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SPANNING SETS FOR ESTIMABLE CONTRASTS
IN CLASSIFICATION MODELS!

By DaviD BIRKES,? YADOLAH DODGE
AND JUSTUS SEELY

Oregon State University

Two algorithms, the R-process and the Q-process, are presented which
can be effective tools for determining the estimable contrasts in a classifica-
tion model. Both algorithms operate on the incidence matrix of the model
as opposed to the design matrix.

If the model is partitioned as E(Yu) = hu - & + tu - 0, u € U, the R-process
produces a spanning set for the estimable #-contrasts (i.e., contrasts involv-
ing only ¢ parameters) whenever the set of distinct 4, vectors is linearly
independent. If the distinct 4. vectors are dependent, the R-process is still
useful and often simplifies the problem of obtaining a spanning set for the
estimable 0-contrasts. After the R-process has been applied in a case when
the distinct 4. vectors are dependent, the Q-process produces a spanning
set for the estimable ¢-contrasts provided a partition iy - & = fu+ ¢ + gu - o,
u e U, can be made such that the sets of distinct f, vectors and distinct gu
vectors are both linearly independent.

As examples, the R-process is used to investigate the additive two-way
model; and the R-process and Q-process together are used to investigate
an additive three-way model, a two-way model with interaction, and a
Graeco-Latin square model.

1. Introduction. For a data set following a classification model it is impor-
tant to know if the design matrix has maximal rank (or, equivalently, if all
cell expectations are estimable). If it has maximal rank then the data set can
be analyzed in a straightforward fashion. This is the case when there are ob-
servations for all cells or at least for all the cells involved in a known experi-
mental design such as a Latin square design. However, it may happen that an
experiment goes awry and the data set does not contain all the observations
which were planned. It is in such a situation that the methods of this paper
prove useful.

In the event that the design matrix is not of maximal rank, it becomes im-
portant to know what parametric f unctions are estimable when setting up hy-
potheses to be tested. Of particular interest is finding what contrasts involving
only a single effect are estimable. It is the hypothesis that these estimable
contrasts are zero which is tested by the F-ratio formed from the sum of squares
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for that effect adjusted for all other effects. Furthermore, the number of linearly
independent such estimable contrasts is the appropriate numerator degrees of
freedom associated with the F-ratio. Also, a knowledge of the estimable para-
metric functions allows one to easily obtain full rank reparametrizations needed
for some computer programs.

In dealing with a general linear model, one usually investigates estimability
directly in terms of the design matrix. For the case of a classification model
the same information contained in the design matrix can also be derived from
the incidence matrix. We take this latter approach.

Utilizing the incidence matrix to obtain estimability information seems to
have been first considered by Bose [3] for the additive two-way model. After
introducing a notion of connectedness based on the incidence matrix, Bose
proved that a design is connected if and only if all contrasts within each factor
are estimable, which is equivalent to the design matrix having maximal rank.
One would like to be able to formulate a definition for the connectedness of a
design for other classification models such that (1) the connectedness of a design
is easily determined from the incidence matrix and (2) the theorem is true that
a design is connected if and only if the associated design matrix has maximal
rank. Weeks and Williams [11] define a relationship between design points
(which correspond to occupied cells in the incidence matrix) in an additive
multi-way model which leads to a sufficient condition for a design matrix to
have maximal rank; but as noted in [11] the condition is not necessary.
Srivastava and Anderson [10] also deal with additive multi-way models; they
obtain a necessary and sufficient condition on the incidence matrix for a design
matrix to be of maximal rank. However, it is not clear that this condition
could be verified by an algorithm which would terminate after a specified
number of steps. We know of no completely satisfactory generalization of
Bose’s result even to the additive three-way model.

2. The problem. Let {Y,: u € U} be a collection of random variables where
U is a finite nonempty index set. We assume these random variables have ex-
pectations of the form

EY)=h,-§E+1¢t,-0, uelU,
where & and # are column vectors of /parameters and #, and ¢, are column
vectors of known real numbers. (Although a prime will be used to denote the
transpose of a vector or matrix, here we use the dot product notation 4, - §
rather than 4,’6.) The parameters are assumed to be unrestricted; however, as
indicated in Section 9 our results can be useful even when there are known
linear constraints on the parameter vectors.

We use the terms “linear parametric function” and “‘estimable” in the standard
fashion. That is, a linear parametric function is a linear combination of the
parameters in & and 6, or more precisely, a linear functional on the vector space
of parameter vectors (¢, 0')’; and a linear parametric function is said to be
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estimable provided it can be written as a linear combination of the expectations
h,-& 4 t,-0,uecU. Alinear parametric function involving only the parameters
in 6 will be called a #-functional; and when the sum of its coefficients is zero it
will be called a -contrast.

In this general setting the problem is to find a procedure which will yield a
spanning set for the vector space of estimable #-functionals. Although some of
our results are obtained for general partitioned linear models, our underlying
concern throughout is with classification models.

In an n-way classification model the expectation of each random variable is
determined by an n-tuple (i, ---,i,) where the jth component indicates that
the random variable is associated with the i;th level of the jth factor. The
parameters involved in these expectations are the grand mean, n groups of main
effects and, depending on the particular model, certain groups of interaction
effect and nested effect parameters. The incidence matrix of the model is the
n-dimensional matrix whose entry in the (i, - .-, i,) position, or cell, is the
number of random variables in our collection associated with that n-tuple. If
all the cells of the incidence matrix are occupied (i.e., have nonzero entries),
then of course all the usual linear parametric functions are estimable. When
there are ‘“‘missing observations” (i.e., unoccupied cells), we would like to be
able to determine from the pattern of the occupied cells which of the usual
linear parametric functions are still estimable.

This paper presents two algorithms, the R-process and the Q-process, which
appear to be useful tools for working on estimability problems in classification
models. These two algorithms can be applied to any classification model, but
are most effective whenever the hypotheses of Proposition 4.1 or Theorem 7.4
are satisfied.

3. The R-process. The R-process is a procedure applied to a two-dimensional
matrix W with nonnegative integers as entries to obtain a matrix M of the same
size with zeros and ones as entries. It is convenient to allow the rows and
columns of W to be indexed by any two finite index sets (i.e., not necessarily
sets of integers), say R and C, and to denote the entries of W by w,, for re R
and ce C. (The rows, columns, and entries of M are to be indexed exactly like
W.) The R-process applied to the matrix W is defined as follows:

1) For all re R and ce C, set m,, equal to zero or one according as w,,_ is
Zero or nonzero.

2) Change any zero m,, to one if there -exists se¢ R and de C such that
m,, = my = m,, = 1. (Pictorially, we add the fourth corner whenever three
corners of a rectangle appear in the matrix.)

3) Continue step 2, using both the original and the new nonzero m,’s as
corners of new rectangles, until no more entries can be changed.

