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ASYMPTOTIC EXPANSION AND A LOCAL LIMIT THEOREM
FOR A FUNCTION OF THE KENDALL RANK
CORRELATION COEFFICIENT

By ZuzANA PRASKOVA-VizZKOVA
Charles University

In the present paper, an integer-valued version (Tn) of the Kendall
rank correlation coefficient is considered. Under the hypothesis of inde-
pendence, a local limit theorem with the Edgeworth expansion for Tw is
proved and an asymptotic expansion of the distribution function of T is
derived.

1. Introduction. Let X, Y, --., X, Y, be independent random variables,
the X;’s with a continuous distribution function (df) F,, the Y,’s with a con-
tinuous df G,. Let R; and S, be the ranks of X, and Y, respectively.

Consider the Kendall rank correlation coefficient

(L) == NN — 1) 5%, 712, sign (R, — R;) sign (S, — S)
and its transformation 7' defined by
(1.2) T =4NN — 1)'Ty, — 1.

It is well known that ET, = N(N — 1)/4, Var T\, = N(N — 1)(2N + 5)/72
and that the distribution of 7, is asymptotically normal (see Kendall (1948),
page 69). The cumulants (of the statistic $* = 27, — N(N — 1)/2) are given
explicitly in Moran (1950) and Silverstone (1950). The Edgeworth expansion
up to the order N-* for the df of r was investigated numerically (without study-
ing the rate of convergence) by David, Kendall and Stuart (1951).

In the present paper, the Edgeworth expansion is established both for the
probabilities P(Ty = k) (Theorem 2.1) as well as for the df of T, (Theorem

2.2), in the latter case with additional terms due to the lattice character of the
distribution.

2. Basic notation and main results. Let @ and ¢ be the df and the density
of .77(0, 1), let H, be the Hermite polynomial of degree m (defined by
dmo(x)[dx™ = (—1)"H,(x)¢(x)). Let «;, j = 1, be the cumulants of T,; &, «,
being denoted as y, %, alternatively. Put

(2.1 E; = k;jo7, j=1.
For every integer v > 1 put
(2.2) Qu(X) = 1% Hypar e (%) 1553 (k1) 7 () (2)1)*5
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and
(2.3) 0, (x) = — 2% Hyy py50,-4(%) TL525 (k5 1) 7 (Bas /(215 5
where the summation Y * extends over all nonnegative integers k,, - - -, k,,, such

that 3744 (j — 1)k; = v (and )] in the subscripts stands for > %1}).

J i=2

Notice that

(2.4) 2 (0090, = £()0u() -

Further define

(2.5) D,(x) = D) + ¢(x) 1223 0nlx),

(2.6) Byy(x) = Y3, cos (2mmx) (28} (zmy)1 iz1,
2.7) Byi(x) = Y5, sin (2amx)(2%(zm)?+)-1 220.

Throughout the paper, ¢ and C denote positive constants, the values of which
are not specified and may differ in different formulas (or even in different places
in the same formula). The phrase “F,(x) = Gy(x) + O(N~?), uniformly in x”
means the same as “|Fy(x) — Gy(x)] < cN-? for all x.”

Now, we shall formulate the theorems; their proofs will be given in Sections
3 and 4, respectively.

THEOREM 2.1. Denote x = (k — p)fo, k =0, 1, ..., N(N — 1)/2. Then
(2.8) oP(Ty = k) = p(x)(1 + X221 Qu(x)) + O(N7?),
uniformly in k.
THEOREM 2.2. Define
=1, A=dm 4+ 1,4m + 2,
hy = —1, =4m + 3,4m,

where m is an integer. Then
P
@9 POT(Ty = ) <X = Q) + Disk o Bi(ox + ) &0, ()

+O(N-7),
uniformly in x. ‘

REMARKS. 1. The sum on the right-hand side of (2.9) includes terms, which
are of higher order than N-7; this is due to the fact that both the expression
and the proof are more easy to handle in the present form (see Esseen (1945)).

2. The functions B, defined by (2.6) and (2.7) are all periodic with period 1.
The functions B;, 2 = 2, are continuous while B, has the jump 1 at every
integer point x. Explicitly, B,(m) = 0, B(m+4+t)=—t+4, m=0, +1, ...,
0<t<l.

