallest o-field generated by the open sets of 2. A bimeasurable function is a
measurable function with measurable inverse. 2°/G refers to the set of orbits
of 27, which is given the quotient topology (S in 22°/G is open iff the set of
orbits in S form an open set when considered as a subset of -2”); = is the canoni-
cal map n(x) = Gx. A measure 2 is relatively invariant with modulus ¢ if A(gE) =
6(9)A(E) for g in G and E in &&. The orbit of x is Gx = {gx|ge G}. A Borel
cross-section is a Borel subset of 2” which intersects each orbit Gx precisely
once. A Borel measure is one defined on the Borel sets which gives finite values
to compact sets.

We shall assume that G and 27 satisfy

CoNDITION A. G is a separable complete metrisable locally compact topo-
logical group acting continuously on 27 (i.e., the multiplication map (g, x) — gx
is continuous on G x 2°); £ is a separable complete metrisable locally compact
space.

The special product structure of 22”mentioned in the introduction is

ConpIiTION B. There is a 1-1 bimeasurable mapping ¢~': 27— (G/H) x
(£Z°|G) where H is a closed subgroup of G; if 67(x) = (z(x), a(x)), then 6-*(gx) =
(97(x), a(x)) for all g e G and x e 2, where ¢ takes values in G/H and a takes
values in Z/G.

The startingpoint for the present work is:

THEOREM 1 (Glimm-Baker-Effros). Let the group G acting on the space 2° satisfy
assumption A. The following seven statements are then equivalent to each other:

(i) &Z7/G is T,.
(ii) Each orbit is relatively open in its closure.
(iii) Each orbit is locally closed in 77} i.e., every x in .7 has an open neighbour-
hood E such that Gx n E is closed in the relative topology of E.
(iv) The smallest o-algebra containing the quotient topology on Z°|G is precisely
the collection of sets E for which n='(E) is measurable.
(v) For each x € 27, the map 9G, — gx from G|G, onto the orbit Gx (quotient
topology on G|G,; relative topology on Gx) is a homeomorphism.
(vi) Each orbit is locally compact in the relative topology.
(vii) There exists a Borel cross-section Z for the orbits of G in Z°.

This is the union of Theorem 2.1 (1 and 4), Theorem 2.6 (5, 6) and Theorem
2.9 (12) of Effros ([8]) with the facts that any first countable locally compact
group is metrisable and complete ([7], Proposition 12.9.5), that a subset of -2~
is locally closed iff it is locally compact (Willard [24], Section 18.4) and Effros’
comment ([8], page 47) that a first countable locally compact Hausdorff space
satisfies his “Condition D.” Baker ([2], Theorem 2) shows that completeness of
£ is not necessary for equivalence of (i), (ii), (v) and (vii); we shall not pursue
such generalisations here.
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Using Theorem 1 we will prove the following in Section 2:

THEOREM 2. If the group G acts freely on the space 77, if Condition A and any
of the conditions (i) to (vii) of Theorem 1 hold, then G and SZ° satisfy Condition B
and there exists a Borel cross-section. Further, any Borel cross-section Z is the bi-
measurable image of 2°|G, and if f is a real-valued function which is integrable with
respect to a relatively invariant Borel measure m, then

1) Vo f(x) dm (x) = §; a(dz) § f(92)5(9)(dg)
for some Borel (hence o-finite) measure a on Z; p is a left invariant measure on G
and 0 is the modulus of m.

We can weaken the assumption that G is free at some cost:

THEOREM 3. If G is a Lie group of nonzero dimension acting so that all stability
subgroups are compact and conjugate to each other; if Condition A and any of (i) to
(vii) of Theorem 1 hold and m is a relatively invariant Borel measure, then there
exists an m-null invariant set " such that 2 — 4" and G satisfy Condition B and
there exists a Borel cross-section Z for the orbits in 27 — ¥ such that Z is a bi-
measurable image of (527 — 47)|G. Further, if f is a real function integrable with
respect to m, then equation (1) holds for some o- finite measure a on Z; p and 6 are
as in Theorem 2.