DEFINITION 3.1. The matrix M which resuits from applying the R-process to
a two-dimensional matrix W is called the final matrix obtained from W.
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An interesting alternative description of the R-process is the following: Com-
pute the sequence of matrices

W,=W, W,=W,W'W,, W,=W,W/W,,

and so on, until it happens that two consecutive matrices W, and W, , have
the same number of nonzero entries. Then form M by letting m,, equal zero
or one according as the (r, c) entry of W, is zero or nonzero. To see that this
matrix M is the same as the final matrix obtained previously, let w(®) denote the
(r, ¢) entry of W, in the above sequence and observe that

WY = Pleer Laco WrgWdwd .
We mention without proof that [ satisfies the inequality (3'-* 4 1)/2 < min {a, b}
where a and b are the numbers of rows and columns of W respectively.

AssuMmPTION. Hereafter we will make the assumption that each row and
column of W has at least one nonzero entry. This simplifies the definition of
the equivalence relation ~ which follows. Notice that the matrix W which is
defined later in this section, when we treat the model introduced in Section 2,
satisfies the assumption.

DEeFINITION 3.2. In the set C indexing the columns of W and M we say ¢ is
equivalent to d and write ¢ ~ d if the two columns of M indexed by ¢ and d are
identical.

It is clear that the relation ~ is an equivalence relation on C. Let C,, ..., C,
be the distinct equivalence classes in C. By interchanging the roles of rows and
columns we could define an equivalence relation on R. It is not hard to verify that
the equivalence classes in R can be described as the gsets R, = {reR: m,, =1
for some ce C,} for k =1, ..., q. Therefore, m,, = 1 if and only if there is
some k, 1 < k < ¢, such that re R, and ce C,.

From the first description of the R-process it can be seen that ¢ ~ 4 if and
only if m,, = m,, = 1 for some ¢ R. Consider the matrix M’M. Its rows and
columns are both indexed by C, and its (c, d) entry is 3, ., m,,m,,. Therefore:

LeEMMA 3.3. ¢ ~ d if and only if the (c, d) entry of M'M is nonzero.

REMARK 3.4. Another way to arrive at this equivalence relation can be found
in Bose [3]. One would employ a search procedure based on the original matrix
W, as illustrated on page 324 of Searle [8]. It seems, however, that our pro-
cedure based on the final matrix obtained by the R-process is faster and easier
to implement.

We now consider some implications of the R-process with respect to the par-
titioned linear model in Section 2. Let & denote the set of all estimable linear
parametric functions for our model. From the definition of “estimable” it is
clear that & is a vector space and that & is spanned by {h, - & 41, -0: uec U}.
Let H and T be the sets of distinct vectors among the &,’s and #,’s respectively.
Define a two-dimensional matrix W, with rows indexed by H and columns
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indexed by T, by letting the entry w,, be the number of indices € U such that
(hys t,) = (h, 1). (Foran n-way classification model the matrix W is easily formed
from the cells of the associated n-dimensional incidence matrix.) Let M be the
final matrix obtained from W by the R-process.

PROPOSITION 3.5. If m,, = 1, then h - & + t - 0 is estimable.

Proor. If m,, = 1 at the beginning of the R-process, then for some ue U,
h-E+t-0=h, &+ 1t,-0, which of course is estimable. As the R-process
proceeds, if m,, is set equal to 1 it is because there are g € H and s e T such that
m,, = m,, = m,, = 1. Now observe that

he+t.0=Mh-E+5-0)—(9-E+s5-0)+(@-§-+1-0). 0

An immediate consequence of Proposition 3.5 is that the set £ = {h-¢§ +
t.0:m,, = 1} is a spanning set for &. It is generally handier to work with E
rather than the spanning set {h,-& + ¢, -60:ueU}. Indeed, for estimability
considerations we may as well assume we have a model with expectations forming
the set E.

PROPOSITION 3.6. If t, ~ t,, then (t, — t,) - 0 is estimable.

Proor. There is some & € H such that m,, = m,, = 1. By Proposition 3.5,
h-&+4t,-0and k. & 4+ 1, 0 are estimable; and hence so is their difference. []

Choose a complete set S of representatives for the equivalence classes in T.
(S is formed by choosing one element from each of the equivalence classes.)
Two facts we will be using later are that for each & e H there is exactly one
s¢ S with m,, = 1 and that m,, = m,, for all t ~ 5. Let

D={(t—3s)-0:teT,seS,t ~s,t+5},
ExX={(h-§+5s.-0:heH,seS,m,=1};
and let &7 and &* denote the vector spaces spanned by D and E* respectively.
PROPOSITION 3.7. & = &  &*.

ProoOF. Propositions 3.5 and 3.6 imply that &7 + &* C &. Now let ec &.
Since E spans & we can write e = }},.5 Dler Cuu(h - & + 1+ 0) wherec,, =0
if m,, = 0. Now rewrite e as

€= Ylhen Dises 2t~sCre(h &+ t-0)
= Dlhen Luses Lt~s [Che(h - € + 5 0) 4 ¢;(t — 5) - 0]
= Dinen 2ses (Des Che)(B &+ 5-0) + Zhen Does Lie~s Caet —5) - 0.

Clearly the second term is in <. If m,, = 0, then }},_, ¢,, = O since m,, = m,,
for all + ~ s. This shows that the first term is in &*. [J

Let &, denote the set of estimable -functionals for our model, i.e., the set
of f-functionals in &, and let &,* denote the set of §-functionals in &*. Clearly
both &, and &’;* are vector spaces. Moreover:
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PrOPOSITION 3.8. &, = 2 + &,*.

Proor. This follows from the preceding proposition and the fact that
c &, [

With respect to finding a spanning set for &, the propositions above indicate
that we can first use the R-process to obtain the set D and then restrict atten-
tion to finding a spanning set for &,*. In this connection it is sometimes useful
to regard &,* as the vector space of estimable §-functionals from a “reduced
model” with expectations forming the set E*.

REMARK 3.9. It may happen that, for a reason other than Proposition 3.6,
we know some @-functional (f, — 1,) - ¢ is estimable. For example, perhaps
(t — ) -0 = (v, — v,) - 6 where v, ~ v, We could then modify the R-process
by inserting a step between steps 1 and 2 in which we would set m,, = 1 when-
ever m,, = 1, and vice versa. All of the results of this section would remain
true. Such a modification will sometimes decrease (and never increase) the size
of S, which will usually reduce the effort required to find a spanning set for &y.

REMARK 3.10. Once a spanning set for &, is obtained, one will often pro-
ceed to extract a basis for &, (see Statement (9.8)). In this regard it is helpful to
know that when the vectors in T are linearly independent, then &7 n &,* = {0}
(in fact, & n &* = {0}) and D is a basis for &. (See the proof of Proposition
4.3.)