Let us specialize Theorem 2.2 for p = 2, summing up the terms of order N-2.
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COROLLARY 2.3.

2.10) P Ty — ) < ) = O(x) — Ep()H(x)(4)"

+ 07 By(ox + p)p(x) + OV,
uniformly in x.

3. Proof of Theorem 2.1. Let f,, fy, fy be the characteristic functions (cf)
of Ty, Ty — u, (Ty — p)/o, respectively. First we shall give some lemmas.

LemMaA 3.1. The following inequalities hold true:
G.1) v < e for 0 < |f| < 2/N,
(3.2) | f(t)] < ce=o¥ for 2z/[N g |t| S m.
Proor. The cf f, equals
(3.3) Sy = (N1 — ) o (1 = em)(1 — ¢)=>

which follows from the generating functign of T, established by Hajek (1955)
and Kendall and Stuart (1961), page 479.
From (3.3) we immediately get

(3.4) Jult) = (N sin (1]2) - - - sin (Ne/2)(sin (¢/2))" .
Making use of the symmetry of £, and of the ‘inequalities
[sin x| = x(1 — x?/6) valid for x>0,
sin x < x(1 — x¥/12) valid for 0 < x=<~,
(1—-—x=1-— Nx valid for 0 <x<1,
we obtain for 0 £ r < 27/N
/vl = ()T TS G12)(L — Je/A8)((2)(1 — £[24))~"
=1 — 224)~" 1., (1 — j**/48)
=< cexp(—#£ 2N, j*/48) < cexp(—1ia?/4) .

Now suppose that 27/N < ¢ < 7, let K denote the largest integer not exceed-
ing 2z/t. Then, utilizing sin x = 2x/z for 0 < x < 7/2, we have

|fx®] = KI5 (1 — JR/A8)[(NV(L — £/24)%(t[m)"~F)
< Klexp(—2 3K, j2/48)[(N!(1 — £[24)%(t[m)¥-K) .

Applying Stirling’s formula and the definition of K, we get
|/w(®)] < cexp(—K + N)(Ki[m)*N="(z[1)" exp(—1* L1, j*[48)

< cexp(—K + N + Klog2 + Nlog (z/Nt) — n%/144r)

< cmaXy, y<i<, €Xp(—27/t + N + (2x/t) log 2 + N log (n/Nt) — =/144r)

= ce~ ", 0

LeMMA 3.2. For |t| < 07, 0 < a < 4, the following expansion holds true:

3.5) log fy(1) = X3au ko (i) ]2))! + R(1)
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where the remainder R(t) satisfies the inequality
(3.6) IR(1)| < cNr+3rse |
Proor. By Kendall and Stuart (1961), page 479,
log fy(1) = myit + Z51 my(i0)9/(2))1

where ; are the cumulants of 7'y, given by formulas

(3.7) o= NN = 1)/4,
(3.8) Ky =0, j=1,
(3.9) Ky = Byy(31X, s — N)/2j, j=1,
B,; are the Bernoulli numbers. It is known that
Bl = 42))!(2m) 7%, jz1,
hence,
|25 = 42)IN>*(2m)= jz1.

Now we can write
log (1) = i may ity 92 )t = Lhos mas(i0))2))! + R(1)
(RO = X7y lrog 7 /(2))! < 4N 35,40 (N1 (2m) 7%
For [t < ¢7'%*, 0 < a < , we have
[R()| < 4N(Nt[2m)*+¥(1 — (Nt[2m)?)~t < cN#H+3pete | 0
LemMa 3.3. For || < 0%, 0 < a < L,
(3.10) [ty = X1 + Tzt Py(in)) + Z(1)

where P,, are polynomials of degree 4v in it, coefficients of which are of order N-,
or, explicitly, in the notation of Section 2,

(3.11) Py (it) = 2% T15E5 (kD)7 (Roy /(2)D)ki(ir) > +2 2 k5
and the remainder Z(t) satisfies the inequality
(3.12) [2(1)] = cem™N=|e7] | Z,(0)] ,

where Z, is a polynomial in t depending only on p.