CoRrOLLARY 1. If 27, G and m satisfy the conditions of Theorem 2 or of 3, if f
is the density of x w.r.t. m, then the density of the maximal invariant x — Gx w.r.t.
ais
) [7(Gx) = o([xDA([x]) §a 9(9)f(9x)1(dg)
where A is the modulus of G; [x] is any element of G such that for some ze Z,
[x]z = x; 0 is the modulus of m.

CorOLLARY 2. If G, Z7and m satisfy the assumptions of Theorem 2 or of 3, if

P, and P, are probabilities on -Z° with densities f, and f, w.r.t. m, then the ratio of
the densities for the maximal invariant is

(3) dP(Gx) _ ¢ 9(9)fi(9x)r4(dg)
dP(Gx) (g 0(9)f:(9x)1(dg)

independent of choice of m.

CoROLLARY 3. For an invariant statistical model (5, <%, P,, G, Q), whose 27
and G obey the conditions of Theorems 2 or 3, with density f(x; 0) w.r.t. a relatively
invariant Borel measure, the marginal likelihood (see Fraser (1968), page 188 or
Dawid et al. (1973), Appendix 3 for definition) for GO at x is

4) cc §4 0(9)f(gx 5 O)(dg) .

ExAMPLEs. Most of the groups, sample spaces and parameter spaces of para-
metric statistics are locally compact and Hausdorff; any separable differentiable
manifold, and any manifold that can be embedded in E™ is metrisable, complete
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and separable as well. Any closed subgroup of GL(n) (the nonsingular transfor-
mations) or of GA(n) (the translations plus GL(n)) is all those and a Lie group,
too. The main difficulty in using the theorems lies in verifying one of the con-
ditions (i) to (vii) of Theorem 1. The following examples illustrate some ways
of overcoming this problem. In all examples save 5, Lebesgue measure on the
sample space will be the natural relatively invariant measure; the modulus d(g)
is the absolute value of the determinant of the linear part of g.

ProrosITION 1. If (G, &) is a Cartan G-space (definitions in Palais (1961) page
297, or Wijsman (1967) page 392) satisfying Condition A, then a Borel cross-section
exists; if G is a Lie group and the f; are probability densities with respect to a rela-
tively invariant Borel measure, then expression (3) is valid for the ratio of the den-
sities of the maximal invariant.

Proor. By Palais Proposition 1.1.4, orbits are closed, and so (ii) of Theorem
1 holds, proving the first statement. By Palais Theorem 2.3.3 Corollary 2, every
point in 22" has a neighbourhood N in which all the stability subgroups are con-

jugate. We apply Theorem 3 to GN and the conditional probabilities given
GN. ]

ExampLE 1. If any compact group acts continuously on a completely regular
£, then a cross-section exists, for we then have a Cartan G-space, almost by
definition.

PROPOSITION 2. If G is a group of transformations on the topological spaces 2~
and 7/, if G acts freely on 27, and if there exists a Borel cross-section for the orbits
in &, then there is a Borel cross-section for the orbits of G in 27 x 2/ under the
action g(x, y) = (9x, gy).

Proor. Let Z be a Borel cross-section for the orbits of G in 2% then
{(z,y)|z€ Z, y e 2/}, which is clearly Borel, intersects the orbit of (x,, y,) at the
single point (z(x,), [x,]'y;) where [x,] is the element of G (unique since G acts
freely) such that [x,]z(x;) = x,. Thus we have a Borel cross-section. []

EXAMPLE 2. In a certain multivariate model before a sufficiency reduction is
made, the sample space is the nfold product of E? with itself; G is a closed sub-
group of GL(p) with action g(x,, ---, X,) = (9X,, - - -, 9X,). If p < n we shall
consider 22" to be the set of nonsingular p x p matrices and 2’ to be the (n — p)-
fold product of E? with itself. Then .27 x 2/ equals the sample space E"” minus
a set of measure zero. The orbits of (G, &27) are the cosets of 2°/G which are
closed (since they are the right translates of G and thus closed, right translation
being a homeomorphism), hence (iii) of Theorem 1 applies to -2°, and Proposi-
tion 2 yields a cross-section for (G, 27 x Z/). In this example, Theorem 7.1 of
Wijsman (1970) also applies, and yields a somewhat related result.