4. Additive two-way classification model. We have seen how the R-process
can be used as a first step in finding a spanning set for &,. For an additive
two-way classification model we will see that the R-process suffices to solve the
entire problem. More generally:

PROPOSITION 4.1. Suppose the vectors in H are linearly independent. Then &,
is spanned by D, i.e., &y = .

PROOF. Suppose e c &,. Because E spans & and because & and 6 are un-
restricted, we can write e = Y, ¥1,¢,,t- 0 where the ¢,’s are such that
2n 2¢ €k = O and ¢, = 0 whenever m,, = 0. The linear independence implies
Y€ =0 for all he H. For he H let s(h) denote the unique element s¢ S
such that m,, = 1; and note that c,, can’be nonzero only when t ~ s(k). As a
consequence

€= Dlhen Dit~sihy el 0

Zt~s(h) Che = Zt Cht — 0 for all h e H.

and

Hence

€= ZheH [Z‘“(h) Cel - 0 — (th(h) cht)s(h) . 0]
= Lhen Zie~om St — S(h)) - 6.

Since the terms involving ¢ = s5(h) in the above sum can be disregarded, it fol-
lows that e ¢ 7. []
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Now consider the additive two-way classification model

( z]k)—#+ai+ﬂj9

wherei=1, ...,a,j=1,...,b,and k = 1, - .-, n;;, with the usual interpre-
tation that when n,; = 0 there are no random variables with the first two sub-
scripts i, j. The incidence matrix is N = (n,;), which we suppose has no row
nor column composed completely of zeros. Suppose we are interested in finding
all estimable g-functionals. To put the model in the form we have been deal-
ing with, let U={@Gj,k):i=1,.---,a;j=1,---,b5k=1,..-,n,}, §=
(#yay, -y a), 6 =Py -+, B8), and for u=(i,j,k)eU let h, be an
(a + 1) x 1 vector with its first and (i 4+ 1)th components 1 and all other com-
ponents zero, and let 7, be a b X 1 vector with its jth component 1 and all
others zero.

For indexing the rows and columns of N we use the sets / = {1, - .., a} and

= {1, - .-, b} respectively; that is, we use i in place of %, and j in place of ¢,
where u = (i, j, k). Apply the R-process to N to obtain the final matrix M.
From Definition 3.2 and the paragraph following it, we have equivalence rela-
tions on the sets 7 and J; let the equivalence classes be /,, ---, I, and J;, --., J,
respectively, where the subscripting is such that m,; = 1 if and only if i e I, and
jeJ forsomek,1 < k < r. (Inthe terminology of Bose [3], the pairs (1, J,), - - -,
(I,, J,) describe the r connected portions of the design.) From Proposition 3.5
we know that each element in E = {y + a;, + B8,;: m; = 1} is estimable.
Moreover:

PROPOSITION 4.2. The cell expectation pp + a, + B; is estimable if and only if
m;;, = 1.
ProoF. When m;; = 1, apply Proposition 3.5. Conversely, suppose u +

a; + B;isestimable. Thenwecanwritepy + a;, + 8; = 31, 21, ¢,.(¢ + a, + B,)
where ¢,, = 0 if m,, = 0. Let k be such that i e /,. We must show that je J,.

From the linear 1ndependence of the a,’s we see }}%_, ¢, equals 1 if p = i and
equals 0 if p = i. Note that >°_,c, = 3 forallpel, and 3%_ c,,
Yiper, €, for all ge J,. Now

1 = Zrelk (ZZ=1 cpq) = ZpEIk (qu.lk cpq)
= quJk (ZpEIk crq) = ZqEJk (Z;=1 Cpq) *

From the linear independence of the 8,’s we see >}¢_,c,, = 0 for g + j. There-
fore, we must have je J,. [

gedy M

The set D for the additive two-way model is

D={B;—B;,:jelw]Fjwk=1,..-,1},

where j, is a fixed element of J,. It is clear that Proposition 4.1 is applicable
and hence D spans &, the vector space of estimable S-contrasts. (Note that
an estimable -functional is necessarily a g-contrast.) In fact:
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PROPOSITION 4.3. For the additive two-way model, the set D is a basis for & .

ProoF. It only remains to show that the elements in D are linearly inde-
pendent. But this follows because the 8,’s are all linearly independent and
because the 8, terms in the elements 8; — 8, of D are all distinct. []

The dimension d, of &, is generally referred to as the degrees of freedom
associated with the sum of squares for the p-effects adjusted for ¢ and a-effects.
Counting the elements in D we see that d, = b — r. Therefore, the dimension
dof & isequal to a +d, =a+ b —r. (See Section 9 below or Section 7.4

in [8].)
PROPOSITION 4.4. A B-contrast B, — B, is estimable if and only if the (k, 1)
entry of M'M is nonzero.

Proor. The “if” part follows from Lemma 3.3 and Proposition 3.6. Con-
versely, suppose B, — f, is estimable. Since the kth column of N is non-
zero, m,, = 1 for some p. But then p + a, + B, = (¢ + @, + Bi) — (B — B)
is estimable, and so m, = 1 by Proposition 4.2. Hence m,m, =1, so
2imymy =+ 0. []

One method for obtaining a basis for the estimable g-contrasts makes use of
the contrast triangle A, which is the triangular portion of M’ M below the diagonal,
with all nonzero entries replaced by ones. That is,

Ay =1 if Xymymy+0,
0 if »,mymy =0, 1<I<k<h.

Il

Now d, is simply the number of nonzero rows in A. And a basis for &, can
be formed by selecting one contrast 8, — B, such that A,, = 1 for each nonzero
row k. This basis is generally different from the basis D.

Let us justify the above method. That the contrasts selected are estimable
follows from Proposition 4.4. The kth row of A is zero if and only if there is
no ! < k such that k ~ . This is true precisely for the smallest integers in the
sets J,, 1 < g <r. Therefore there are d, = b — r nonzero rows in A. It
remains to show that the contrasts g, — f, selected above are linearly inde-
pendent. Given a linear combination of these contrasts with at least one non-
zero coefficient, consider the largest index k such that the coefficient of 8, — 3,
say c,,, is nonzero. When this linear combination is expressed as a sum of j;
terms, the coefficient of 8, is ¢,, #= 0. Thus the sum cannot be zero, because
the $,’s are linearly independent.

All the above results on j-contrasts can be easily translated into results
about a-contrasts. For instance, a basis for the estimable a-contrasts can be
obtained by using the triangular portion of MM’ below the diagonal.

