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SHARP UPPER BOUNDS FOR PROBABILITY
ON AN INTERVAL WHEN THE FIRST
THREE MOMENTS ARE KNOWN

By MORRIS SKIBINSKY
University of Massachusetts

The subject of this research is the maximum probability assignable to
closed subintervals of a closed, bounded, nondegenerate interval by distri-
butions on that interval whose first three moments are specified. This
maximum probability is explicitely displayed as a function of both the
moments and the subintervals. The ready application of these results is
illustrated by numerical examples.

0. Summary. This paper studies the maximum probability that distributions
on a closed, bounded, nondegenerate interval can assign to closed subintervals
when their first 3 moments are specified. We treat this maximum probability
as a function both of the moments and the subintervals. In Section 1, moment
normalization and background structure is defined. Some basic theorems relating
to the sharp upper bound which hold for moment spaces of arbitrary dimension
are stated. The several forms which the sharp upper bound function assumes
are displayed in Section 2. Section 3 exhibits the moment-space partitions, on
the sets of which these forms obtain, in terms of their dependency on the sub-
intervals. In Section 4 procedures are provided to facilitate identification of
the sets in these partitions which contain a given moment point. Several illus-
trative numerical examples are given in Section 5. A technical restriction on
the subintervals allowed for consideration is removed in Section 6. Results are
specialized in Section 7 to degenerate intervals and intervals with left endpoint
zero or one, with specific numerical examples of direct and indirect application
of these results given in Section 8. Lemmas which underly the proofs and a
detailed proof for one form of the sharp upper bound function are given in
Section 9.

The format of this paper has been designed with utility of these results as a
primary objective. Some proofs not essential to continuity have been deleted
and most of the proofs that are given have been reserved to the final section.

1. Some theorems for moment spaces of dimension n. Let
M, = {(§ xdP(x), § x*dP(x), - - -, { x"dP(x)): Pe Z},

where n is an arbitrary positive integer, the integrals are taken over [0, 1], and
7 is the class of all probability measures on (the Borel subsets of) [0, 1]. These
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188 MORRIS SKIBINSKY

moment spaces are studied in [1] and [2]. We note here the well-known fact
that M, is the convex hull of the space curve

(1.1 {@8 -, m: 0=t < 1.

This paper is concerned with a collection of sharp upper bound functions on
M,; specifically, with the collection

{ZZ\%: (a,b)e T},

where the index set
T={ab):0axb<1}

is identified one-one with the closed subintervals of [0, 1];
Z9(¢) = max {P(a, b]): Pe V,(0)} ,

and
Vi) ={Pe ZF: {x*dP(x) =c,i=1,2,..-,n},

for each ¢ = (c;, ¢;, - -+, ¢,) in M,.

Let M,° C M,, for n > 1, consist of those M, points (c,, ¢,, - -+, ¢,_y, ¢,) for
which (c;, ¢;, - -+, ¢, ;) belongs to the interior of M,_,. Take M.° = M,. M,°
contains all interior points of M, and some of its boundary points as well.
Restricting the domain of the sharp upper bound functions Z7% to M,° entails
no loss in generality and as a technical convenience we shall henceforth consider
this restriction to hold.

For each positive integer j define

Vi€ €y -0 0) =€
max

X"ii(cl’ Cys +* ) = min

{d: (cl’ Cos =00y ci—l’ d) € Mj} ’

for each moment sequence (c,, ¢,, - - -) corresponding to a P ¢ & Note that the
v; are simply coordinate functions and that the v;*# depend only on the first
j — 1 moments. Of course, the range function

— o+ -
Rj_l._uj —v;7,

also depends only on the first j — 1 moments. Viewed as a function on M,°

which is independent of its last argumeht, it is readily seen to be everywhere

positive on this domain (e.g., see [2], Corollaries 1.1 and 2.2b in Chapter 4).

The normalized jth moment function p; = 1 — g is defined on M,° by taking
Py = ;i —v;)/R;,.

In [5], it was shown that

(1.2) R; = 1l{c1pids-

It was established in [6] that the vector valued onto mapping p, = (ps, ps, - - -» p.),

(1.3) P.: M,°— (0, 1)~ x [0, 1]
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is one-one and explicit forms for the inverse mapping were given. Here, of
course, we regard each p; as a function on M,° which is independent of its last
n — i arguments.

Let M3 , be the strict analogue of M,° relative to an arbitrary, nondegenerate,
closed interval

J = [a, ‘B] .

Let p,, ; be the vector valued map defined on M3 ; in strict analogy to the defini-
tion of p, on M,° and Z/% ,, the similarly defined sharp upper bound function.
Note that p,, ; is always (for every J) one-one onto (0, I)*=* x [0, 1].

The following theorem shows that we lose nothing by restriction to the case
J = [0, 1], and motivates our interest in normalized moment functions as they
apply to the calculation of sharp upper bounds. o denotes composition.

THEOREM 1.1. Let J = [a, ] be an arbitrary, closed, nondegenerate interval,

then for each a, b such that a < a < b < B,

U0 PRl = %((a”_)a)/(ﬂ—a),(b—a)/(ﬂ—a) o p,t.
A proof of the above theorem is given in [7]. It follows in a straightforward
way from Theorem 5 in [6].

A basic symmetry property possessed by the sharp upper bound function ap-
pears in an easy and natural way when expressed in terms of normalized moment
functions. Let

K: M,° — M,°
be defined for each ¢ in M,° by the requirement that

PAK(c)) = pi(c) or gyc),
fori=1,2,...,n, according as i is even or odd. K so defined is a one-one
onto map because p, = (p,, p,, - - -, p,,) is one-one onto its range. Itis clear that
composing K with moment functions can lead to no confusion concerning the
order of the space on which the moment function is defined. Moreover, K is
obviously idempotent. Composition of K with the sharp upper bound function
yields

THEOREM 1.2. For each positive integer n and for each (a,b)inT
2 =", .0 K.
Proof of this theorem is straightforward and has been given in [71.
For each (a, b) in T, let
MM = {(§ xdP(x), § x*dP(x), - - -, § x" dP(x)): Pe F, P([a, b) =1}.

Observe that M,[* js equal to M, 1..57 which we take to be the strict analogue
of M, with [0, 1] replaced by [a, b]; that it is the convex hull of {(t, 2, -y 1my:
a < t < b}; that of course it is a subset of M,. It is evident that

(1.4) ZmE) =1, ceMiM, (g, beT.
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Below we state without proof (specializing to the case at hand) a theorem due
to J. H. B. Kemperman [3] which underlies the specific results of the following
sections.