ProposITION 3. If F is a group acting on a space 2° (not necessarily transitively)
such that (F, 2°) satisfies Condition A and any of (i) to (vii) of Theorem 1, and if
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G is a closed subgroup of F, then there is a Borel cross-section for the orbits under G
in Z7if GF, is closed for all x in Z°.

Proor. First we prove the proposition when F acts transitively on 22°. For
some x in 22”and any f in F let z(f) = fF, in F/F,. Then the map taking z(f)
into fx is a homeomorphism of F/F, (with quotient topology) onto .2~ (Helgason
(1962), Chapter II, Theorem 3.2), hence the orbit Gx is homeomorphic to
GF,/F,. Now, the complement of 7(GF,) is t(GF,)* = ((GF,)°) which is open
since 7 is open by the definition of the quotient topology on F/F,. Therefore
7(GF,) is closed, hence Gx is closed. The argument holds for all x, so by Theo-
rem 1 (iii) there is a Borel cross-section for the G-orbits.

Now we drop the restriction that F be transitive on -2°. By Theorem 1 (vi)
applied to (F, Z°), any orbit Fx is locally compact (when endowed with the
relative topology induced from .27); it inherits separability from .27; with this
topology Fx is homeomorphic to F/F, (by (v) of Theorem 1) which is metric
and complete (Dieudonné (1970) 2 12.11.3). Thus the transitive case of the
proposition, already proven, applies to F and Fx to give Borel cross-sections for
the G-orbits in Fx and hence Gx is locally closed in Fx (Theorem 1 (iii)). Since
Gx is a locally closed subset of the locally closed subset Fx, then Gx is locally
closed in 227 (a proof may be constructed directly from the definition or we may
use the fact that a subset of a locally compact space is locally closed iff it is
locally compact). Thus every Gx is locally closed in -2”and by Theorem 1 (iii)
there is a Borel cross-section for the G-orbits. []

CorOLLARY 1. If F, G and ZZ satisfy the hypotheses of Proposition 3 and if F,
is compact for all x in 227, then there is a Borel cross-section for the orbits of 2~
under G.

Proor. In a metric group, any closed set times a compact set is closed (Dieu-
donné, 12.10.5). []

EXAMPLE 3. A certain simple MANOVA model after sufficiency reduction
has as its sample space the set of (Y, U, W) where Y, U and W are (resp.) p X r,
p X sand p X p matrices and W is symmetric and nonsingular; G = L(p) x 0(r)
where L(p) is a closed subgroup of GL(p) and 0(r) is the group of r X r ortho-
gonal matrices; the group action is given by (4, H)(Y, U, W)=(AYH', AU, AW A")
where A€ L(p) and He 0(r). We now assume that r = p or s = p. If r = p,
let Z be the p X p matrix formed by the first p columns of Y; if r < pbut s = p,
let Z be the matrix formed by the first p columns of U. In either case let 27
be the (probability one) subset of 2" where Z is nonsingular.

Now we shall apply Corollary 1 of Proposition 3 to (G, 227), using GL(p) x 0(r)
as our F. To see that Corollary 1 applies, first we note that F, , ,, is a closed
subset of {(A4, H) | AW A" = W} = (W0(p)W~*) x 0(r) and is compact since closed
subsets of compacta are compact. Now for any xe .27, the orbit GL(p) - x is
closed (since if g,x, g,x, - - - has a limit x, in 27, then ¢,Z, 9,Z, - - - has a limit
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z,, say; NOW X, € &2, s0 Z, must be nonsingular, hence g;, g;, - - - has the limit
h = Z,Z-'e GL(p), so that x, = hxe GL(p) - x). Since a compact set times a
closed set is closed (Dieudonné, 12.10.5), the F-orbit of x, which is (GL(p) X
0(r)) - x = 0(r) - (GL(p) - x) is closed. Thus Corollary 1 of Proposition 3 applies
and there is a Borel cross-section for the G-orbits. Further, if the G, (for all x
in 227) are conjugate, then Theorem 3 applies.

