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THE ASYMPTOTIC DISTRIBUTION OF SERIAL COVARIANCES

By E. J. HANNAN!
The Australian National University

A central limit theorem is proved for the sample serial covariances of
an ergodic, stationary, purely nondeterministic process whose linear in-
novations have their first four moments as for a sequence of independent
random variables. The necessary and sufficient condition for the theorem
is then that the spectra be square integrable.

1. Introduction. Let x(n), n = 1, ..., N, be part of a realisation of a station-
ary, discrete time, vector process that is ergodic. Let the components of x(n)
be x,(n),a=1, ---, v, Consider the autocovariances

Cop(n) = NP 0z {x,(m) — % Mxy(m +n) — %}, n=0.

The x(n) may be taken to have zero mean. If x(n) is linearly purely nondeter-
ministic with finite variances then

1) x(n) = L5 A(en —j),  Ele(m)e(n)} = 00 G 5

A < oo, Efe(m) = 0}
where 4, is Kronecker’s delta, G is a v X v nonsingular matrix, is a norm
for v X v matrices and ¢(n) is the vector of errors of (one step, linear) prediction,
using the infinite past. Call a,,(j) the typical element of 4( ) and g,, the typical
element of G.

We wish to prove a central limit theorem (CLT) for the c,,(n) under general
conditions since many distributional problems in time series analysis reduce to
this problem. An example is the autoregressive moving average model. In this
example the linear model is, presumably, being constructed for linear prediction
and it is not unreasonable to say that the best linear predictor is the best predictor
(both best in the least squares sense). Then the ¢(n) are martingale differences
([3])- However for a usable (i.e. reasonably neat) result more is needed for a
CLT for the c,,(n). Let &, be the sub c-algebra (of the s-algebra with respect

to which all x,(n) are measurable) generated by x,(m), m <n,a=1,..-, .
It is required that

(2) Ele,(n)| F -1} » Ele,(n)e,(n)| & -1}, Efe (n)gy(n)e(n) | F n-i}
Efe,(n)ey(n)e(n)eq(n) | 1}

should be constants for all a, b, ¢, d. Call the last of these four constants &,,,-
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Let
h(o) = 27 A(pe,  flo) = 2n) " h(0)Gh*(0) ,
where the star indicates transposition combined with conjugation. Put
Ta(n) = E{x,(m)xy(m + n)},  7oy(n) = NHeay(n) — yu(n)} -

As will be seen below the covariances of the latter in their limiting distribution
are (for z,,(m) with z,,(n))

@B 27 {fal@Vfra(@)e ™+ foi(@)fy(0)e" ™™} doo

1 e T
-+ ZZZZPGTS {’CMN EE S’in hap(w)hbq(w)emm + hcr(w)hds(w)e_l } do .
Here #,,(w) is the indicated element of 4(») and the sum over p, ¢, r, s is for
these subscripts running from 1 to v.

2. The central limit theorem.

THEOREM. If x(n) is ergodic and is generated by (1) with the expressions (2) all
constants then the necessary and sufficient condition that any finite set of the t,,(n)
be jointly asymptotically normal with covariances given by (3) is that the f,,(w), a =
1, ..., v, be all square integrable.

The condition is evidently necessary since otherwise (3) need not be finite.
For the proof of sufficiency replace z,,(n) by

Eap(n) = N4 Z0y {xo(m)x,(m + n) — 7a,(n)} -

This replacement introduces asymptotically negligible effects since, in the first
place, N~ix,(N) converges in probability to zero (because x,(n) has finite fourth
moment) and in the second place, as is now shown, N!%,* converges in proba-
bility to zero. Indeed

in 1
(4)  E(N'%) = N (7 fu@)Ly(@)do,  Ly(w) = i(f&zﬂvfﬁy,

N \ sinfw

Ly(w) converges uniformly to zero outside of any interval (—d, d), 6 > 0, ([4,
page 88]). Thus it is sufficient to show that the contribution to (4) from such
an interval can be made arbitrarily small. However, using Schwarz inequality,

N2, fr(@)Ly(w)do < {27 (%, f2(0)N'Ly(w)do}t < {27 (2, f2.(0) do}
which shows what is required since f, (w) € L,.

The covariance between 7,,(m), %,(n) is ([2, pages 209-211])
(5) ?7=_—1N+1<1 - IJA7|> {TeceDN10a(J + 1 — m) + 704(J + m)1pe(j — m)

+ ZZZ quﬂ‘ ,Cpq“' Zk aap(k)abq(k + m)ac’r(k + j)ads(k +J + n)} .

However y,.(j)7(j + n — m) is (4z?) times the jth Fourier coefficient of the
convolution of f, (w) with f;;(w) exp {—i(n — m)w}. These two functions are in
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L, and thus their convolution is continuous. Thus the first term in (5) is the
Cesaro sum, evaluated at the origin, of the Fourier series of a continuous func-
tion and thus it converges to the first term in (3). The same argument applies
to the second term in (5). The sum over k in the third term in the jth Fourier
coefficient of the product of two functions, with Fourier coeflicients respectively,
a,, (k) (k + m) and a,,(k)a,(k + n). Each of these functions is the convolu-
tion of two functions in L, (indeed in L,) and hence is continuous. Thus the
last term again is the Cesaro sum of a continuous function and converges to
the last term in (3).

Since f,,(®)e L, then hy(w)eL, a,b=1,...,v. Indeed tr(flw)) =
(2m)~* tr (k*hG) = K tr (h*h) where K is a constant determined by the smallest
eigenvalue of G. Put

x(n) = xV(n) + x®(r),  xP(n) = T A(en — j) -
Then #,,(n) is the sum of four terms #{"(n), j, k = 1, 2 where these are formed
as for # but with x@(n), x*)(n). Of course (3) still holds but with f,, 4,, replaced
by f4®, k) where

[(@) = 5 KA@GHI (@) k(o) = K(0) + (o),

() = 23' A(jeti.
Put y§¥(n) = E{x,(m)x,*(m + n)}. The expression z{}’(n) is composed of a
finite linear combination of terms such as

(6) N7t - fe(m)ey(m + 1) — 0o 9ai}

plus some end terms that are asymptotically negligible. However the summands
in (6) are stationary, ergodic, martingale differences with finite variance and
zero mean and the central limit theorem then follows from [1]. Thus to prove
the theorem it is sufficient to show that the contribution to the asymptotic vari-
ance of #,,(n) from the ¥ (n), j, k not both 1, may be made arbitrarily small
by taking M large. Examining (3) we see that the first term contributes to the
asymptotic variance of #{j¥(n) the quantity

2z 2. [ (0)f 35 (0) do .
If, say, j = 2 then, again using Schwarz inequality, this expression is dominated
by '
Kz {f& (o) do.
However f»(w) is a linear combination of expressions A% (w)A%)(w) and thus
it is only necessary to show that

™) §2z |hei ()] do
may be made arbitrarily small by appropriate choice of M. Since 4, (w)e L,
and the Fourier series of a function in L, converges in the L, norm ([4, page 266])

then (7) may indeed be made small. The same argument applies to the second
and third terms in (3) and the result is proved.
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