As an example let us consider an additive two-way model witha = 5, 5 = 6,
and an incidence matrix N = (n,;) whose nonzero entries occur in the cells
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occupied by 1’s in the following matrix:

1 2 3 4 5 6
11 x 1
2 x 1 X
30x 1 1 '
4 1 x 1
5 x 1 1

The x’s are in those cells which become occupied after application of the R-
process. That is, the final matrix M is the 5 X 6 matrix with 1’s in those cells
above which are occupied by 1’s and x’s. The contrast triangles for a-contrasts
and for S-contrasts are

L2 03 4 12345

2|1

200

A.=3|1 0 A, =3100
410 0 1

410 10

slo 1 01 5/1 100
6/0 0 1 10

From A, we seen that d;, =4, d = a + d, = 9, and that a basis for the esti-
mable g-contrasts is {8, — B By — Pu fr — Ps» B — Bo}. This already tells us
d,=d — b=3. To get a basis for the estimable a-contrasts we must look at
A,, which shows us {a, — a;, @, — a,, @, — a;} is such a basis.

REMARK. Results similar to some of the facts in this section have recently
been given by Eccleston and Hedayat (see Section 3A in [5]).

S. Further applications of the R-process. An n-way classification model with
n > 2 allows several possible “natural” partitions of the parameters into two
subvectors. For any one of these partitions application of the R-process may
tell us that the cell expectations associated with some of the unoccupied cells
of the incidence matrix are estimable (see Proposition 3.5). As far as estimability
is concerned, we can suppose that these cells are occupied. Now we can use
this new incidence matrix and a different partition of the parameters to try to
discover more estimable cell expectations. If this leads to the discovery that
all cell expectations are estimable, then the R-process by itself will have answered
all our questions about estimability.

The method presented by Weeks and Williams [11] (or see page 338 in [8])
for dealing with an additive n-way classification model can be reformulated in
terms of the R-process. For each of the n factors partition the parameters into
those which represent the effects of the levels of that factor and those which do
not. Use these partitions, in any fixed order, as indicated in the preceding
paragraph; that is, after each partition is used, new occupied cells are added to
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the incidence matrix if their cell expectations are found to be estimable. Con-
tinue to pass through these n steps until n consecutive steps fail to change the
incidence matrix. Suppose a, and «, are parameters representing two levels of
one factor. If the two (n — 1)-dimensional matrices of cells in the current in-
cidence matrix whose expectations involve a, and a,, respectively, have occupied
cells in at least one common position (or equivalently, if the two matrices are
identical and nonzero), then a;, — a, is estimable. Such estimable contrasts are
precisely the ones found in [11]. The actual method described in [11] employs
a search procedure based on the original matrix, and a comment similar to
Remark 3.4 applies.

Using partitions other than the n partitions mentioned above can lead to a
more effective procedure as is seen in the following example. Consider the
additive four-way classification model given by

E(Yijkpq) =ur+ a, + ,Bj + 7 + 5,, »
where i,p =1,2,j,k=1,2,3,and g =1, ..., n,;,,. Suppose the incidence
matrix N = (n,;,) is the 2 X 3 X 3 X 2 matrix represented by the following
configuration of cells:

71 T2 T3
By Bs Bs

1 0 07[0
5.1 5 @ [ ][
(5-1) '« LO 1 ollo
[0 0 0} [1
0,

0 0 0JLO
Thus, for example, n;,; = 1 and n,,, = 0.
If we use only the four partitions corresponding to single factors, we are not
able to discover that the design matrix associated with this incidence matrix has
maximal rank. However, let us partition the parameters into the subvectors

(s a1, @y, By Bys Bs)' and (14, 73s 135 015 05)’. Now an application of the R-process
tells us that we can assume the pattern of occupied cells to be:

(5.2) . [1 0 1}[1 0 1}[0 1 0}

0 1 0JLO 1 04LO O O

[0 0 0] 1 0 1][1 0 1}

0 0 0 [0 1 olLo 1 ol
At this point we can use the partition corresponding to the ¢ factor followed
by the partition corresponding to the a factor to find that all cell expectations

are estimable. Alternatively, this fact could be obtained from (5.2) by using
the partition corresponding to the a and ¢ factors versus the 8 and y factors.

S O © O
(=)
| I
(==
_—0 O =

REMARK 5.3. If the incidence matrix is represented by a configuration such
as in the above example, then for certain partitions of the parameters the new
incidence matrix obtained by applying the R-process may be obtained more
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quickly by directly using the configuration. To illustrate, consider the incidence
matrix N represented by (5.1) and the partition leading to (5.2). One way of
forming W, the matrix to which the R-process is applied, is to form a 6 x 6
matrix whose columns are formed from the six 2 X 3 submatrices of (5.1) and
then to eliminate all zero rows and columns. The R-process can be performed
on W in the following manner: Find pairs of columns of W which have non-
zero entries in the same row and then make both columns the same by setting
an entry of either column equal to 1 whenever the corresponding entry in the
other column is nonzero, and continue this procedure until no more entries of
W can be changed. From these descriptions of the formation of W and the
application of the R-process it is clear that we can write down (5.2) directly
from (5.1) by comparing corresponding cells in the six 2 X 3 submatrices. For
example, since ny,, = ny,, = 1, we can set n,,, and n,,, equal to 1.

6. Loops. In Section 3 the problem of finding a spanning set for the estimable
0-functionals for the model E(Y,) =4, -& + ¢, -0, uc U, was reduced to the
problem of finding a spanning set for &,*, the §-functionals in the vector space
Z* spanned by E*. Progress toward a solution of the latter problem often can
be made by partitioning £ into two subvectors ¢ and w. Then we can write

E(Yu):fu'¢+gu'w+tu’0, ueU,

where ¢ = (¢', ') and &, = (f.), 9.")".

Let F and G denote the sets of distinct f,’s and g,’s respectively. For each
s € Sselect some symbol Q, which is not the numeral 0. Define a two-dimensional
matrix M, with rows indexed by F and columns indexed by G, by defining

i, = Q, if f-¢+9g-0+s.0cE* forsome seS
=0 otherwise.

The matrix M is well-defined because f-¢ + g-® + s- 60 ¢ E* if and only if
(f’s 9") = he Hand m,, = 1 and because for each % ¢ H there is only one se §
such that m,, = 1. The use of the symbols Q, is a device which can help us
remember which vector s is associated with which pair (f, g).

Another way to view the formation of M is as follows: For each s¢ S rear-
range the entries of the column of M indexed by s into a two-dimensional
matrix M with rows indexed by F and columns indexed by G. Specifically,
let mf) = my, if (f', 9’) = he H and let m§) = 0 if (f’, ')’ ¢ H. Replace each
entry 1 in M® by Q, for all se S and then “collapse” these matrices together
into one matrix M.