Proor. Suppose that |f| < ¢, 0 < « < 4. From Lemma 3.2 we get

Jit) = fi(t]o) = e exp (L5, £ (i0)9/(2))! + R(t}o)) ,
[R(tfo)| = eN**+3(t]a)r+2.
Denote
St 0) = 25 Roy(i)9]2))F + R(1]0) .

Now, suppose that || < 0% 0 < a < L. Then |£(,0)] < C and from the

Taylor expansion we get for a 9 ¢ (0, 1)

(13)  fult) = e SIS (KD TEH L, 0) + (pl)IER(E, a)etictoy
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Making use of the multinomial formula, we have for k > 1

€41, 0) = T ALTTEE (ki)™ I 5ee (Bay(i0) ) (2))1) SR (t[a) r+1
where the sum is extended over all nonnegative integers k,, - - -, k,,, such that
Lbtik; = k. Observe that £,; = O(N~7*') and R(t/o) = 1***2S(t/s), where
S(tjc) = O(N-?). Hence, for given k,, - -+, k,.,, D251 k; =k,
1o (Basli0)9)(2))) 5 R(tfo)rr s = #3%D(N)Y
where
D(N) = O(N-%ikjtk)
and 3] in the superscripts stands for };2*}. Consequently, the terms of (3.13)
can be ordered in increasing powers of N. We shall write
fN(t) = e—t2/2(1 + Pz(it) + o+ PZ(p—l)(it)) + Z(t) .
In this notation,
Po(ir) = 27 152 (k)™ 3= (Bos(i0)[(2))1) iRt o) o1,
where the sum }]* is extended over all nonnegative integers k,, - - -, k,,,, satisfy-
ing (for given v, 1 < v < p — 1) the conditions
ky+ oo 4k, =k,
ptijk; —k=v
with k varying from 1 to p — 1. These conditions can be written as
(3.14) (= Dk =v.

On the other hand, k; > 0 for all 2 < j < p + 1. Therefore k; = 0 for v +
2 <j=<p+1 and thus (3.11) holds true. Maximizing 2 Z““]k under con-
ditions ) %%; (j — l)k; = v for nonnegative integers k;, 2 < j < v, we obtain
the degree of the polynomial P, . Especially, we have

Py(it) = E(it)*/4!,
P(it) = Ey(it)°[6! + £ 2(i1)%/(2(41)%),
Py(it) = Ey(it)*[8! + £, Eq(it)°/(4161) + £2(ir)/(3!(4!)°) .
For the remainder Z(r) we get
Z(1) = e~ T2t 1 T13E (k,1) (i) #*5D(N)
+ exp (94 (s, 0)) 20 155 (k) 7= 4 D(N))

where }}' denotes the summation over all nonnegative integers k,, - - -, k., such
that 124k, = kand 3178 jk;, — k> pfor1 <k <p—1,and Z2denotes the
summation over all k,, - .-, k,,, such that }}#*1 k, = p. Hence,
[Z(t)f § ce—t2/2(|zp—1 1 p+1 k. y) ltZij]N—LJk ke
b I () s AN < Nl Z,0) .
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REMARK. The Fourier transform implies
(3.15) (27)7t (=, exp(—itx — *[2)P,,(it) dt = ¢(x)Qy,(X),
Q,, being defined by (2.4).
Proor or THEOREM 2.1. Making use of the formula
P(Ty = k) = (7)™ {2, e*f,(v) dv
and putting v = ¢/o and x = (k — p)/o, we have
oP(Ty = k) = (2r)~* (=, e~"*f (1) dt = J, + J,,
where
Ji = (27) 7 con €7y (1) dt
Jy = (2m)? $oacitizro e—”“f'N(t) dt
and 0 < o < ¢

We obtain from Lemma 3.1 that J, = O(N-7) for every positive integer j.
Utilizing (3.10) we have

Jy = (2r)7t e, em (L - Sl P (i) dt
— (27)7 §s0a €A1 4 T2 Py (i) dt
+ 2r) ' §ygpe T Z()dt =1, + I, + I .
From (3.15) we obtain
L= o(x)(1 + 2171 Gu(%)) -
As we can easily show, I, = O(N-?), I, = O(N~?) and all order symbols are in-

dependent of k. [J

4. Proof of Theorem 2.2.

Lemma 4.1. Let A, T and ¢ be arbitrary positive constants, let F be a nondecreas-
ing saltus function and G a real function of bounded variation on the whole real
line, f and g the corresponding Fourier-Stieltjes transforms such that