CoNJECTURES. Proposition 1 shows how useful it is to prove that a model is
a Cartan G-space. The papers of Wijsman ([21], [22], [23]) show many of the
models of normal multivariate analysis to be Cartan G-spaces, and raise the
conjecture that if G, is everywhere compact, then (G, E”, matrix multiplication)
is a Cartan G-space. If this conjecture were proved true, it would simplify the
application of Proposition 1.

Theorem 3 suggests a related conjecture which would be useful if true: if G
is a closed subgroup of GL(n) acting on E" by matrix multiplication, are the
orbits locally closed ?

Next, we show an example in which none of conditions (i) to (vii) are satisfied.

CouNTEREXAMPLE. (The irrational flow on the torus). Consider T2 =
{(x,»)|x,y€[0,1)}; x and y are real numbers modulo 1. The group action
t:(x,y) = (x + t,y + t(2)}) (mod 1) defines a group action of the reals R on T*.
Any orbit of this group is dense in any open subset of 7 and so the orbits are
not locally closed or locally compact. The quotient topology on T?%/R is {¢, T?},
which means the Borel field of T?/R is the same, and does not correspond to the
projections of the invariant Borel sets (for example, an individual orbit is Borel
in T?), so (iv) is false and the invariant statistical decision procedures (those based
on measurable invariant statistics) are trivial. The conclusion of Theorem 2 fails
in this example, for if m is invariant measure on 72 and f(x) = 1, then the left
side of equation (1) is finite, but the inner integral on the right side is infinite.
Thus it is impossible to define an a for which (1) holds true.

ExampLE4. (Dynamical systems). Consider some system (economic, physical,
biological or what-have-you) whose state at time ¢ can be described by a “state-
vector” x(7) = (x(¢), - - -, x'P(f)) in E? (the “phase space”). If changes in the
system obey the differential equation X(f) = f(x(#)) (the dot denotes differentia-
tion with respect to time) where f does not depend on time, then it is well known
in the theory of dynamical systems that if solutions to the differential equation
are unique for every initial value problem x(7,) = X,, then time acts as a group
of transformations on E? in the following sense: define ¢,(x) = x(¢ + s) where
x = x(f). Then ¢,: E*—E? is well-defined and (s, X) — ¢,(X) (s€ R, X € E?) de-
fines a group action by R on E?; it is easily seen that ¢,,, = @,(d,), dy(X) = X
for all X, $_,(4,) = P and $,(6,6,) = ($:$)P.-

In applications it is sometimes of interest to take an observation (subject to
random error) at a known time ¢, for example

y=x(t) +e
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where € is a N(0, /,,,) random variable. This is not an invariant statistical
model; nevertheless Theorem 2 tells us that if the system is nonperiodic (free)
and the orbits (known in the trade as the “trajectories”) are locally closed, then
the likelihood function for a trajectory may be obtained by integrating the
N(y, I,,,) density function over that trajectory.

If Z is a Borel cross-section for the orbits, G is free and Lebesgue measure 2
is quasi-invariant (A(gE) = 0 implies A(E) = O for any g€ G and E C E?), then
we may get an invariant measure as follows: define the g-translate of 2 by 4,
(E) = A(97'E) and let J(x) be the Radon-Nikodym derivative d2/d4;,, evaluated
at x where [x] is such that [x]z = x for some z € Z. Then di(x)/J(x) is an invari-
ant measure element. By Theorem 2, the likelihood function of the trajectory
through a point w in the phase space is

toexp[—3 N2 (v — ¢ (W) W (g(W)) T dr .

ExampLE 5. If p = 2 and the differential equation discussed in the previous
example is

x® = 1 if x>0,
=—1 if x»<0,
X0 =1,

the trajectories are then “L-shaped” with cusps on the line x* = 0 and thus
cannot be diffeomorphic to R either in the differential structure induced by 7 —
x(f) or that induced by inclusion in E? (compare this with the situation in Koehn
(1970), Theorem 2). We have Borel cross-sections and Theorem 2 applies.
J(x) = 1 in this example.