THEOREM 1.3 (Kemperman). Let (a,b)eT. Let B, denote the intersection
between M, and a hyperplane of support for M,; B,, the intersection between M *"
and a hyperplane of support for M,[*®1 which is parallel to the first hyperplane and
which separates it from M., Then for each c interior to M, such that

(1.5) ceconv (B, + B),
2,5 (¢) = D(B,, ¢)/D(B,, B,) ,

where conv denotes convex hull, + denotes union for disjoint sets, and D denotes
ordinary Euclidean distance.

Moreover, for each ¢ interior to M, (i.e., for which 0 < p,(c) < 1), but not in
M, !*%, there exists at least one, and for almost all (n-dimensional Lebesgue measure)
such ¢, at most one pair of hyperplanes as above described such that (1.5) holds.

In the terminology of [3], pairs of support hyperplanes with the properties
cited in the above theorem are referred to as “admissible.” See pages 101, 102
and Section 6 of [3] for the proof of this theorem and discussion in more general
context.

We conclude this section by introducing three basic function sequences. Let

Ci=9q;aP;» 7i = Pi-19i> Jj=23 .-,
and let
C1=P1:V1, =494 -

Define the partial sums
Sj:C1+Cz+"'+Cj, j=1,2;“'-
It is an immediate consequence of (1.2) that
:’;___IC]-ZIJ”—V”_, ?=1Tj:yn+_vn'

We shall have frequent use only for the first three terms of the above sequences.
Only some of these in fact suffice to exhibit the inverse map to (1.3) for n = 3.
Thus

(1'6) v =104 v =066+ C = CISZ » v, = (6,86 + §,S,°.

2. The sharp upper bound function. The upper bound function %/}, which
we view as a composite function through the normalizing map

P = (P1s Po Po) 5
assumes a number of distinct analytic forms on the several sets of an M,° parti-
tion determined by the index (a, b). (By a partition of a set 4 we mean here a
nonempty disjoint class of A4-subsets whose union is 4. We allow that some of
these subsets might be empty.) These forms and the partitions on whose sets
they hold vary in the degree of their complexity as (a, ) varies over T.
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For example, when a = 0, 6 = 1, the partition above referred to contains
only one nonempty set, namely M,° itself, and the upper bound function is
constant on this set. That is,

79 =1.

At its most complex, the partition contains 5 nonempty sets.
In this and subsequent sections we shall make use of the following notation.
For each (a, b) in T, let

2.1) s(a, b) = a 4 b + (ab)t,
s*a,b)y=a+b—1— (1 —a)(l — b))?

and for each triple a, b, tsuch that 0 < a, b, t < 1 let w, ,, &, 4, é‘a,b, Exus Eabs
denote the functions on M,° here defined.

(2.2) Woo =66 — G —a)b—8) =v,— (a+ by, + ab.

(2.3) Eabz(sz-—a)(b_sg), éabzl_‘s:b: (h—a)(b—rﬁ)-
’ Ca9s ' ’ T2P2

(2-4) Ea,b,t = (1 - t)Ea,b + té:;k,b .

It is easy to show that each of the above functions is invariant under permuta-
tion of its indices.

Our development will now proceed as follows. We introduce a T-indexed
partition of M,° consisting of five sets named respectively

(2.5) Ay(a, B), Ay(a, b), - - -, Ay(a, b) .

It is respectively upon these five sets that the five disiinct forms for 7% are
assumed. We will defer explicit definition of these sets to Section 3. Suffice it
here to say that for each (a, b) in T, each of them (provided we add it to a set
of 3-dimensional Lebesgue measure zero), is a simplex which has vertices on
the curve (1.1) or else it is a union of such simplices as one or more vertices
vary over part of (1.1).

For a technical reason which derives from the method of proof and need not
be developed here we shall for the remainder of this section and throughout Sections
3 and 4 as well assume that (a, b) in T satisfies the inequality

(2.6) s*(a, ) < 0.

That is, we shall assume that (a, b) belongs to the region below (and including)
the upper curve in Figure 1. For all such (a, b), we proceed here to exhibit the
five distinct forms for the sharp upper bound function to which reference has
been made. The results which obtain when (2.6) does not hold are deferred to
Section 6 following explicit definition of the sets (2.5) for such (a, b). The divi-
sion of intervals into two types (those which satisfy (2.6) and those which do
not) simplifies definiton of the sharp upper bound function and the sets (2.5) on
which its distinct forms are assumed.
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Fic. 1. Subsetsof T={(a,b):0<a=<b<1}.
s*(a, b) < 0 in region marked by vertical lines.
s(a, b) = 1 in region marked by horizontal lines.

The main results of this section now follow.
On A(a, b),

» _ & ( 5 )
?/u(’):!l 1 —|—,_._M__ ,
’ g Ps— &as

where 2 = 2, , and § = 9, , are respectively 3 and 2 valued functions on A,(a, b)
as defined below. Specifically

Al(a, b) = :}=1 Al,j(a, b) ’
while ,
A(c) =a,0, or b, accordingas ceA,(a,b), A, (a,b), or A ya,0b)
é(c)y=a or b, according as c e (A, (a, b) + A (a, b)) or A, (a,d).
The sets A, ;(a, b) are explicitly defined in Section 3.
On Ay(a, b),
Z® =1.
On Ay(a, b),
ZH =R(ps— & 9)d, a+b+#1
=nnfal —a, a+b=1,
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where
d = d(a, b) = ab(a* 4 bt)* or ab(l — a)(1 — b)/(1 — a — b)
r=r(a, b) = s(a,b) or (a4 ab+ b —a— b)/(1 —a — b)
§ = 8(a, b) = s(a, b) or 1,
all respectively, according as
s(a, )< or =1.

(Note that the set of (a, b) for which s(a, b) < 1 is the region in Figure 1 below
and including the lower curve, and that §(a, b) is simply the minimum of s(a, b)
and 1.)
On A,(a, b),
wG =1 (Wa,p)" .
’ R (ps — €aran)(Ps — §arb,8)

7y =g (14 e ),
1 —o* qs — Ea*,x*

where 2* = 2}, and 0* = 9}, are respectively 3 and 2 valued functions on
Ay(a, b) as defined below. Specifically,

Ay(a, b) = 235, Ay i(a, b),

On Ay(a, b),

while

A*(c) =a,1, or b, accordingas ceA,,(a,b), A o(a, b), or A;4a,b),
0*(¢) =a or b, accordingas cel;(a,b) or (A,,(a,bd) + A4, b)) .
The sets A, ;(a, b) are explicitly defined in Section 3.

3. Partitions of M,°. In this section we define the five members of the M,°
partition, listed in (2.5), on which the distinct forms for 278 given in Section
2 obtain.

We employ two notational conventions: 1. Functions defined on the interior
of M, or M, will hereafter be viewed as functions on M,° which are independent
of their third or their second and third arguments. 2. M,° subsets determined
by functional relations on M,° will be denoted by parentheses about the state-
ment of relation with function arguments omitted. All sets so represented are
10 be interpreted as M,° subsets. Thus for example consider the following “cylin-
der” set whose base is a subset of the interior of M,.