DEFINITION 6.1. A loop in the matrix M is a sequence of an even number
n (n > 0) of pairs (f}, 91)(fa> 92) - - - (fu» 9,) such that

(i) the pairs are distinct,
(ii) the (f;, g,) entry of M is nonzero for all i,
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(iii) fi=fiuforiodd (i=1,3,...,n—1),
(iv) 9, =g forieven (i =2,4,...,n—2),
(V) 91 =g

(If we drew lines between the entries corresponding to successive pairs in a loop,
we would obtain a picture of a rectilinear loop.)
For a loop L such as in Definition 6.1 let §(L) denote the f-functional

O(L) = (5, — 5+ -+ —5,)- 0

where s, is the unique element of S such thatf,. ¢ + g,- ® + s,- 0 € E* (thus
Q, is the (f;, g,) entry of M). Observe that O(L) = Y7, (—1)"*(f;- ¢ +
9;+® + s, - 0). Therefore:

PROPOSITION 6.2. (L) € &,*.

Let A be the set of all loops in M. We just saw that (L) ¢ &,* for all
LeA. These f-functionals will span &,* in certain cases, such as when
¢=(ma, -, a,)and © = (B, ---, B,) where a and g represent two main
effects in a classification model. More generally:

LEMMA 6.3. Suppose the vectors in F are linearly independent and the vectors in
G are linearly independent. Then &,* is spanned by {§(L): L € A}.

PrROOF. Suppose a-6 is a nonzero element of &,*. Then a.6 =
2inen 2aes (- § 4+ 5+ 0) where ¢,, =0 if m;, =0. For feF, geG, seS
let us set dy,, = ¢, if (f’,¢') = he H and d,,, = 0 otherwise. Now we can
write

a-0=73 er 2igec Liresdp(f ¢+ 9 -0+ 5-0),

where d,,, = 0if iy, = 0,i.e.,iff- ¢ + g- o + 5.0 ¢ E*. SetD,, = Dieesrgs
and note for each pair (f, g) there is at most one s e S such that d,,, = 0. By
the hypotheses of the lemma and the fact that ¢, w and 4 are unrestricted, the
linear parametric functions f- ¢ for fe F and g - w for g ¢ G are linearly inde-
pendent of one another and of all ¢-functionals. Therefore, 37, ., D,, =0 for
all feFand ) ,.,D;, =0 forall geG.

There must be some nonzero coefficient dflulsl; then D, = dfwm + 0.
Since 3], D;, = 0, there is some g, # g, with D;, # 0. Since 2y D4, =0,
there is some f, + f; with D .0, 7 0. In this way we get a sequence
(> 9)(f1s 9:)(far 9:)(fas 95)(fs> G5) - - -, Where f, = f,,, and 9 # 9pya for all p
and D, =+ 0, hence m,, + 0, for each pair (f, g) in the sequence. Let r be
the first integer such that g, =g, for some g<r. If f,_,+f, then
(fo 9)(fo 901 (fy11s 9g41) *+ (froos 9r-)(fro1r 9.) is a loop in M. If Srt = fo

then (fr—l’ gr—l)(fq’ gq+l)(fq+1’ gq+l) e (fr—Z’ gr—Z)(fr—2’ gr—l) iS a IOOP in M Il'l
either case let us, for convenience, re-index the pairs and write the loop as

L= (f1 9)(f5» 92) -+ (fus 9.), Where n =2r.— 2¢ in the first case and n =
2r — 2q — 2 in the second case.
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For each (f;, g;) in L let s; be the unique element of S such that D, =
dyyge 0. We observed previously that O(L) = }7, (= 1)**(fi- ¢ + .- 0 +
5;-0). Now a-0 —d;,,0(L)¢ &,* and it can be expressed as a linear com-
bination of elements of E* with strictly fewer nonzero coefficients than the
expression for a - 6. Using induction we can argue that every element of &,*

can be written as a linear combination of the #-functionals (L), Le A. [

7. Q-subsets of loops. Let & be the vector space spanned by {#(L): L € A},
where A is the set of all loops in M. By Proposition 6.2 we always have
&Z c &,*; and when the hypotheses of Lemma 6.3 are satisfied, we have
& = &,*. In this section we show that it is not necessary to find all the loops
in M in order to obtain a spanning set for ..

DEFINITION 7.1. A Q-subset of A is any subset ® which can be formed by
selecting loops from A in the following manner:

Look for a loop in M. If one is found, put it in @. Select
a pair, say (f, ), in this loop and change the (f, g) entry
of M to 0. Call this new matrix M and proceed as before.
Stop when no more loops can be found.

For technical reasons we introduce quasi-loops. A gquasi-loop in M is a se-
quence K = (fi, 9.)(fos 92) + -+ (fu» 9») Of an even number n (n > 0) of pairs
satisfying all the conditions of Definition 6.1 except possibly condition (i). Let
6(K) denote the alternating sum of cell expectations associated with the pairs
in K (see the paragraph following Definition 6.1).

LemMA 7.2. For all quasi-loops K in M, 6(K) € £

ProoF. The proof will use induction on the number n of pairs in K. If
n = 2 then the definition of quasi-loop requires that the two pairs are the same,
and so 6(K) = 0 € . Now suppose n > 2. If all pairs in K are distinct, then
K is a loop and we are done. If any two consecutive pairs are the same, then
they can be removed from K leaving a quasi-loop K, with §(K;) = 6(K). By
induction 6(K;) € & and we are done. Hence we can suppose that K has no
two consecutive pairs the same but that (f;, g,) = (f;, 9;) for some i and j such
thatj =i+ 2. Ifi=1and j=n, then Ky = (fu-1> 9u)(for 32) * +* (fazzs Gn—s)
is a quasi-loop with §(K) = —0(K,), and again we are done. Otherwise, let
K. = (f1 9,) -+ (fp» 9,) Where p = ior i + 1, whichever is odd, and g = j or
j — 1, whichever is even. Then K, is a quasi-loop with fewer than n pairs and
the removal of K, from K leaves a quasi-loop K,. Note that (K) = 0(K,) +
6(K;). By induction §(K,) and 6(K,) are in £, and so 6(K) € 2. []

LEMMA 7.3. For any Q-subset ® of A, £ is spanned by {6(L): L e ®}.

Proor. We will argue by induction on the number of nonzero entries in M.
Our induction statement is: If M has m nonzero entries and @ is any Q-subset
of A, then & is spanned by {#(L): L e ®}. This is clear for m = 0. Let us
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assume it is true for all nonnegative integers less than a particular value of m
and try to prove it for the integer m.

Take any Q-subset ® of A. Given any L, € A, we must show that 6(L,) is a
linear combination of f-functionals §(L), L € ®. During the selection of the
Q-subset @ it eventually happens that some loop L is selected such that the
pair (f, §) in L corresponding to the entry of M which is changed to 0 is also a
pair occurring in L,. Suppose L is the first such loop in @.

