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HYPOTHESES GENERATING GROUPS FOR TESTING
MULTIVARIATE SYMMETRY

By LUDGER RUSCHENDORF

University of Hamburg

Hypotheses generating groups are constructed for the class of multi-
variate symmetric distributions and for the€ corresponding multisample
problems. Defining ranks as maximal invariants under these groups we
get distribution free procedures. Applications to further multivariate test
problems are indicated.

1. Introduction. An open problem stated in a paper by Bell and Haller (cf.
[1], page 263, cf. also [2], [4]) is to find a group of monotone, invertible and
bimeasurable transformations of R?, which generates the class Q. of p-dimen-
sional symmetric and continuous distributions or a “dense” subset of it. In this
context a group G is called a hypothesis generating (HG) group for the class of
distributions Q,, if for each Pe Q, we have Q, = {gP; g € G}, where gP is the
image of P under g (cf. [1], [2]), and a p-dimensional distribution P is called
symmetric, if 7P = P for all = out of the symmetric group r, of all p! permuta-
tions, with w(x;, -« -, x,) = (Xzqy» =+ *» Xe(p)-

The solution of this problem is of great importance for the construction of
multivariate symmetry rank tests, since it is useful to define ranks as maximal
invariants under G for two reasons. Firstly, these rank statistics yield distribu-
tion free (DF) procedures for Q,, and secondly, the theorem of Berk and Bickel
(cf. [5]) is applicable if an additional completeness result is known.

For multivariate hypotheses, constructions of HG-groups are known prima-
rily for hypotheses which reduce to one-dimensional problems, as e.g. for the
hypothesis of total independence (cf. [6], page 50, [2]). An exception is a con-
struction of a HG-group G, by Smith [6] for the class Q» of all continuous dis-
tributions on (R?, B?) with strictly monotone conditional distribution functions
(df’s). But for this class of distributions—being too large for the application of
DF-techniques—this method leads to tests, which are essentially univariate and,
therefore, of low power.

In Section 2 we provide a HG-group G, for the “dense” subset Q. of Q.7
containing all elements of Q,» with strictly monotone conditional df’s. The
resulting maximal invariant is intuitively quite appealing. For our construction
we mainly use some results derived for the multivariate Rosenblatt transforma-
tion z,, which is defined for F € Q7 (here and for the rest of the paper we identify
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distributions and df’s) by:
Tp(Xp, ey Xp) = (Fy(xy)s Fop(Xa|X0)s + o5 Fpppyenpea(Xp | X5 2 05 X))
where F,, ..., , are the conditional df’s of F. The simple idea for the construc-

tion of G, is then applied to the multi-sample case. Further applications are
. indicated in Section 3.

2. The multivariate symmetry case. For FeQ?, r,: R? — (0, 1)? is a bijec-
tive, bimeasurable transformation. Furthermore, generalizing a well-known
fact for the one-dimensional case, Smith [6] has proven that for F,e Q? the set
G, = {t77} o 75,3 F € Q7} is a HG-group for Q7.

LetE = {xeR? x, < x, < --- < x,}, and let Q7(E) be the class of continuous
distributions on (£, ” n E) which have strictly conditional df’s on E. For dif-
ferent reasons one is led to the conjecture that E should be (as in the independ-
ence case) the “natural” rank set. If one tries to prove this by taking Q.7 instead
of Q7 in the definition of Smith’s group G, one fails, since x € E does not imply
tp o 75 (%) € E for F e Q,7, which can be seen for p = 2 by taking F as two-
dimensional normal df. '

For FeQr(E) we define the modified Rosenblatt transformation z, by the
restriction of 7, to E, z,: E— (0, 1)?, and by means of the result obtained by
Smith for Q» we get the following analog for Q?(E).

LeMMA 1.

a) For FeQ*(E), vy is a1l — 1 transformation of E onto (0, 1)?.

b) For Fye Q*(E), G,) = {tp™" o 74; F € Q*(E)} is a HG-group for Q*(E).

For F, F, € Q?(E) we now define g, : R? — R? by gx(x) = 7 o 7,7 0 75 0 77(x)
for xenE, mey,. (9ris defined almost everywhere, cf. [7]).