(Wap < 0) ={ceMye:w,,(c) <0}
={cigle < ¢ < ¢y — (¢, — ¢)Y/(1 — ),
< ¢, < (a+ bye, —ab,a < c, < b}.

We need the following additional notation. For each pair a, b such that
0<a,b< 1, let

3.1) hoy=1—H,6 =1

wg,p<0) ?
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(where I denotes an indicator function), and for each triple a, b, ¢t such that
0<agsbst< 1, let

(3'2) ha,b,t =1- h:'z,b,t = hu,b + hb,t .

Finally, let

(3.3) pe=2%=9  on @ £a), 0<a<l.
9:(& — a)
With the exception of A;, and A, ,, each of the nine sets
(3-4) Al,l’ A1,2, A1,3’ Az’ Aa’ Ap Aa,v Aa,z, As,a

(the arguments, which must satisfy (2.6), are suppressed), is a set of the form
(3.5) (B~ =ps < BY),

where B* = B, are functions on M;°> which depend at most on the first two
moments. The exceptional sets A;, and A, , are sets of this form intersected
respectively with the sets (y, < a) and (7, > b). Recall that A, is the union of
the first three sets in (3.4) and that A, is the union of the last three. In Table
3, we give explicit definitions for each of the nine sets in (3.4) by display of the
bounding functions B* which determine them. In applying this table to (3.5),
the two conventions listed in the second paragraph of this section should be kept
in mind. Thus

(77b§]73<2):(77b§]73§1):(]732771))

so that applying the last line of Table 1 to (3.5) and taking into account the
additional condition which holds for A, ;, we have for example that

Ny =(ps =15 12 > b).
Establishment of the fact that for each (a, b) satisfying (2.4), these nine sets do
indeed partition M,° is a relatively straightforward though somewhat tedious
exercise.
Let ay, a,, - - -, a, be k + 1 numbers such that
0L apa,--,a0,Z 1.
We shall denote by
(3.6) L(ao, ay, -y ak)

the intersection with M,° of the simplex with vertices (a,al,a?),i=0,1,... k.
For k = 1,2,3 and a,, a, -- -, a, distinct, k is of course the dimensionality of
this simplex. Thus, for example, L(u, v) (with 0 < u < v < 1) denotes the open
chord joining (u, u?, u®), (v, v? v®). It is clear that the sets (3.6) are invariant
under permutation of their arguments. For k =2,and 0 < a,b < 1, let

(3.7) L (a, b, A) = Useq L(a, b, 1), Aco0,1].
Eight of the sets (3.4) (all but A,) are essentially of this form. A, is essentially
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TABLE 1*
Set B- Bt Simplex union
A £a,} naho,a,1 + Ea,1h,0,1 (0, a, [0, a] + [, 1])
Ai,z 0 Na ha,b + Ea,b h;,b (0, a, [a, b])
Ais 0 nohss + En,3 R =2(0, b, [b, 8])
A2 Na b ha,b #(a, b, [a, b))
As Ea,bho,b + Eb,5 k08 a5 has + Ead B} L0, a, b, 5)
A4 fa,b,ﬁhu,ﬁ + 770,"4/1,,3 E:,bha,lh{;,l + ﬂbhb,l Z(a, b, [3', 1)
AS,I 7]a,h0,a, + E())k,a, h(,),a 2 ;’/(1, a, [Oa a])
A5,2 ﬂbha,b +5:,bh4lz,b 2 g(lyb’ [a’ b])
A5,3 o 2 g(la b9 [ba 1])

* As a notational convenience, the arguments a, b of the sets A in column one and
of the numbers §(a, b) have been suppressed. Recall that $(a, b) = min (s(a, b), 1). To
apply this table see preceding text, in particular (3.5) and remarks concerning As,:
and As,a.

of the form (3.6) with k = 3. By “essentially”, we mean that they are of this
form minus a set of 3-dimensional Lebesgue measure zero. The specific simplex
unions (simplex in the case of A;) which contain the sets (3.4) are exhibited in
the last column of Table 1.

We have observed that for arbitrary ¢ in M;°, Z/%)(c) is given precisely (Sec-
tion 2) once the set in (3.4) to which ¢ belongs is ascertained. On the other
hand the barycentric coordinates of ¢ relative to the simplex that contains it
together with the points in [0, 1] that determine the vertices of that simplex,
yield in an obvious way a probability measure of finite support on [0, 1] which
has the specified moments. The usefulness of the information carried in the last
column of Table 3 derives from the fact that this measure, in addition, has a
value at [a, b] which attains the bound. Specific application to numerical exam-
ples is given in Sections 5 and 8.

4. To which set of a partition does a moment point belong? The definition
of Z7 ) for a, b which satisfy (2.6) as given in Sections 2 and 3 is complete. The
properties of this sharp upper bound as a function on the moment space M,° are
now open to study in detail. The definition is moreover easily specialized to
intervals [a, b] of particular form (e.g., symmetric about }, degenerate, left end-
point zero, etc.). Some specialization is carried out in Section 7.

The multiform nature of the sharp upper bound function presents a practical
problem. To find the bound that corresponds to some specific moment point ¢
in M,°, i.e., to find Z7%)(c), we must first answer the question which heads this
section. The answer of course depends upon the value at ¢ of p, together with
the values at ¢ of the bounding functions in Table 1. The purpose of this sec-
tion is to simplify and to facilitate the latters’ evaluation.

The class of all the intersections of cylinder subsets of M;° whose base sets
are projections on M, of the sets in (3.4) is a partition of M,°. It is easy to see
that each set in this partition may itself be partitioned into its intersections with
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the sets in (3.4). This demonstrates (provided one accepts that the sets (3.4) are
disjoint) that M, is a subset of (hence equal to) the union of the sets in (3.4).
Such a demonstration, as carried out in Figure 2 and Table 2 allows one (by
classifying the first two moments according to specified cylinder sets) to describe
the sharp upper bound function in terms of p,, essentially as is done in Table 1,
but now with the bounding functions greatly simplified. To illustrate: (w, , < 0)
is one set in the above described partition of M,° into cylinder sets. It is in its
turn partitioned by its intersections with A, ,(a, b), Ay(a, b), and A, ,(a, b), these
being the same as its intersections with

(P: < 74) > (e = Ps < 1) > (Ps =) -

It is disjoint from all other sets in (3.4). Thus following Section 2 we have

%;?;:é(1+___5a,a ) 1, or I (1+ Soo )
a Ps — S0 1 -5 gs — &y

accordingas p, < 7,, 7, < ps < 7, Or p; = 7,, whenever w, , < 0. An additional

illustration is given as part of the explanation for Table 2. Some numerical
examples follow in Section 5.