2. Proofs. The key to Theorem 2 is representing -2~ as a bimeasurable image
of a cartesian product. This'is done as follows: we take the Borel cross-section
Z which is given to us by (vii) of Theorem 1. If z(x) is the element of Z which
lies in the orbit of x, we define [x] to be the (unique by the assumption that
G, = {e}) element of G which takes z(x) into x. In other “words,” [x]z(x) = x
where z(x) = Z n Gx. Consider the map ¢: ([x], 7(x)) — x. We shall prove
Theorem 2 by using Fubini’s theorem on G x (-2°/G) and carrying it over to 22~
via g.

Proor oF THEOREM 2. First we show that ¢ is a 1-1 bimeasurable map from
G x (Z°/G) onto #°. Consider II, the restrictionto Z of #: x — Gx. II is con-
tinuous, since for any open V c Z7/G, [I-%(V) = ==(V) n Z which is open by
definition of the relative topology of Z. 2°/G has a countable base for its topo-
logy (Effros (1965), Lemma 2.3) and is almost Hausdorff (Effros, Theorem 2.9
(10)), hence II-* is measurable (by Baker (1965), Lemma 2, which gives a con-
dition for inverses of 1-1 Borel functions to be Borel). The map (g, a) —
(9, I1-*(a)) is measurable on G x (:2°/G) since each coordinate is measurable.
(9, I7'(a)) — g(I1I-*(a)) is continuous since G is a topological transformation group.
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o: (g, a) — g(II-'a) is the composition of Borel functions and is thus Borel. By
Theorem 1 of Baker, x — [x] is measurable (note that our [x] is Baker’s ¢(x)™1).
m is continuous, hence ¢~*': x — ([x], (X)) is measurable.

A technical complication arises which requires us to restrict attention to
cross-sections Z with the following “local boundedness” property: for any x in
£ there is a nonempty open invariant neighbourhood U of x and a compact
set K such that Z n U ¢ K. This restriction causes no loss of generality, for if
any Borel cross-section Z exists, then 227, being separable metric, can be covered
with precompact open spheres S, S,, ---. For all 1 <n, let N, =GS, —
U321 GS;. The N’s are thus a partition of -2” whose members are invariant.
Let g,, g,, - - - be a sequence dense in G. Define Z, = Z n N,(1 < n) so that
Z=UZ, Forn,mz=ldefineY,,=2,ng9,5,and Z,, =Y, — Ur!Y,,
Now GS, = U= 9= S, (since x € GS, implies g~'x € S, for some g € G, therefore
there is a subsequence {gm,:i=1,2, ...} with Im; — 95 gn,~'x is eventually in
S, since S, is open), hence Z, = Z, N GS, = Z, N (Up=19.S,) = US, Vo =
Um=1 Z.n (disjoint union). Define »(z) = g,z forze Z,,.. n(Z) = U 90" Z,m
is thus a countable sum of Borel sets and intersects each Gz precisely once. Any
x € &2 lies in some N,, hence lies in the invariant set U = (J*_, GS, which is
open since the S, and their translates are open, and »(Z) n U lies in J%_, S,
which is compact since it is a finite union of closed balls. Thus »(Z) is a locally
. bounded Borel cross-section.

We next show that if 6~'(E) is of the form F x A4 (F and A4 open), then m(E) =
A(F)a(A) where 2 is relatively invariant on G (with the same modulus d as m) and
a is some measure on 2°/G. If we show that 2 x a is o-finite, it then follows
by the uniqueness-of-extension theorem (Halmos 13.A) that m and (1 x a)o~!
agree on the smallest o-field generated by the ¢(F x A)’s (this latter field is pre-
cisely the Borel field of 2”since ¢ is bimeasurable). As our 1 we shall use the
measure A(E) = {;0(9)u(dg), which is relatively invariant with modulus &
(Nachbin (1965), Chapter 2, Proposition 26).

ma is relatively invariant since

(mo)(go~'E) = (mo)(c~(9E))
(1 = m(gE)
= d(g)m(E)
= d(g)(mo)(c~'E) .
Take a measurable 4 in 22°/G, then for any measurable F in G, define the measure
1(F) = (mo)(F x A).