(i) F(—00) = G(—o0) = 0, F(+00) = G(++ o),
(i) F and G may be discontinuous only at x = x,, x, < X,.1, n =0, +1,
+2, ..., and there exists a constant L'> 0 such that min (Xpp1 — x,) = L,
(iii) |G'(x)| £ A everywhere except when x = x,, n =0, +1, ...,

(iv) $Z2 ([A) — 9(@)l/lel) dr = .

Then to every number k > 1 there correspond two finite positive constants c,(k)
and ¢,(k) depending only on k such that

(4.1) |F(x) — G(x)| < ke(2m)™ + ¢,(k) AT,
provided that TL = c,(k).

For proof see Esseen (1945).
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ProOF OoF THEOREM 2.2. We shall apply Lemma 4.1. Put
(4.2) F(x) = P(Ty — p)fo < %),
2
(4.3 G(x) = @,(x) + X1 o~ Bufox + 1) 4 @),

where @, B, and %, were defined in Section 2. The corresponding Fourier—
Stieltjes transforms are

(4.4) J0) = fu(1)
and

9(2) = {2, e dG(x) .
Let us denote

(4.5) 9,(1) = el + Tpi Po(in))
where P,, is defined in (3.11). Then we get

(4.6) 9(1) = 9,(1) + ¢(1),
where

. ; d?
(1) = —it iz hyomt (=, e By (0x + p) T @, (x) dx .

Making use of the identities

(4.7) dd: = (= 1) p(X)H,_,(x) ,

X
(4-8) "O(X)H, 1) »
(4.9) [, etop(x)H,(x) dx = (if)Te~*",

we obtain after rather lengthy but easy calculations

(4.10) O(t) = —t 1 22) S e im(2ame) M (t 4 2mmo) T, (t 4 27mo) ,

m=—

where Y}’ means that the summation extends over all integers except zero. We
can see that G is discontinuous only at points x, = (—# + n)e~', n =0, =1,
+2,.... For x # x, we have

G'(x) = @(x)(1 + X721 Q5.(x)) ,
+ Dzl { < Byox + u) ey <I>p(x> + Biox + 1) o d i Dol >}

Observe that

iBl(X)z—l, x#0, +1, +2, ...,
dx
i By (x) = “—Bzz_l(x) for all x,
dx
4 B,;11(X) = By(x) for all x.
dx
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Hence,
dr
Gl(x) — h,,_lo“”‘”Bp—1("x —+ p) 21; (Dp(x)

= (= 1), ,0=" DB, (0x + p)p(x)(H,_1(x) + T2 0n(¥)) »

where Q,, is the polynomial Q,, defined by (2.2) with Hypashj4p-1 instead of
szﬂzkj. Hence, for x # x,,

(4.11) IG'(x)| < com0b = 4,

Further put L = ¢7', T = no® and suppose that N is so large that TL =
ma = ¢y(k), ¢y(k) being the constant in Lemma 4.1. It remains to estimate

(4.12) e = §Z0 (1) — 9@t dt = §Z35a + §5, + 5
=¢ + & + ¢&;.

First, we shall consider ¢. Choosing 0 < a < &, we obtain from (4.4),
(3.10), (4.5) and (4.6)

& = Sinson (IZON/11) d + Siz0a (19(D)1/]1]) dt

+ Soaciuszs (1S() — 9(0)|/|2]) dt .
From (3.12) we get

(4.13) §isoe (1Z()|l]) dt = O(N=7) .
Now we shall consider the function ¢(¢)/t for |t| < mo. Obviously,
GOI/H] < D228 S [27mo| |t + 2zmal g, (t + 2nmo)|
and (4.5), (3.11) and the assumption |7| < 7o imply
GO < € Nmay e (mro)o~s

Consequently, for every integer j = 2, there exists a positive constant C such that

(4.14) gl < Coi, | < 7o
Hence,
(4.15) Sie1s0e (I2(D1/2]) dr = O(N?) .