Let M° be the matrix which results from changing certain entries (including
the (£, §) entry) of M to 0 according to the portion of the selection procedure
which has been completed at the point when L is selected; let A° be the set of
loops in M° let &°° be the vector space spanned by {#(L): L ¢ A°; and let ®°
be those loops of @ which are found after L in the selection procedure, i.e., the
loops of ® which are in M°. Note that ®° is a Q-subset of A°. Since M° has
fewer than m nonzero entries, our inductive assumption allows us to conclude
that .~ is spanned by {6(L): L e ®}.

Observe that all the pairs occurring in L, and L, except the pair (f; ), cor-
respond to nonzero entries in M°. We can permute the pairs in the loops L,
and L to get loops L,” and L? with ( £, §) occurring last and first, respectively,
and with 6(L?) = +6(L,) and (L) = +6(L). (To see this it helps to draw a
rectilinear picture of a loop.) Form a sequence K of pairs by putting L;* in
front of L7 and removing (f, §)(f, §). Note that K is a quasi-loop in M° and
that 6(K) = 6(L,*) + 6(L?). By Lemma 7.2, 6(K) € £°, which means it is a
linear combination of #-functionals #(L), Le @ < ®. Now write 0(L,?) =
6(K) — 6(L?) and recall that 6(L?) = +6(L)and Le ®. []

THEOREM 7.4. Suppose the vectors in F are linearly independent and the vectors
in G are linearly independent. Let @ be any Q-subset of A. Then &, is spanned
by D and {6(L): L e ®}.

Proor. By Proposition 3.8, &, = &2 + &,* where & is the vector space
spanned by D. By Lemma 6.3, &,* = .¢”; and by Lemma 7.3, .#” is spanned
by {6(L): Le®@}. [

With regard to the size of the spanning set for &, presented in Theorem 7.4,
note that the number of elements in D is equal to the number of elements in T
minus the number of equivalence classes in T. It is an interesting fact that the
number of loops in @ is the same for all Q-subsets @ of A (see Example 3 in
Section 10). This number is never greater than (a — 1)(b — 1) where a and b
are the numbers of elements in ¥ and G respectively.

8. The Q-process. The Q-process is an algorithm for selecting a Q-subset of
loops in M. To apply it we want to put the elements of the index sets F and G
into some fixed order. In fact it simplifies the notation if we identify the sets
F and G with the sets {1, ..., a} and {1, ...b} where a and b are the numbers
of elements in F and G respectively.
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First, let us describe the X-process. The X-process applied to a two-dimensional
matrix A4 consists of the following procedure:

Look for an entry of 4 which is the only nonzero entry
in its row or in its column. If such an entry is found,
change it to 0, call the new matrix 4, and proceed as be-
fore. The X-process is completed when an A4 is obtained
with no row nor column having only one nonzero entry.

We now describe the Q-process:

1) Set p= 2.

2) Put the submatrix 4 of M consisting of the first p columns into a tempo-
rary working area.

3) Apply the X-process to A.

4) If the pth column of A4 consists entirely of zeros, go to step (9).

5) Select a position in column p, say (i}, p), in which a nonzero symbol oc-
curs. Select another position (i, j,), j, # p, in which a nonzero symbol occurs.
Select a position (i, j,), i, # i;, in which a nonzero symbol occurs. Select a
position (i, j,), j, # j,» in which a nonzero symbol occurs. In this manner,
alternately look along rows and columns for another nonzero entry until another
one is found in column p, say in position (i,, j,), j, = p.

6) Put the loop L = (iy, p)(ixs J1)(ias J1)(Bas Ja) * =+ (i Jo—1)(is» p) in the set ©.

7) Change the entry in position (i,, p) to 0 both in 4 and permanently in M.

8) Go to step (3).

9) Increase p by 1. If p < b, go to step (2). If p > b, the Q-process has
been completed.

The Q-process eventually terminates because after each loop is found one of
the nonzero entries of M is changed to 0. In step (3) it is clear that an entry in
A is changed to 0 by the X-process only when it cannot be involved in any
more loops in 4. The sequential nature of the process assures us that at step
(4) there are now no loops in the first p — 1 columns of M; therefore if the pth
column of A4 is 0, then there are no loops in 4. The procedure of step (5) is
possible because the X-process has been applied. Eventually some column must
be repeated among the positions selected in step (5) and this column must be
column p because there are no loops in the first p — 1 columns of M. It is
because of this same fact that we know the sequence L is actually a loop.

In Section 10 three examples are given which involve the Q-process. Perhaps
it is best illustrated in the third example.

9. Constraints, degrees of freedom, and reparametrizations. In this section
we collect some facts about partitioned linear models which are useful sup-
plementary material to the previous sections. We first summarize some known
facts (see Corollary 2.1 in Goldman and Zelen [6], Section 4 in Zyskind [12],
Example 2 in Seely [9], and Section 7.1 in Rao and Mitra [7]) about estimable
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linear parametric functions when there are known linear homogeneous con-
straints on the parameters. Then in (9.5)—(9.8) we give the generalizations to
a partitioned linear model structure. The notation R(A), N(4), and r(A) is used
for the range, null space, and rank respectively of a matrix A.

We suppose Y is an n X 1 random vector whose covariance matrix is ¢*/ and
whose expectation may be written as

(9.1) EYy=He+T0, Ne=0, T6=0.

For notational purposes it will sometimes be convenient to disregard the par-
titioned nature of E(Y) and simply think of E(Y) as

(9.2) E(Y)y= Xz, Az=0,

where X, = and A are defined in the obvious way, e.g., X = (H, T). For this
model a linear parametric function #'r = ¢’€ 4 a’6 is a linear functional on the
vector space N(A’) of possible parameter vectors. And a linear parametric func-
tion ' is said to be estimable provided there exists a linear unbiased estimator
for w'z; or equivalently,

(9.3) w'm is estimable if and only if there is some v e R(X’) such
that w'zm = v’z for all = e N(A).

Let & and &, denote the vector spaces of estimable linear parametric func-
tions of the form #'m and &’0 = 0’6 + a’0 respectively; and let d = dim &
(= degrees of freedom for regression), let d, = dim &, (= degrees of freedom
for the f-effects adjusted for the &-effects) and let d, = degrees of freedom for
regression for the submodel E(Y) = HE, A’6é = 0. Sections 3-8 are concerned
with & and &, when there are no restrictions on the model. For determining
when the results in Sections 3-8 are applicable to model (9.1) we introduce
the conditions

Cl: R(X) n R(d) = {0},
C2: R(H') n R(A) = {0} .

Condition Cl1 says, in the usual terminology, that in model (9.2) the constraints
A’r = 0 are “nonestimable”’; whereas condition C2 says that in the submodel
E(Y) = Ht, N'é = 0, the constraints A’ '— 0 are “nonestimable”. We mention
that a classification model with any of the “usual constraints” imposed as re-
strictions on the parameters will satisfy Cl; but C2 will be satisfied only for
particular partitions of the parameters. Alternative conditions equivalent to
Cl1 and C2 are, respectively, d = r(X) and d, = r(H).