This is relatively invariant by (1), hence by the uniqueness of relatively invariant
measures of given modulus (Nachbin, page 138, Theorem 1), 1, is a constant
times 4:

Ai(F) = K(AACF) .
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K(A) is clearly nonnegative and easily shown to be s-additive, hence is the meas-
ure a that we want. Because the canonical map II: z — Gz is bimeasurable, it
induces a measure a* on Z; we shall not distinguish betweeen a and a*.

To prove 2 x a is o-finite, we show that every point in G x (Z2°/G) lies in a
set F x A (F and A4 open) for which mo(F x A) < oo, and it will then follow
by second countability of G and 2°/G that G x (-2°/G) may be covered by a
countable family of such rectangles F, x 4,, which proves o-finiteness. By
earlier remarks we can restrict Z to be locally bounded, whence for each x in
& there is an invariant open neighbourhood U of x such that Zn U C K, a
compact set. Let F be the interior of a compact neighbourhood of [x] in G; then
FK is contained in a compact set (since the product of compact sets is compact,
Dieudonné (1970), 12.10.5) and therefore is of finite measure. So m(F(Z n U)) <
m(FK) < oo, and o¢~Y(F(Z n U)) = {(g, z)|g € F, ze n(U)} which is a product
of open sets as desired. To prove Borelness of a, observe that -27/G is covered
by the open sets A,, therefore if K — 2°/G is compact, it can be covered by a
finite number of A4,, each of which has finite a-measure.

Now, we have proved

§ o fO)YM(AX) = [z OP)AX @)(dY) -
Apply Fubini’s theorem to get

§ o a(da) §¢ flo(l17"a))A(dg) ;

now use the definition of A:
flgll=a)A(dg) = f(g2)d(g)x(dy) - 0

Proor oF THEOREM 3. Choose some x, in 27 let H = G, , and define 27, =
{x|G, = H}. We now prove that 27, is closed. Consider the sequence x,, x,, - - -
of elements in 27, with limit x. Now, 4 in H implies x, = x, and also hx;, — hx
(by continuity of multiplication); but kx, — x, whence Ax = x by the Hausdorff-
ness of 2, hence H C G,. Since G, is conjugate to H, there exists g € G such
that H c gHg~'. A consequence of continuity of multiplication is that stability
subgroups are closed, hence H and gHg~' are analytic subgroups of G (Cohn
(1957), Theorem 6.5.1). Therefore H is an analytic subgroup of g Hg~* (Helgason
(1962) Chapter 2, Corollary 2.9), and since the two groups have equal dimension
it follows that they have the same component of the identity (Cohn, page 53).
Since G is a topological group, # — ghg~' is a homeomorphism, so H and gHg!
have the same number of connected components; each component of H is iden-
tical to one of gHg~* (since the components of a topological group are translates
of the component of the identity), and since the number of connected compo-
nents is finite by compactness, we have H = gHg~', completing the proof that
& is closed.

Take the Borel cross-section Z, which is given to us by Theorem 1 (vi).
Define 0,: G x Z, — Z”by 0,(g9, z) = gz; o, is measurable because it is a restric-
tion of the multiplication map, which is continuous. Therefore o,7(27,) is
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measurable in G x Z,; its projection on Z, is all of Z, (since all G, are conjugate
to H, every orbit Gx in 227 has at least one point in 27,). We now use the usual
trick to exhibit a finite measure equivalent to m: by Condition A, 227 is the union
of an increasing sequence of compact sets, 27= Ui, K;; define m, as the re-
striction to K, of m: m,(S) = m(S n K,); then P = Y 52, [2°m(K;)]"'m, is a proba-
bility measure equivalent to m. The restriction II, of 7 to Z, is measurable, and
7! takes Borel sets into Borel sets (Theorem 1 (iv)), hence the probability Q =
Pz~ obtained by projecting P onto Z, along orbits, is defined on the Borel sets
of Z,.