SECOND MOMENT

a b s (a,b) 1
FIRST MOMENT

Fi1G. 2. Intersections of projections on M; of the nine sets Ay,1(a, b), - - -, As,3(a, b).
See explanation in text.
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Explanation and definitions for numbered regions in Figure 2. Below, explicit
definitions are given for M,° cylinder sets determined by intersections of the
projections on M, of the nine sets A, ;(a, b), Ay(a, b), Ay(a, b), A,(a, b), A, ,(a, b),
Jj =1,2,3, for all a, b such that s*(a, b) < 0. For the purpose of the illustra-
tion in the figure, a, b are taken so that s(a, b)) < 1. Thus in the illustration
$(a, b) = s(a, b). The shape of M, in the figure is somewhat distorted to allow
for greater clarity. As a notational convenience below and in Table 2 which
this figure serves, the arguments a, b of §(a, b) are suppressed.

1. (5,=249)
2. (<a< S, £, 2. (r,=a,8<0b)
3. (1:<a,6<85,59), Y. (n=a56<85<9)
4. (1.<a, 8> 5, 4, (7. =a, S, > 8)
5. (@<, <b,8,=5)
6. (12> 5,5, = 9)
7. (T2 > a, Sz = b, Wa,3 = 0)
8. @< n==b<S,<8w,;=0)
9' (T2 > b, Sz < ‘6’ wa,Q g 0)
10' (S2 é b’ Wa,Q < 0 é Wa,b)
11, (n=206< S8, w,3<0)
2. (1, > b, Wos < 0= wys)
13. (w,, < 0)
14. (w2 < 0)
TABLE 2*
Cylinder sets  Aj,2 A3 As As A A4 As,1 As,2 As,3
1 0 Na, 1
2 0 Ea,b &a,? fu,l, 1
2 0 Eab €a,3 1
3 0 fb,Q Ea,Q fa,h 1
3/ 0 Eb.% a,8 1
4 0 fa,ly 1
4 . 0 1
5 0 Na ’ E:,byl
6 0 Na 76, 1
7 0 €a,b % Ta €ap, 1
8 0 b5 a3 Na &b 1
9 0 fb,Q &a,d Na Nb, 1
10 0 Ea,b ‘fa,b,Q 5:,!7, 1
11 0 &% Ea,b,5 Ean, 1
12 0 &5 a,b,3 75, 1
13 0 Na by 1
14 0 75, 1

* See explanation in text which follows.
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Explanation of Table 2. Numbers in column one designate the cylinder sets
(with bases in M) illustrated and explicitly defined for Figure 2. The set of
entries in any row denote a partition of the cylinder set at the left by indicating
limits on p, for the intersection of that set with the sets which appear in the
column headings. This is done as follows: Let C denote the cylinder set at the
left in any row and let A denote the set which heads any column except the last
one for which an entry in that row appears. Then C n A = @, if there is no
entry for that row and column. Otherwise,

CnA=Cn (k< p,<ky)

where k, is the entry for that row and column and k, is the next entry to the
right in that row. If A heads the column in which the last entry or entries for
for the row appear, then

CnA=Cn((k=p,<1) or Cn(p,=1)
according as the entries are k, 1 or the entry is 1.
For example, suppose that
C=(a<72§b<sz<§’wa,szo)'

This is set £8. See Figure 2. C is partitioned by its intersections with the sets
Ay g Ay, Ay, Ay, Ay ,. The intersections of C with these sets are the same as its
respective intersections with the sets

(P3 < Sb,g) ’ (Sb,Q § Ds < Sa,@) s (SG,Q é Ps < 7}a) 5
(a = ps < EX4) s (ps = &Fy) -

Note that the intersection of certain nonempty subsets of C with some of the
above sets may be empty. For example, let

=(Tz§b<sz’wa,§:0)'

This is the cylinder set whose base is one of the line segments which bound the
base C. Then @ # C’' C C, but (see Lemma 9.3)

C'ﬂAUZC' n(£as-P3<’7a)_

Note also, that the cylinder set #8 itself is empty when a, b satisfies not only
(2.6) but in addition satisfies the 1nequa11ty

s(a, b) =
Finally, the table indicates that
Cn[A+ M+ A+ A+ A l=0

Thus, when s*(a, b)) < 0, U®, takes the form specified in Section 2 for A, A,

Ay Ay or Ay, according as py < &5 &5 < Py < Eupy Eus < Py < Tas 0 <
Ps < &k4, or p; = £¥,, whenever the first two moments belong to C (i.e., to the
set #8 of Figure 2).
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5. Numerical examples. Let

[a, 6] = [%, 3],
and suppose that
€ = (¢, €3, &) = (.55, .42, .35) .

At c,

pp=1—¢ =.55, Pe=1— g, = (.42 — (.55)")/(.55)(.45) = .4747 ,

Ps=1— g5 = (.35 — ((.42)*/.55))/(.55)(.45)(.4747)(.5253) = .4743,
so that ¢ does belong to M,° and is in fact an interior point. Now

§=8%4%=%+%+ 123) = .8720,

and at c,
S — 42
2 55

N

7636 , 7. = 13 = .2889,
so that in the present case,

aln<bs, <58,
Moreover, at c,

Woi = .42 — (.25 4 .8720)(.55) + (.25)(.8720) = .0209 > 0.

It follows that (c,, ¢,) belongs to region #8 of Figure 2. Consulting the row
which corresponds to region #8 in Table 2, we calculate that at c,

§y5 = (.7636 — £)(.8720 — .7636)/(.45)(.4747)(.5253) = .4156 ,

a2 = (S2 — a)S4/(S; — b) = 4961,

hence that in the present case,

Eb,? < Pa < 54,3 .
It follows that
cecA,.

Consulting Section 2, we have finally, since s(}, }) < 1, and computing
d1: %) = DG + (1/3%) = 0967,
E5= —(.7636 — .8720)%/(.45)(.4747)(.5253) = —.1047 ,
R, = vt — vy = (.55)(.45)(.4747)(.5253) = .0617 ,
that
7 {(.55, .42, .35) = (.0617)(.4743 4 .1047)/(.0967) = .3694 .

A distribution on [0, 1] whose first three moments are .55, .42, .35 which assigns
this weight to the interval [}, 4] is now easily found by calculating the bary-
centric coordinates of (.55, .42, .35) relative to the simplex L(0, 53558 )
This distribution is given by the following table

support 0 1 % .8720
probability 1143 2797 .0897 .5162.
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Keeping the interval the same, let us now find the sharp upper bound cor-

responding to normalized moment values,
pl = Pz = ]Ja = —% .
These determine uniquely the moment point (see (1.6))
c=(5h% %)
which is for example the first three moments of a Beta distribution with parame-
ters ;, 1, also the first three moments of a Binomial distribution with parameters
$ (after division by 2). These particular distributions respectively assign

welghts of .0585 and zero to the interval [1, §]. At this moment point,
§, which depends only on the interval, we have already computed to be .8720.
Thus in the case we are now considering

r.=a and b< S, <98,

This mean that (c,, ¢,) belongs to region #3’ of Figure 2. Consulting the cor-
responding row of Table 2 we calculate that at the moment point which con-
cerns us

5» + = (F — (8720 — §)/ = 4067,

Ead = (3 — 1)(.8720 — 3)/L = .4880,
so that in the present case, because

Sa. § = Pa < 1
it follows that
cel,,.