THEOREM 1.

a) G, = {9z FeQr(E)} is a HG-group for Q..

b) A maximal invariant under G, is the p-tuple of ranks (ry, ---,r,), where
r{x, - - -, x,) denotes the rank of x, among {x,, - - -, x,}.

Proor.

a) The group properties of G, are easily derived from the corresponding
properties of G,/. We have to show that

(1) grLeQp for all Le Q,, FeQr(E) and
(2) the G,-orbit of L, G,(L), equals Q.7 for all L € Q..

To (1): By definition of g, and from Lemma 1 we obtain that g, maps zE
into #E for all = € y, and F € Q7(E) and that g, L has strictly monotone marginals
for Le Q. For LeQ,” and o €y, we have

grL(od) = X c), L(m o T 0 p(n71 0 04 0 E))
= Zne)—p L(T;; ° TF(ﬂﬁlA n E))
which is independent of ¢ € y,. Therefore, g,L € Q..
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To (2): For L € Q.7 we define h: Q> — Q?(E) by h(L) = L(+|E), where L(+ | E)
is the conditional distribution of L under E(L(E) = 1/p! > 0); k(L) has strictly
increasing marginals if L has. Furthermore # is bijective, and for P € Q?(E) the
inverse of 4 is given by

h(P)(A) = 1/p! Doy, P(x14 0 E) .
For Ae®°,
h=Y (5" o 75, A(L))(A) = 1/p! Direry T bo z'FOL(ﬂA N E|E)
= Zirer, L(zr™ 0 7p(m4 0 E)) = gx(L)(4) -
Lemma 1 now implies:
Gy(L) = {gx(L); F e Q*(E)}

= {h7} (57" 0 75, h(L)); F € Q*(E)}

= h7'Q?(E) = Q.

b) From Lemma 5.3 in [6] it follows that the orbit G,(x) equals nE for all
xenEand all ey, Therefore, a maximal invariant for G, is given by the
rank statistic (r,, - -+, 1,).

In the multisample case of testing whether the df’s of n independent p-dimen-

sional symmetric random variables are identical, we have the hypothesis Q, =
{F™; F € Q;}, where F™ is the n-fold produce measure. Let
E = {(xp «, %,); X, €R?, xp, < Xp < w00 K Xy I1<ign,
Xy < Xy < v e < Xy} R, xi:(xli""’xpi)’
and let Q**(E’) be defined analogously to Q?(E).

The following theorem shows that E’ is the “natural” rank set for the multi-
sample problem. To prove this, we first observe that each F» e Q, is invariant
under the elements of the wreath product S” = y, ~ 7, = {(7y, « + +, Ty V); T, € 7y
1 sisnve Tn}’ with (7[1’ MR v)(xl’ Tt xn) = (n-l(xv(l))’ Tt 77"n(xu(n)))’
x; € R?. ST is called the symmetry group of Q,, |$'| = (p!)*n!.

For F ¢ Q»*(E") we define the modified Rosenblatt-transformation z, by restric-
tion to E’ and further define functions £, : R?* — R?" for F € Q?"(E') by hy(x) =
T oty oty (n7'x) for xenE', mey, ~ 1, Fo€QP"(E’), and obtain:

THEOREM 2.

a) G, = {h,; Fe Qr*(E")} is a HG-group for the multisample problem Q,.

b) A4 maximal invariant for G, is the pn-tuple (Fy, -+ «y Figs Gus =+ *s Gp1s = s
Gins ***» Gpn)s Where g,(x,, - -+, x,) is the rank of x, among {x, ---,X,;},
1<igp, i £j<n, and where ry, is the rank of min {x,, .-, Xx,,} among
(min{x, -, xhlsisnlsksn

Proor. The proof of Theorem 2 is analogous to the one of Theorem 1. Analo-
gously to Lemma 1, G/ = {r;7" o 7, ; F e Q**(E")} is a HG-group for Q**(E’).
Furthermore, the fact that y, ~ 7, is a symmetry group for Q, implies that
h: Q,— Q*(E"), defined by h(P) = P(- | E), is bijective. This together with the
proof of Theorem 1 implies Theorem 2.
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REMARK 1. a) The basic rank sets for the multisample problem are E’ and
the (p!)*n! images under 7, ~ 7,. These rank sets are essentially different from
those in the independence case; compare the different types of rank sets pro-
posed by Bell and ‘Haller [1] in the case p = 2.