REMARK 9.4. The condition A = 0 is equivalent to saying that the parameters
in model (9.1) are unrestricted. Thus the statements in this section which apply
to the model considered in Sections 3-8 are those we get by assuming A = 0.
Note that A = 0 trivially implies that both C1 and C2 are true.
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Concerning linear parametric functions of the form a’¢, (9.3) can be used to
establish that

9.5) @' is estimable if and only if there exists b e {T"z: H'z e R(A)}
such that «&'0 = b'¢ forall e N(I").

Since C2 implies {T"z: H'z € R(A)} = {T'z: H'z = 0}, we get
If a'6,---,a,’d would constitute a spanning set for &,

(9.6) under the assumption A =0, then 4/0,---,a,’0 isa
spanning set for &, whenever C2 is true.

It can be established that

9.7) d=d, +d,.

Furthermore,

Suppose C1 and C2 are satisfied. Then

a) If a'0,...,a,’0 would constitute a basis for &,
under the assumption A =0, then /0, ..,q,'0

9.8) is a basis for & .
b) If we set 4= (a, ---,a,), where the a’s are as

in part (a), and set W =TA, then the regression
space {Xm: A'r =0} may be expressed as the direct
sum R(H)® R(W) and W has full column rank.

We see that the methods of Sections 3-8 will be most useful for model (9.1)
when both C1 and C2 are true, because then statement (9.8) applies. Statement
(9.8.a) says that we can disregard the constraints in finding a basis for &, and
statement (9.8.b) indicates one use of such a basis. To be more specific, suppose
we have the matrix A4 of (9.8.b). In particular we have d, = m. The next step
would be to obtain a basis b/, ..., b,’¢ for the vector space of estimable linear
parametric functions for the submodel E(Y) = HE, A'¢ = 0. In determining
this basis, another application of (9.8.a) tells us we can assume A = 0. Let us
suppose we have B = (b,, - - -, b,) where the b,’s are obtained in this way. (It
is possible that a suitable partition of the submodel will allow the methods of
Sections 3-8 to be utilized.) Of course d, = k. From (9.7) d is known and we
can check for maximal rank. Even if the design matrix does not have maxi-
mal rank, the matrices 4 and B still provide us with an unrestricted full rank
reparametrization

(9.9) E(Y) = Up 4+ W¢
where U = HB and W = TA. In other words, {Xz: A'r = 0} = R(U) + R(W)

and (U, W) has full column rank. Furthermore, E(Y) = Uy is an unrestricted
full rank reparametrization for the submodel E(Y) = H¢, A’6é = 0. The sums
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of squares of regression for models (9.1) and (9.9) are the same, and the sum
of squares for the -effects adjusted for the §-effects is equal to the sum of squares
for the ¢-effects adjusted for the y-effects. If (77, ¢’) is the least-squares esti-
mator for (9.9), then # = (&', §’)’, where & = Bjj and 0 = Ag, satisfies X' X7 =
X'Y. Perhaps A’z ++ 0, but # can be converted (see Section 5.7 in [8]) to a
least-squares estimator for (9.1).

10. Examples.

ExampLE 1. Consider a collection of random variables {Y,} following an
additive three-way classification model. The index set for this collection would
be U={(jk,p)y:i=1.-.c,a;j=1,...,bjk=1,---,c;p=1,.--,n.,}
(if n;;, = 0 then no index with the first three components i, j, k occurs in U),
so that

EY)=ps+ a, + B; + 11> for u=(,j,k,p)eU.

Suppose we are interested in the estimability of y-contrasts. To apply the pro-
cedure of Section 3 we would set § = (¢, @y, - -+, @, By, +++, By) and 6 = y =
(7 *++»7.). Then foru = (i, j, k, p) e U, t, would be the ¢ X 1 vector ¢, with
its kth component 1 and all other components 0. To apply the procedure of
Sections 6-8 we would set ¢ = (¢, a, -+, a,) and o = (,, ---, 8;)’. Then
for u = (i, j, k, py e U, f, would be the (1 + a) X 1 vector with its first and
(1 + i)th components 1 and all others 0 and g, would be the b x 1 vector with
its jth component 1 and all others 0. Note that the hypotheses of Theorem 7.4
are satisfied; hence &, is spanned by D together with the y-contrasts derived
from a Q-subset of loops. Remark 3.10 also pertains, and so if a basis for & *
is extracted from the spanning set obtained from a Q-subset, then these -
contrasts together with D constitute a basis for &,.

Let us consider the specific example where a =4, b = 3, ¢ = 4, and the
occupied cells of the 4 X 3 X 4 incidence matrix N = (n,;,) are represented by
I’s in the following configuration:

81 T2 T3 I
By By Bs
all 0 Off1 O O||[0O O O|{x O O
a0 x x[|0 1 x|]1 O Ofl0 1 1
a0 x 1{[0 1 x[{0 O O[O0 1 x|
a1l 0 Offx O O0]|O0O 1 Offlx O O

Application of the R-process as in Section 3 tells us that the cells marked above
by x’s are estimable and that e, ~ e, ~ e,. (The x’s above can quickly be ob-
tained via Remark 5.3; and, similarly, we also see directly from the above
configuration that e, ~ e, ~ e, because the first, second and fourth submat-
rices are identical and nonzero.) Thus, we can choose S = {e,, ¢;} and obtain
D={nn—1ror.—nl} )

Referring to Section 6, we now partition & into the two subvectors ¢ and .
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As was done in Section 4, for indexing purposes we can use / in place of f, and
j in place of g, for u = (i, j, k, p) e U. If we let Q,k =k for k = 1, 3, then

100
_ 1311
M=y 11

1 30

Application of the Q-process yields two loops from which it is found that & *
is spanned by 7, — ;. We can conclude that & is spanned by {7, — 71, 74 — 71
71 — 73}; hence all y-contrasts are estimable.

For the additive three-way model, once a basis for £, has been obtained, and
hence d, = dim & . is known, it is a simple matter to obtaind = dim &. From
(9.7) we have thatd = d, + d, where d, is the degrees of freedom for regression
for the submodel

EY)=p+ a, + B, for u=(,jk,peU.

Since this is an additive two-way model, the methods of Section 4 may be ap-
plied to calculate Je. To illustrate, consider the specific example above. Note
that d, = 3. The incidence matrix for the two-way submodel is

200
12 1
Ney = (i) =19 2 1
110

Applying the R-process to N,, we clearly get a final matrix consisting of all 1’s.
Thus, from Section 4 we have d, = 4 4+ 2 = 6 so that d = 6 4+ 3 = 9. Hence
the design matrix for this example has maximal rank.

ReMARK 10.1. It is a handy fact that instead of forming N,, we can simply
use M with all its nonzero entries changed to 1’s.