Consulting Section 2; observing that because ¢ is in A, ,,
A=0= i;

and computing

we have 4
1 2
%%(3;(%’ % %) = _i‘ (1 - —%‘> =2
4
A distribution on [0, 1] having moments %, §, 5 which assigns this weight to

the interval [£, 4] is found by observing (using the last column of Table 1 and
Lemma 9.2) that

(3 %) e L0, 1 §) < <0, 1, [0, 1] + [5, 1])

and calculating the barycentric coordinates of (3, 2, %) relative to this simplex.
(It suffices to calculate the barycentric coordinates of (%, 8) relative to the
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projection of this simplex on M,). This distribution is given by the following
table,

support 0 %
2

IS, NN

probability

ol
o

35
To illustrate that in using these procedures, we are not restricted to consider-

ation only of the class of all distributions on [0, 1], let us now find the sharp
upper bound for the probability that may be assigned to the interval [, 4] among
all distributions on the interval [—3, 2] whose first three moments are %, 3, 5.
Using simple calculations (e.g., as in the proof of Theorem 5 in [6] taking
n = 3) we find that

Ps-s0(3 > %) = (5> 72> §30) -
Thus applying Theorem 1.1 with n = 3, we find that

% Hi-sa(b § 75) = Ziia(S°)
where

&° = Py (75 2> 318) = (o0 2% 2500) 3

that is, the bound we seek is also the sharp upper bound for the probability
assignable to the interval [13, 2] among all distributions on [0, 1] whose first
three normalized moments (relative to the class of all distributions on [0, 1])
are {5, 75, 224. It is unnecessary to find, as we have done above (using (1.6)),
the standard moments that correspond to these normalized moments in order to
calculate the sharp upper bound. Thus simple calculations as in the previous
examples show that

538,89 =1, e > %),

so that (¢,°, ¢,°) belongs to region #14 of Figure 2 (regions #6, 9, and 12 are
empty). Consulting the last line of Table 2, we calculate

and this means that

Consulting Section 2, observing that

A(e;°) =0(e,°) = 3
and computing
§1.4(6°) = — &%
we calculate
Z555(€s°) = (38)(H6%) = 7889,

which is the desired bound. Consulting the last column in Table 1 we find that
c,°e L0, %, 1)
for some ¢ in [4, 1]. This means (see Lemma 9.2) that

§3.4(¢:°) = 29%
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which we may solve to find that
t =

P

141
170 °

Finding barycentric coordinates of c,° relative to the above simplex yields the
distribution

0 %

.0012 .7889 .2099

on [0, 1] with moments ¢,° whose value at [13, 2] attains the sharp upper bound.

By a simple transformation we obtain the distribution
-3 4 i

.0012 .7889 .2099

95
70

on [—3, 2] with moments §, &, 5% whose value at [, 1] attains the same bound.

As a final illustration of the use to which these tables may be put, we take
note of the interesting fact that for each interval [a, ] C [0, 1] there are values
of the first two moments for which only one form for the sharp upper bound
will suffice. For example, when [a, ] = [4, §] and (c,, ¢,) is in the region 4’
of Figure 2; e.g., when p,(¢) = 3, p,(c) = % (so that ¢, = 3, ¢, = 11), we find
using Table 2 and Section 2 that we may express the sharp upper bound in terms
of p, = pi(2, 11, ¢;) without restriction on the third moment. Thus

%% = 3ps(ps + 8) -

The reader should verify that the bound (see Table 2) is in fact continuous at
ps = 1 so that in fact only this one form will suffice.

6. Intervals for which s*(a, b) is positive. In this section, the definition of
the sets in (3.4) is extended to those (a, b) in T which do not satisfy (2.6); i.e.,
to those (a, ) which belong to the region that lies above the upper curve in
Figure 1. The simple modification in form for the sharp upper bound function
(namely that which obtains on A;), which is necessitated by this extension, is
exhibited.

By Theorem 1.2, taking n = 3,

(6.1) UE =210 K, (a,b)eT.
It is moreover easily seen that ‘
s*(a, b) >0 if and only if
$(1— b, 1 —a) < —((@b)} + (1 — a)(1 — b)),

so that (1 — b, 1 — a) must satisfy (2.6) whenever (a, b) does not. Thus when
(2.6) is not satisfied, we need only compose the sharp upper bound for the
interval [1 — b, 1 — a] with K (i.e., change the odd indexed p’s and ¢’s in the
formulae of Section 2 to ¢’s and p’s) to obtain the sharp upper bound for [a, 5]

in equally explicit detail. Here, we define extensions of the sets in (3.4) to those
(a, b) in T for which s*(a, b) > 0, by taking the sets to be the appropriate images
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under K of their realizations at (1 — b, 1 — a). Thus for each (a, ) in T such
that s*(a, b) > 0, we define

Afa, b) = KA(1 — b, 1 — a), i=2,3,4;
A jfab)=KA,,, (1 —b1—a), i=15,;=123.

We now describe these extensions in a manner analogous to that used in Section
3. With the exception of A, and A, , each of these extensions is of the form

(6.2) (B~ <p, = BY),

where again, B* = Bz, are functions on M,°, at most dependent on the first
two moments. Note that compared with (3.5), weak and strong inequalities
have switched sides. The exceptional sets A,, and A, , are of the form (6.2)
intersected respectively with the sets (S, < a) and (S, > ). A, is again defined
to be the union of the A, ;; A;, of the A;;. Table 3 is strictly analogous to
Table 1. Thus, consulting the first line of Table 3, and taking into account the
additional condition cited above which holds for A,; we have for example that

A (a, b) = (ps < 70, S, < Q) when s*(a, b) > 0.

Consulting the third column we find that this set is the simplex union
(0, a, [0, a]) minus a set of 3-dimensional Lebesgue measure zero.

It may now be verified by direct application of (6.1) that with these extended
definitions of the sets (3.4), the forms for the sharp upper bound function (with
the single exception of the form that holds on A,) continue to hold precisely as
given in Section 2, for all (a, b) such that s*(a, b) > 0.

On Ay(a, b), .

75 = Ry(&¥% o« — po)ld,

where
d = d(a,b) = (1 — a)(1 — b)(1 — @)t + (1 — b)})",

whenever s*(a, b) > 0.