Now we take note of Aumann’s selection theorem (Aumann (1969), page 17,
quoted in Parthasarathy (1972), Theorem 7.2): let (Z;, Q) be a o-finite measure
space, let G be a standard measurable space and let S be a measurable subset of
G x Z, whose projection on Z, is all of Z;; then there exists a measurable func-
tion y from Z, to G such that (z, y(z)) € S for almost all (Q) z in Z,, the excep-
tional set . being Borel. A standard measurable space is a measurable space
which is a bimeasurable image of the cartesian product of {0, 1} denumerably
many times; in particular a separable Lie group of nonzero dimension is stand-
ard. Applying Aumannn’s theorem, we get a measurable y:Z, — G such that
(2, 7(2)) € 0,7 %(Z) for ze Z, — _#. Now, z — (z, r(2)) is measurable and so is
(2, 7(2)) = (1(2))2, hence B: z—(7(2))z is measurable on Z, —_#. By Kuratowski
(1966), Section 39, V, Theorem 1, 8~ is measurable since g itself is one-one and
measurable, hence Z = f(Z, — _#') is a Borel cross-section for the orbits of
& — A" where A = n~'n(_#) is an invariant P-null (hence m-null) Borel
subset of 2%, and we have G, = H for all z in Z.

As in Theorem 2, define z(x) = Z n Gx; then we have measurable map x — [x]
taking values in G such that [x]z(x) = x (use the inverse of the ¢(x) of Baker’s
Theorem 1; contrary to the situation in our Theorem 2, ¢ is no longer unique).
Define the map o: ([x]H, 7(x)) — x and put the quotient topology on G/H. As
in Theorem 2, II-! is measurable, therefore (gH, a) — (gH, I1-'(a)) is measurable.
Now (gH, II-Y(a)) — gH(II-'a) (note that the latter is a single element of 27 since
II-Y(a) is invariant under H) is continuous, thus ¢: (9H, a) — gH(Il'a) is Borel.
¢! factors as x — ([x], m(x)) — ([x]H, =(x)) and hence is measurable.

An easy corollary of Weil’s theorem on relatively invariant measures says
that the integral taking functions f on G/H into {, f(gH)d(g)x(dg) is a relatively
invariant integral of modulus ¢ (for a proof see Bondar (1972), page 330, Lemma
1). For E C G/H, define A(E) as the value assigned to the indicator function of
E by this integral. Then 2 is a relatively invariant measure of modulus d; it is
easy to see that it gives finite measure to compact sets, and nonzero measure to
nonempty open sets. Again, mo is relatively invariant with modulus d as in (1).
Writing £ for the image of F under the canonical map from G to G/H, if F is
measurable in G, and 4 in 2°/G, the uniqueness of relatively invariant meas-
ures implies that mo can be written mo(F x A) = K(A)-A(F) where, as in the
proof of Theorem 2, K can be shown to be a measure which we shall write as a.
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Now cover .2” by a countable family {S,} of precompact open balls, and cover
G by an increasing sequence {F,} of open sets whose closures are compact. The
Borel sets Fy(Z n S,)) cover 27— ¢, and as in Theorem 2, are of finite m-meas-
ure. o Y(F(ZnS,)) ={(9gH,a): geF;, aecn(Z n S,)} which is a product of
measurable sets, hence (G/H) x (:2°/G) is covered by a countable family of rec-
tangles with finite mo-measure, which proves that 1 x a is o-finite. An exten-
sion of 2 x a must be unique, so m = (1 x a)o~'. o-finiteness of a follows from
the previous argument: if we choose any nonempty F,, say F, then X(F ) > 0;
the foregoing shows that (1 x a)o'(F(Z n S,)) = A(F)-a(z(Z n S,)) is finite,
hence a(7(Z n §,)) is also finite; since the collection of sets Z n S, covers Z,
a is o-finite.

By now we have proved

§ o fO)M(dX) = im0 [OY)(A % @)(dy)

where y = (gH, a) is the generic element of (G/H) x (:2°/G). If we again abuse
our notation by identifying @ with a* = all, and a € 22°/G with the correspond-
ing z = II-'a, Fubini’s theorem gives

§z a(d2) \onee/n f(92)A(dgH) .