ExampLE 2. Consider the following Graeco-Latin square with two missing
cells:
cl c2 c3 c4

rn [— BB Cr Do
r, |By A5 Da CB
10.2 !
(10.2) r, |C6 — ABp Ba

r, |DB Ca Bd Ay

This corresponds to a collection of 14 random variables following an additive
four-way classification model. An appropriate index set would be the set U
consisting of the 4-tuples (1,2, B, 8), --- (4,4, 4, 7). For example, u =
(2,3,D,a)e U and

EY)=p¢+n+c+D+a.
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Leté = (pu,ryy 51 €yy --+,¢) anc § = (4, B, C, D, a, B, 7, 6)’. The matrix
W formed in Section 3 has only one nonzero entry in each column, and the
rows in which these nonzero entries appear are different for different columns
(this follows from properties of Graeco-Latin squares). Therefore each vector
teT is equivalent only to itself so that S = T and & = {0}. Partition & by
setting ¢ = (¢, 1y, -+, 1) and @ = (¢, - -+, ¢,)). The hypotheses of Theorem
7.4 are satisfied, and so a spanning set for &, will be obtained from a Q-subset
of loops in M.

In forming M a good choice for the symbol Q, is the last two components of
the 4-tuple indexing s; thus we may think of the 4 x 4 array in (10.2) as M.
Applying the Q-process we find a Q-subset consisting of seven loops. From the
seven corresponding f-contrasts we find (after some manipulations) that d, = 5
and that a basis for &, is:

Latin letter contrasts: B— C, A — B —C + D
Greek letter contrasts: f —d, a — B4+ 7 — 0
“Inseparable” contrast: D — 4 + a — 7.

The Latin letter contrasts above form a basis for the vector space of all esti-
mable Latin letter contrasts. (If not, it would follow that d, = 6, which is a
contradiction.) Thus, the sum of squares for Latin letter effects adjusted for all
other effects leads to a test that B — C and 4 — B — C + D are zero rather
than the usual test that all Latin letter effects are equal. The degrees of freedom
associated with this sum of squares is 2.

To calculate d, note that the submodel with parameter vector £ is an additive
two-way model. Then use Remark 10.1 tofindd, = 7,so thatd =7 + 5 = 12
by (9.7).

From the above analysis we have d and the relevant information concerning
the Greek and Latin letter effects. To obtain similar information for the row
and column effects one could interchange the roles of £ and . For certain
facts, however, alternative methods are available at this stage. For example,
suppose we want the degrees of freedom d, for the row effects adjusted for all
other effects. Apply (9.7) with the parameters partitioned so that 6 =
(r, 1y, 13, 1)’ We already know d = 12. To get Je we must consider the sub-
model obtained by dropping the #-effects, which is an additive three-way model
with 10 degrees of freedom for regression. Therefore, d, = 12 — 10 = 2.

REMARK 10.3. The choice § = (4, B, C, D, a, B, 1, )’ in Example 2 was
motivated by the fact that the vector ¢ of remaining parameters could be par-
titioned into ¢ and o such that the hypotheses of Theorem 7.4 would be satisfied.
Even if we were only interested in Latin letter contrasts, this would still be a
better choice in Example 2 than 6§ = (4, B, C, D)’. This latter choice does not
allow us to apply Theorem 7.4 and, in fact, leads to no information about esti-
mable Latin letter contrasts. Note, however, that for any partition of the
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parameter vector into ¢, , and ¢ one can always apply Proposition 6.2, and in
some cases this will lead to all the desired estimability information.

ExaMmpLE 3. Consider a collection of random variables {Y,} following a two-
way classification model with interaction. The index set is U = {(i, j, k): i =
L, ..,aj=1,---,b;k=1,...,n;} where n;; =0 implies there is no ue U
whose first two components are i, j. Thus, our model is

EY)=p+ a,+ B;+ 6, for u=(»,jkeU.

Suppose there are no restrictions on the parameters. Then it is known that
there are no estimable a-contrasts or p-contrasts. So we concentrate on the
estimable f-contrasts. Partition the model according to & = (¢, ay, - - -, a,,
By -+, By) and @ equal to the vector of 6,;’s ordered lexicographically. For
u=(,jkyeUlet e; =1t, so that ¢;;- ¢ = 0,; and T = {e;;: n;; # 0}. Let
$, o, f, and g, be defined as in Example 1. We note that the hypotheses of
Theorem 7.4 are satisfied and hence &), is spanned by D together with the §-
contrasts derived from a Q-subset of loops in M.

The column indexed by e,; in the matrix W (to which the R-process is applied
to obtain D) has a nonzero entry only in the row indexed by the vector 4 satis-
fying h- & = p + a;, + B;. Therefore, S = T and 2 = {0}. In forming M we
can choose (2, to be the numeral 1 for all se S because the position of a 1 in
M tells which se S is associated with it. Hence we can obtain M from the in-
cidence matrix N = (n,;) by changing all nonzero entries to 1.

Suppose a Q-subset of loops in M is selected. Then each f-contrast (L) de-
rived from a loop L in the Q-subset contains a term ¢,; which does not occur
in any contrasts derived from loops selected later. Therefore, these §-contrasts
not only form a spanning set for &, but in fact form a basis. (This leads to the
fact mentioned in Section 7 that all Q-subsets contain the same number of
loops.)

REMARK 10.4. For the two-way model with interaction it is easily seen that
d is equal to the number of nonzero entries in the incidence matrix N. By (9.7)
we have d = Je + d,. Thus, an alternative method to that in Section 4 for
calculating the rank of the design matrix for an additive two-way classification
model with incidence matrix N is to subtract the number of loops in a Q-subset
of loops in N from the number of nonzero entries in N.

As a specific case of Example 3 suppose a = 4, b = 5, and that the incidence
matrix N = (n;;) is

, andso M =

- N O W
WO =N
O = AN
- o N O
N O OO
_— O
—_ O =
O =
-0 = O
- O O
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The Q-process applied to M yields four loops with corresponding contrasts

012 - 011 ‘|' 041 - 042 ’ 013 - 012 + 022 - 023 ’
013 - 011 + 031 - 033 s 024 - ‘922 + 012 - 011 + 041 - 044 .

Hence d, = 4. Also, from Remark 10.4 we have d = 12.

REMARK 10.5. In Example 3 we have assumed no constraints on the parame-
ters. Write the model in the partitioned form of (9.1) as E(Y) = H¢ + T6 where
€ and ¢ are as in Example 3 and suppose we have any of the “usual” constraints,
say A’6 = 0and I''¢ = 0, on the parameters. Then C1 and C2 in Section 9 are
true so that a basis for &, can be obtained from the §-contrasts derived from
the loops in a Q-subset. However, unlike additive classification models, state-
ment (9.8) will not apply if the roles of # and & are interchanged because
R(T") n R(T") # {0}.
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