TABLE 3*
Set B- Bt Simplex union
A1 —1 Na (0, a, [0, a])
AI,Z —1 Waha,b + éa,bht/z,b _7(0, a, [a’ b])
A1,3 —1 7/bhb,l + Sb,l hi,l g(()’ b’ [b’ 1])
AZ Na ha,b + h(/z,b U1 g(a’ b’ [a’ b])
As Eovoabhavb + EFe b hies E8 vhay + E ol L(s*,a,b, 1)
Ay h(’),b + fa,bhO,bhl;,a + 7741,}10,11 ft",a,bhx*,b + th;*,b g(“, b’ [0, S*])
As,l Na hx“,a + f:‘,a hg*,a 1 _ff(l, a, [S*, a])
As,2 Nohab + Ea b 1 (1, b, [a, b))
As,3 noho,s,1 + E80 5,1 Edb (1, b, [0, s*] + [b, 1])

* As a notational convenience, the arguments a, b of the set A and of the numbers s* have
been suppressed. s*(a, b) is defined in (2.1). We are assuming here that s*(a, ) > 0. To apply
this table see preceding text, in particular (6.2) and the remarks concerning Ai,; and Ay, 3.
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7. Sharp upper bounds for some special intervals. Considerable simplification
in the form of the sharp upper bound is achieved when the index (a, b) is re-
stricted to certain special interval classes.

We consider first, the degenerate intervals (represented by the lower diagonal
boundary of T in Figure 1).

THEOREM 7.1. Foreacha, 0 < a< 1,

(71.1) 5%3:§(1+*ﬁu_) or I @+. San y
a P3 - Sa,,a l—a f]s - Sa.,a,
according as
(7'2) P3 § or z va ho,a.,l + Sa,lh(,),a,l M
When equality holds in (7.2), both expressions on the right-hand side of (7.1) yield
(7.3) 3) = (Cl C2/wa, a)hO a,l + (TI Tz/a(l - a))ho a,l — %a(,z;,

For the two extreme values of a, we have with no restrictions,

(7.4) 260 = 1P295/(P192 + P2 95) » 2\ = p1PaPs/(9:95 + Paps) -

PROOF. An application of results in Section 3 shows that
A, 4(a, a), Ay(a, a), Ay(a, a), A(a, a)
all are empty whenever s*(a, a) < 0 (i.e., when a < 2). Moreover

1(a, a) = (ps < 1, ho,a.,l + Sa,,lh(,),a.,l) P A.':(a’ a) = M3°\A1(a, a.

Application of the forms in Section 2 will now yield the desired results for
0<a=<4% ForZ<acx<l,these formulae may be deduced from the results in
Section 6. Proof of (7.3), (7.4) is left to the reader.

The interval [a, 5] may be taken dependent upon the moments. As a simple
illustration we consider the following corollary to the above theorem.

COROLLARY 7.1.

(7.3) Ziion =GPl GPs+ Q) 07 Gasl(Pipa+ 0245) >
according as p, < or = q,. Both expressions on the right-hand side of (1.5) yield

(7.6) w®, =q, =%, , when p, = gq,.

S U1 Y11
Note that for each ¢ = (c,, ¢,, ¢;) in M,°,
Z3.(€) = 72, ()
is the maximum probability assignable to the degenerate interval {c,} by any
distribution on [0, 1] having moments c,, ¢,, ¢;.
The following theorem exhibits the sharp upper bound for intervals with left
endpoint zero (represented by the left hand, vertical boundary of T in Figure 1).
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THEOREM 7.2. Foreachb, 0 < b < 1,
CA(S; — b)’hy s
R (ps — Eu)(ps — %))
71 (1 + S5 ,
q

10 3 — 5b,bhb,1+h;’1

(7.7 73 =1— or

according as

(7.8) ps= or Zmhoyy+ &b
When equality holds in (7.8), both expressions on the right-hand side of (1.7) yield

2
(7.9) ?/0(,311) =1- E;_é)_ hb,l - lwo’bb h(’),b,l = ?/O(,Zb) *

Wi s _
Proor. Since
s$0,)=b—-1—-(1-0<0, 0<b=1,
results in Sections 2 and 3 apply. We find that
A0, b), Ay(0, b), Ay (0, )
are all empty. Moreover

Az(o’ b) = (Pa <7 ho,b) s AA(O’ b) = (Pa <7 hb,l + Eb,lh;),l) s
A5(0, b) = M3°\(A2(O, b) + A4(O, b)) = (Ps = N hO,b,l + Sb,lhs,b,l) .

The theorem now follows by application of the forms in Section 2. Proof of
(7.9) is left to the reader.

If we apply (6.1) to Theorem 7.2 or the extended definition of the sets A in
Section 6, we obtain the sharp upper bound for intervals with right endpoints
one (top, horizontal boundary of T, Figure 1).

COROLLARY. Foreacha, 0 < a < 1,

(7.10) Wy =1— . Tls(aA— 72)°h, _ or é(l + Eare
R*(qs — 5a,a)(q’3 — ~’3a,1) a Ps

according as
(7'11) - q3 § or 2 (1 - va)ho,a,l + éo,a h(’),a,l .
When equality holds in (7.11), both expressions on the right-hand side of (7.10) yield

a— () w
3) — 1 )1 pt —
?/af,l — 1 - ‘(—w‘—)—ho,a - ‘: ho,a,l — ?/a(zl) .

a,a

8. Further numerical examples. We consider first a straightforward appli-
cation of Theorem 7.1. Let us suppose that a = 1 and that ¢ = (¢, ¢,, ¢;) € M;°

is such that at ¢, p, = p, = 1; i.e., that ¢, = 1, ¢, = 3. Then, of course,
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L=7=1% 8 =3, 7, =14, so that at any such c,

ool
-
sV

P

Il
I

H],_‘

oo
-
oy

-
N

Il

(=]

-

Thus the maximum probability assignable to the singleton {1} by any distribution
on the unit interval with first 3 moments 4, 3, c;, expressed in terms of its de-
pendence upon py(%, 3, ¢;) = 1 — g4(3, 3, ¢;), is given by

8.1) 7/;3>:i<1_i_> or 1(1__1_>,
' 2 25 + 18p, 4 1 4 18¢,

according as p; < or = §. It follows for example that if p, =  (i.e., ¢; = %),
the sharp upper bound is 2Z; if p, = .9 (i.e., ¢; = 2%), the sharp upper bound is
2z. If p, = § (i.e., ¢; = 1), both expressions on the right-hand side of (8.1), as
well as (7.3) with appropriate substitutions, yield the sharp upper bound value
- This latter value is also the maximum weight that any distribution on the
unit interval having first two moments , 2, can assign to the singleton {1}.

To find distributions with the specified moments that assign the maximum
weight to {1}, we note, using the proof of Theorem 7.1 together with Table 1
of Section 3 that

(3% %) e L0, %, %) (3% 3D el %, 4%),
(3,3, 9HeLl(0,31).