Recalling the definition of 2, this becomes

§7 a(dz) §6 f(92)0(9)1(dg) - 0

ProoF oF COROLLARY 1. Make a change of variable g = A[x] and

f(92)5(9)r(dg) = f(h[x]2)o(A[x])1(dh[x])
= f(hx)3(R)S([XDA([x])1(ah)
(readers of Nachbin (1965), Chapter 2 or Fraser (1968), Chapter 2 will be fami-
liar with these manipulations). ]

Acknowledgments. To P. Antonelli for discussion, to University College
London for hospitality. Most of all, to Professor R. A. Wijsman who has given
a great deal of assistance at many stages of this work.

REFERENCES

[1] AuMaNN, R. J. (1969). Measurable utility and the measurable choice theorem. Procédés
du colloque “‘La Décision”’ (tenu 1967). CNRS. Paris.

[2] BAKER, K. A. (1965). Borel functions for transformation group orbits. J. Math. Anal. Appl.
11 217-225.

[3] BONDAR, J. (1972)" Structural distributions without exact transitivity. 4nn. Math. Statist.
43 326-339.

[4] Boursaki, N. (1962). Intégration (Chapter 6.) Hermann, Paris.

[5] Coun, P. M. (1957). Lie Groups. Cambridge Univ. Press.

[6] DAwID, A. P., STONE, M. and ZIDEK, J. V. (1973). Marginalisation paradoxes in Bayesian
and structural inference. J. Roy. Statist. Soc. Ser. B 35 189-213.

[7] DIEUDONNE, J. (1970). Treatise on Analysis, 2 and 3. Academic Press, New York.

[8] EFFRros, E. (1965). Transformation groups and C* algebras. Ann. of Math. (2) 81 38-55.

[9] FrAser, D. A. S. (1968). The Structure of Inference. Wiley, New York.



[10]

[11]
[12]

[13]
[14]
[15]
[16]
7]
[18]
[19]
[20]
[21]

[22]

[23]

[24]
[25]

BOREL CROSS-SECTIONS AND MAXIMAL INVARIANTS 877

GLimm, J. (1961). Locally compact transformation groups. Trans. Amer. Math. Soc. 101
124-138.

HALMos, P. (1950). Measure Theory. Van Nostrand, Princeton.

HELGASON, S. (1962). Differential Geometry and Symmetric Spaces. Academic Press, New
York.

KIEFER, J. (1957). Invariance, minimax sequential estimation and continuous time pro-
cesses. Ann. Math. Statist. 28 573-601.

KoeHN, U. (1970). Global cross-sections and the densities of maximal invariants. Ann.
Math. Statist. 41 2045-2056.

Kuratowski, K. (1966). Topology 1. Academic Press, New York.

NACHBIN, L. (1965). The Haar Integral. Van Nostrand, New York.

PaLars, R. (1961). On the existence of slices for actions of noncompact Lie groups. Ann.
of Math. (2) 73 295-323.

PARTHASARATHY, T. (1972). Selection theorems and their applications. Lecture Notes in
Mathematics, 263 Springer-Verlag. Berlin.

ScHWARTZ, R. (1969). Invariant proper Bayes tests for exponential families. 4nn. Math.
Statist. 40 270-283.

SToNE, M. (1965). Right Haar measure for convergence in probability to quasi posterior
distributions. Ann. Math. Statist. 36 440-453.

WusMAN, R. A. (1966). Existence of local cross-sections in linear Cartan G-spaces under
the action of noncompact groups. Proc. Amer. Math. Soc. 17 295-301.

WusMAN, R. A. (1967). Cross-sections of orbits and their application to densities of maxi-
mal invariants. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1 389-400, Univ. of
California Press.

WusMAN, R. A. (1972). Examples of exponentially bounded stopping time of invariant
tests... Proc. Sixth Berkeley Symp. Math. Statist. Prob. 1 109-127, Univ. of California
Press.

WILLARD, S. (1970). General Topology. Addison-Wesley, Reading, Mass.

ZiDEK, J. (1969). A representation of Bayes invariant procedures in terms of Haar measure.
Ann. Inst. Statist. Math. 21 291-308.

RESEARCH BRANCH

CANADIAN RADIO-TELEVISION COMMISSION
100 METCALFE ST.

OT1TAWA KI1A ON2

CANADA