b) Using the map k: Q, — Q?*(zE’) defined by A(P) = P(+ |7E'), T€y, ~ 7u
fixed, and the group G,” consisting of transformations 4, defined by

he'(x) = @' o 7571 0 Ty (n'71x)
for xen'onE, n'ey,~7r,, FeQr(nE'),

we get different HG-groups with maximal invariants (7, =« * Z4n» G115 = *> Gpu)s
where r,, is the rank of the kth order statistics of the components of x; under
the set of kth order statistics of the components of x;, - - -, X,.

c) A different HG-group for Q is

sz) = {gr(m; gr € Gz} H with g[«'(m(xv R} xn) = (gF(xl)’ R ] gF(xn)) *

But it is difficult to determine the maximal invariant for G,. For the relation
between different HG-groups cf. [3].

In the nonstationary case of testing whether the df’s F, of the p,-dimensional
random variables X;, 1 < i < n, are symmetric, we get Q, = {[[%, Fi; F; € Q.7
1 < i < n}, where J7, F, is the product measure of F,, - - -, F,. The symmetry
group for Q, is §* = []i_, 7, and we obtain the following result.

THEOREM 3.

a) A HG-group for the nonstationary multisample problem is G, = T]7-, Gy(ps)s
where G,(p,) is the group constructed in Theorem 1 for the p,-dimensional case.
b) A maximal invariant for G, is the N-tuple

(gua""gplla""glm""gp”«n)a N:Z;’L:]Pz

3. Further applications and an open problem. The results of Section 2 are
easily applied to further multivariate problems, which are characterized by sym-
metry groups in a similar way as Q.7, e.g. to the hypothesis of coordinatewise
symmetry about 0. To give a concrete example, let s: R? — R? be the shift,
defined by s(x;, - -+, x,) = (X, -+, X,, X;), and let Q(s, p) = {F € Q?; sF = F},
be the so-called hypothesis of stationarity.

The symmetry group for Q(s, p) is the cyclic group $” generated by s, §' =
{1, s, s, - -, s*7'}; a corresponding minimal set E" is given by E” = U,e,,_, 7E,
with E as in Section 2 and 7(x;, - -+, X,) = (Xzys ***s Xepor X,p) fOr 7€y, ;. A
completeness theorem for Q(s, p) follows easily from the theorem of Bell, Black-
well and Breiman (cf. [4]).

Let Q?(E") be the class of all continuous distributions concentrated on E”
which have strictly monotone conditional df’s on E”, then g: Q(s, p) — Q?(E")
defined by g(P) = P(- | E") is bijective. Defining now k: R* — R? by k(x) =
s¥ o077 o tp (s7Fx) for xes*E", 1 < k < n, Fe Q?(E"), we get the following
analog of Theorem 1.
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THEOREM 4.

a) Gy = lkg; F e Qr(E")} is a HG-group for Q(s, p).
b) A maximal invariant for G, is R(x) = 37_, il,i5.(x), x € R®.

ExaMPLE 1. In the case p = 3 we have the rank sets

E" = {(x;5 X3, X3); X, > max {x;, X,}}
SE" = {(x;, x;, X;); X, > max {x,, X}
SE" = {(x1, X3 X5); %, > max {X,, X}

OPEN QUESTION. An alternative method for constructing DF rank tests is
given in a paper by Witting [7]. In this paper ranks are defined as maximal
invariants under a group G, so that Q, is invariant under G, i.e. GQ, c Q, with
the further requirement that the (finite) symmetry group S7 for Q, has the follow-
ing cross-sectional property:

a) for all x, y there exists a 7 € $* so that #G(x) = G(y) and
b) for all x and 7 € §” there exists a y so that 7G(x) = G(y).

It is noteworthy that all constructions of HG-groups I have found in litera-
ture—including the one in this paper—have this cross-sectional property and
conversely, that all constructions of groups in this second sense lead to HG-
groups. The question remains open whether these two concepts are equivalent
is some sense.
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