The third vertex of each simplex is found by using the fact (see Lemma 9.2) that

3
8
3
8

9
9

ce L(a, b, 1) = py(c) = &,5.4(€) »

solving the right hand equality for . The barycentric coordinates of each point
relative to the simplex that contains it yield the desired distributions. These
are exhibited below

1 1 1 1

0 3 TQU i0 3 1 0 3 1
7 27 125 25 27 2 1 9 5
36 68 306 126 56 7% 8 16 16

(8.1) may be used to answer questions. of the following sort. For what values
of ¢, is it the case that there exists no distribution on the unit interval having
moments }, §, ¢; which assigns more than } to the singleton {}}? The answer
is of course those ¢; compatible with ¢, = 4, ¢, = §, for which

KNG 8 6) =1
That is, by (8.1), those ¢, for which
P38 =P or =338,
i.e., those ¢, which satisfy

9 43 19
3z = G = 1% or 57
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The following is an indirect application of Theorem 7.1. Let 6 be a given
number between zero and one. For which points a (or more specifically, for
which singleton subsets {a} of the unit interval) can there exist no distribution on
[0, 1] having moments %, 2, % (normalized moments 3, 4, 1) that assigns prob-
ability greater than @ to {a}? The answer: those a for which

(8.2) Ziup %5 =0

Applying the formulae of Theorem 7.1, we find after some elementary manipu-
lation that

(8.3) X5 % f5) =fla) or f(1 —a),
where
fl@) = 1724[1 4 (3 — 4ay’],
according as
ac ([(2 —2Y)/4, §] + [(2 + 2%)/4,1]) or not.

The graph of (8.3) is sketched in Figure 3. The maximum value of (8.3) is 4,
attained at (2 + 2!)/4 and . Hence there is for no singleton subset of [0, 1] a
distribution on [0, 1] having moments %, 3, % which can assign to that subset
probability greater than . On the other hand, its minimum value is }, attained
at zero and one. (A relative minimum equal to 9/2(9 + 6t) is attained at (6 +
6%)/12). Hence for every singleton subset there exists a distribution with these
moments which can assign to that subset a probability greater than . To con-
sider a case in between, suppose that § were equal to 2. Applying (8.3), we

(3)
GRAPH OF ua q (172, 3/8, 5/16)
i)

172

174

1 1 |

» a
(2-v2)/2 172 (2+4V2)/2 I

FiG. 3.
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find that the set of all points @ in [0, 1] which satisfy (8.2) with § = 2 is

__ &% __ &% 4 b3
(8-4) [0’3 85j|+[%’5 85j|+[3—;5 ’%]+[ 1;5 ’1]'

Thus for each a in this set there exists no distribution on [0, 1] having moments
3, §, % that assigns probability greater than 2 to {a}. Of course for a in the
complement of (8.4) relative to [0, 1] such a distribution can be found.

As a final example, we consider a straightforward application of Theorem 7.2.
Let us suppose that b = % and that again ¢ ¢ M,° is such that at ¢, p, = p, = 1.
If we take advantage of calculations already made for the first example of this
section and make several more that are equally innocuous, we find that the
maximum probability assignable to the interval [0, ] by any distribution on the

unit interval with first 3 moments , 3, ¢;, expressed in terms of its dependence
upon py(%, 8, ¢;) = 1 — g4(3, 8, ¢,) is given by

7\ =1— 250 or i(l ! >
! 3(2ps + 5)(18p, + 25) 4\" 792+ 1)

according as p, < or = §. Thus for p, respectively equal to %, &, and §, this
bound is 181, 49 and 1i. The latter bound may be obtained as well, with
appropriate substltutlons, from (7.9) and is also the maximum probability that
any distribution on the unit interval having first two moments 4, §, can assign
to [0, 3].

It is clear that other applications of Theorem 7.2, analogous to those con-
sidered for Theorem 7.1 may be developed.

9. Proof for one form of the sharp upper bound. In this section we shall
sketch a derivation for the form which the sharp upper bound assumes on ihe
set A,(a, b) whenever s*(a, b) < 0. Similar proofs are given in somewhat greater
detail in [8] for each of the forms which the sharp upper bounds assumes.

By (3.5) and Table 1 in Section 3, A,(a, b) is defined for s*(a, b) < 0 to be
the M,° subset
(9'1) (Ea b, H a ] + % a = 3 < E:zk,b ha,lh;,l + % hb,l) .

The arguments a, b of § have been suppressed and we will continue this practice
(also for s and s*) where convenient below. The three lemmas which follow
may be obtained via straightforward algebraic manipulations.

LeEMMA 9.1. For each pair of numbers a, b, 0 < a, b < 1,
e — Sap = Wa /Ry .
LeEMMA 9.2. For each number triple a, b,t,0 < a, b, t < 1
La, b,f) C (ps = &uby) -
In particular

LO,a,b) C (ps=&ap)s L@, b, 1) C (py = &2y)
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and
L0, a, 1) C (ps = &.1) = (ps = £3) -

LEMMA 9.3. For each number triple a, b, t, 0 < a,b,t < 1,

— &, =YW on (L £ b).
7o ,b,t @ — b)Rz & )

209

At M,° points ¢ on the boundary of M, (i.e., points ¢ in M,° at which p,(c) = 0
or 1), Z3(c) is the value which the single probability measure contained in
Vi(c) (e.g., See [1], Theorem 20.1, page 64) assigns to [a, b]. In a straightforward

way, using this fact we obtain

LemMmaA 9.4.
%5 =1— (Cl/sz)1<s,,>b) > a=0=b6<1
= (Cl/sz)1<a§s,,sb> ’ 0<a<b<l on (p,=0),
=1—(n/(1 - T yy<a) 5 0<as1=0b
= (r/(1 — r ) asyys) > 0=sa=sb<1l on (p=1).
LemMA 9.5. For all (a, b) in T such that s*(a, b) < 0,
(1) Aa, b) C (Way <O < Wy 3wy 3)
(ii) A(a, ) =@ when s(a,b) =1.
(iii) Afa,b) n Afa,b)=@, i=1,2,3,5.
@iv) A(a,a) = @ .
(v) A0, 8) = (ps < &y ubyy + iyt -
(vi) A(a,b) N (ps=0)=(S,>b,p,=0), a=0
=0, a>0

Aab)n(p=1)=0.

Proor. (i) A,(a, b) n (w,, = 0) = @ because the right-hand side of the re-
lationship which defines A,(a, ) in (9.1) is equal to zero on (w,; = 0). On the

other hand
(wa,b wb,@ é 0) = (wa,b é 0) + (wb,ﬁ é 0) .
But
Aa,0) N (Wap < 0) = (§0,08 < 5 < §24) N (Way < 0)
which must be empty by Lemma 9.1, and

Afa, 5) N (W, 3 £0) C (Saps < ps <) N ("3 = 0)

which must in turn be empty by Lemma 9.3.
(ii) Since
Sonn = EX,y and $(a,b) =1, when s(a,b) =1,
Afa, b)) = (X S ps <) N (W, <0)= @, byLemma?9.3.
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(iii) Proof is similar to proof of part (i).