It remains to estimate §,ac <00 (| /() — 9(2)|/|2]) dt. We have

Vorcrtissa ([ (8) — 9OI/11]) dt = Foaciusso (LAO)/]2]) dt
+ Sonciusso (19()/12]) dt -
Making use of (3.1) and (3.2) we obtain

(4.16) Soaciusee ([ S(DI/|2]) dt = O(N=7).
Finally, it can be easily shown that

(417)  Neaciuzeo (9OI/11]) A8 = Foacioszo (195(0)1/]1]) dr

+ Soeciusme (IP(D)|/|t]) dt = O(N-?),
which together with (4.13), (4.15), (4.16) implies that &, = O(N~-?).
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To investigate ¢, we shall use the method given by Esseen (1945), Theorem
4.3. Obviously, we have

& = S”"z(lf(f) — 9(Ol/lrl) dr = 35" (l9,()\/14]) dt
V55 (1LA0) — g\ 1e]) dt
S’”’2(lf(f) — $Ol/lt]) dr + O(N7) .
After the substitution ¢t = v, we have
I'=§:22 (1) — ¢l/e)) dr = §37 (| flvo) — ¢(vo)l/|v]) dv
= 2= SO0 + (i
where r is the integral part of (¢ — 1)/2. Let us consider
(4.18) I, = {Ginz (1f(vo) — g(va)l/|v]) dv
and put v = ¢ + 2rk; then
= = (LUt + 27k)0) — @((t + 22K)o) /)t + 2mk]) dt
= {*, (le7**¢f(to) — ¢((t + 2zmk)o)|/|t + 2rk]|) dt
which follows from (4.4) and from the periodicity of f,,. By (4.10)
O((t + 2mk)o) = —(t + 2zk) Y322 (— 1)*(2mk)=*1~'g, (to)e=tkr
+ Oi((t + 27k)o) = o((t + 27k)o) 4+ ¢y((t + 2mk)o) ,
where ¢,((t 4+ 27k)o) means ¢((t 4+ 2nk)o) with the (—k)th term of the sum 33’
left out. Thus we can write
I, = {2 (le7*f(10) — ¢o((r + 27k)o)|/|t + 27k]) dr
§7 . (I9((t + 27k)o)|/|t + 27k|)dt = 1, + 1) .
Similarly as in (4.14) we obtain that for every integer j > 2

|0.((t + 27k)o)|/|t + 27k| < Co~7 for |f| <7,
hence,

(4.19) I/ = O(N-?07 k™).
Let 0 < « < {. Then for |t| < o7'*",
e~ knf(1o) — o((t + 2mk)o) = e~ iku((—1)r=Y(t[2rk)P g, (to) 4+ Z(to))
which follows from (4.4), (3.10) and (45) Hence,
Ji' = Susomrea (le7Hf(10) — @o((t + 2k)o)|/|t + 2mk]) dt
< Sjnso-rea ([(1/27k)7 79, (10) ||t + 2k]) dt
+ Singomrva (Z(0)|[lt + 2mk])ydi = O(N=2k"574) .
From (3.1), (3.2) and from the properties of g, we obtain
T = Vomrvaciuze (le70f(10) — $((t + 2ak)o)|/|t + 2mk]) dt
< Vomsvaciuss (| f(t0)|/|t + 27k]) dt
“ltaciy<n t + 2rnk)o)|/|lt + 2rmk|)dt = O(N—Pk~to~%).
+ So-rvaciuse (19(F + 27k)0)|/|t 4 27k|) % )
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We may conclude that 7' = J,/ + J,/” = O(N-?k~'¢~*) and thus
(4.20) I, = O(N-7k~l6-}) ,
Finally,
I = Z}?(:"l) I, = 0(10g O'/Np(}'%) = O(N_”) s
hence,
&y = O(N—P) .

Similarly we obtain that ¢, = O(N-*) and we may conclude that
e = O(N—p) .
Now we can apply inequality (4.1) of Lemma 4.1. We get

|F(x) — G(x)| < ek(2r)™ + cy(k)o=@+D < eN-7
or,
F(x) = G(x) + O(N-7). 0
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