(lV) Al(a’ a) = (Sa,a,éxa é PS < %) n (wa,3a < 0) *
This is empty, again by Lemma 9.3.
(v) and (vi) Follow via appropriate substitutions.

LemMMA 9.6. For all (a, b) in T such that s*(a, b) < 0,
A(a, b) C £ (a, b, [3, 1]).

PRroOF. By parts (ii) and (iv) of Lemma 9.5, the assertion is vacuously true
when s(a, b) = 1 or a = b. Assume that

0a<b and s(a, b) < 1.
By (3.7)

(9.2) L(a, b, [, 1]) = Uese=: L(a, b, 1) .

We will show that this set is essentially (9.1) with the right hand inequality of
its defining relationship weak rather than strong. The M;° cylinder set whose
base is the projection of (9.2) on M, is easily seen to be

(9‘3> (wa,l é 0 é wa,bwb,s) .

On the other hand, the M,° cylinder set whose base is the projection of the
simplex L(a, b, t) is the set

(9.4) We E0=Zwyywy )

A little geometric perspective or some algebraic manipulation will show that
for each ¢ such that s < ¢ < 1, the set (9.4) is equal to

(9.5) (HL=t=t) N (W1 0= w,,w,,),

where ¢,, ¢, denote the functions on M,° defined by

(9-6) ty=sho, + (1a%a/Ohs» 0= Hy + (1a0/0) -
By (2.4) and Lemma 9.1
(9'7) Ea,b,t = Ea,b + (wa,b/Rz)t .

It is clear that
wa,b/R2 g 0

everywhere on the set (9.3). It follows by (9.7) that &, , , is nondecreasing in ¢
at each point of (9.3). By (9.2) to (9.5) and Lemma 9.2 we have consequently

that
(9'8) g(a’ b’ [S’ 1]) = (Sa,b,to é P3 S Sa.,b,lt]) n (W = O é wa,bwb,s) .

= a,l =

It is an easy matter algebraically to show that

Ea,b.rzrya/a = % ’
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from which it follows that

(9'9) 5a,b,to = 5a,b,aha,s + va. h(’z,s ’ 5a,b,tl = S:J h;;,l + ”b hb,l .

Note that by (9.1), &, ;, and &, , . k,, are left- and right-hand sides respectively
of the inequality which defines A,(a, ). To complete the proof it suffices by
(9.8) to show that

(Sa,b,to é Ps < ‘Sa,b,tlha,l) - (wa,l é 0 é Wa,b wb,s) *

But part (i) of Lemma 9.5 is a stronger statement even than this. This completes
the proof of Lemma 9.6.

THEOREM 9.1. For each (a, b) in T

Am =1 — (We.p)" on Afa,b).
R22(P3 - Sa,a,b)(p3 - ‘Sa,b,b)

Proor. We prove this theorem here only for s*(a, b) < 0. The proof for
s*(a, b) > 0 then follows from results in Section 6. By parts (ii) and (iv) of
Lemma 9.5, we may also assume that

0a<kb and s(a, b) < 1.
By part (vi) of Lemma 9.5, the theorem holds on
Afa, b) 0 [(ps = 0) + (ps = 1)],

vacuously when a > 0, and with appropriate substitution by the first equation
of Lemma 9.4 when a = 0. It remains to show that the theorem holds on

MA@ bd)n(0<p,<1).
To show this, it will suffice by Lemma 9.6 to show that it holds on
(9.10) La, b, [s, 1D N (0 < p, < 1).
When a = 0, we may and will replace
[5(0, 8), 1] = [, 1]

by the half open interval (b, 1] without altering the intersection (9.10) because

L0, b, b) = L(0, b) C (p, = 0) .
Let ¢ be an arbitrary number such that I
(9.11) s(a, by <t 1.
(When a = 0, however, we do not allow that t = 5(0, b) = b). It is easy to
verify that the parallel planes having respective equations

—ANYB — £\?
Ht+ 20)x — 2t + p)y +2z=t%, t’p_{_(_a__i@__i,
2t —a—b

where
(t—b _,_ (t—ay

=p@abt)y=a0a— 7 = — 7
p=pla b 1) 2% —a—b 2 —a—b
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constitute an admissible pair. (See discussion following Theorem 1.3.) The
first plane supports and intersects with M, at the single point (¢, 1%, 1*) when
t > s(a, b), and in the closed chord joining (0, 0, 0) and (7, #%, #*) when ¢ = s(a, b).
Let us refer to this intersection as the set B, of Kemperman’s theorem (Theorem
1.3, taking n = 3). The second plane supports and intersects with M,*" in
the closed chord joining (a, a?, a), (b, b* b*) (take this to be the set B, of
Kemperman’s theorem), and its separates M,l*® from the first plane. It is clear

that .
L(a, b, t) C conv (B, + B,) .

By the theorem cited it must therefore be the case that everywhere on the set

La, b,nyn(0< p, < 1),

@ Wt + 20, — (2t 4 o)y + v, — P .
“r (@ — t)(b — 1)2t — a — b)

If we convert to normalized moments using the inverse mapping (1.6), the
numerator of the expression on the right-hand side simplifies to

Rz(Ps - Et,t,p) .
But on L(a, b, t), by Lemma 9.2, this equals

RZ(Ea,b,t - Et,t,p) B

which using (9.7) simplifies in turn to

(t — @)t — B)[(r — a)(t — b) — w,,)/(2t — a — b).

Thus
9.12 Z® =1—__ Yo on I(a, b, 1) N (0 1).
(9.12) 5 o b ( )N 0<p, <)
Clearly,

L(a, b) C L(a, b, 1).
But

Wo, =0 on IL(a,b).
Hence by (9.12)
w35 =1 on L(a,b)

(as of course it must by (1.4) since L(a, b) © M/[**). On the other hand
Wep >0 on L(a, b, t)\L(a, b) .
Hence by Lemma 9.2 and (9.7),
Ry(ps — &apa)[Wap =t —a, Ri(ps — €ap)/Wap =t — b,
everywhere on L(a, b, r)\L(a, b). But then by (9.12),

(9.13) WY =1 Was
R2 (Ps - Ea,b,a)(Ps - Sa,b,b)

on L(a, b,1) n (0 < p, < 1). But ¢ is arbitrary subject only to the restriction
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(9.-11) if a >0 (s(0,6) =b <t < 1, if a=0). It follows that (9.13) holds
everywhere on (9.10). This completes the proof.
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